
Empirical Evaluation of Multi-level Buffer Cache
Collaboration for Storage Systems

Zhifeng Chen, Yan Zhang, Yuanyuan Zhou
Department of Computer Science

University of Illinois at Urbana-Champaign

{zchen9,zhy,yyzhou}@cs.uiuc.edu

Heidi Scott and Berni Schiefer
IBM Canada

Toronto Laboratory

{hscott,schiefer}@ca.ibm.com

ABSTRACT
To bridge the increasing processor-disk performance gap, buffer
caches are used in both storage clients (e.g. database systems) and
storage servers to reduce the number of slow disk accesses. These
buffer caches need to be managed effectively to deliver the perfor-
mance commensurate to the aggregate buffer cache size. To ad-
dress this problem, two paradigms have been proposed recently to
collaboratively manage these buffer caches together: the hierar-
chy-aware caching maintains the same I/O interface and is fully
transparent to the storage client software, and the aggressively-col-
laborative caching trades off transparency for performance and re-
quires changes to both the interface and the storage client software.
Before storage industry starts to implement collaborative caching
in real systems, it is crucial to find out whether sacrificing trans-
parency is really worthwhile, i.e., how much can we gain by us-
ing the aggressively-collaborative caching instead of the hierarchy-
aware caching? To accurately answer this question, it is required
to consider all possible combinations of recently proposed local re-
placement algorithms and optimization techniques in both collabo-
ration paradigms.

Our study provides an empirical evaluation to address the above
questions. Particularly, we have compared three aggressively-col-
laborative approaches with two hierarchy-aware approaches for
four different types of database/file I/O workloads using traces
collected from real commercial systems such as IBM DB2. More
importantly, we separate the effects of collaborative caching from
local replacement algorithms and optimizations, and uniformly
apply several recently proposed local replacement algorithms and
optimizations to all five collaboration approaches.

When appropriate local optimizations and replacement al-
gorithms are uniformly applied to both hierarchy-aware and
aggressively-collaborative caching, the results indicate that hi-
erarchy-aware caching can deliver similar performance as ag-
gressively-collaborative caching. The results show that the
aggressively-collaborative caching only provides less than 2.5%
performance improvement on average in simulation and 1.0%
in real system experiments over the hierarchy-aware caching for
most workloads and cache configurations. Our sensitivity study
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indicates that the performance gain of aggressively-collaborative
caching is also very small for various storage networks and dif-
ferent cache configurations. Therefore, considering its simplicity
and generality, hierarchy-aware caching is more feasible than
aggressively-collaborative caching.

Categories and Subject Descriptors
C.4 [Performance Of Systems]: Design studies; C.0 [General]:
System architectures; D.4.8 [Operating Systems]: Performance—
Simulation, Measurement

General Terms
Algorithms, Design, Experimentation, Measurement, Performance
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Storage system, Database, File system, Collaborative caching

1. INTRODUCTION
The rise of web-centric or service-based computing drives the

demand of data centers. Storage is one of the foundational bricks
in such computing environments. To improve performance, both
storage servers and storage clients usually use large main-memory
buffers for caching. For example, EMC Symmetric storage servers
contain 4–64GB of memory as their storage caches [11]. A typical
commercial database server, such as IBM DB2, also equips with
gigabytes of memory [32]. Therefore, caches of storage servers
and storage clients make up a two-level cache hierarchy as shown
in Figure 1.

Although both storage client caches and storage caches are in-
creasingly large, they do not deliver the performance commensu-
rate to their aggregate buffer cache size. There are two reasons
restricting the effectiveness of such a cache hierarchy. First, fil-
tered by client caches, accesses to storage caches have weaker
temporal locality. As a result, locality-based caching algorithms,
such as LRU, are less efficient for storage caches. Second, data
are cached redundantly by both storage client caches and storage
caches. Therefore, the effective cache size is smaller than the total
amount of caches in the hierarchy [34, 37].

To address this problem, researchers have proposed two
paradigms: hierarchy-aware caching and aggressively-collabora-
tive caching, to collaboratively manage the buffer cache hierarchy
together for the purpose of delivering better performance.

Hierarchy-aware caching maintains the same I/O interface and
is fully transparent to the storage client software (e.g. databases).
The collaboration is achieved by merely exploiting information
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Figure 1: Buffer caches of storage clients (databases or file sys-
tems) and storage caches form a two-level cache hierarchy.

available at storage servers without any storage client hints. Ex-
amples of hierarchy-aware caching include the MQ replacement
algorithm [37], the eviction-based placement [6] and the X-RAY
mechanism [1]. Zhou et al. [37] found out that accesses to storage
caches usually have poor temporal locality due to filtering effects of
storage client caches. Thus, they proposed a Multi-Queue replace-
ment algorithm based on their access pattern study. Chen et al. [6]
proposed an eviction-based placement policy, which postpones the
block placement from access-time to the time when this block is
evicted from storage client caches. They also proposed a method to
dynamically estimate eviction information by storage client caches
without requiring any hints from storage clients. Bairavasundaram
et al. proposed an X-RAY mechanism for storage caches [1] to
achieve exclusive storage caching by assuming file system seman-
tics of storage clients and estimating their caching behaviors.

Aggressively-collaborative caching trades off transparency for
the possibility of improved performance. It collaboratively man-
ages the storage client-server buffer cache hierarchy by extending
the standard I/O interface and modifying storage client software.
So far, two main aggressively-collaborative approaches have been
proposed. The first one, called hint-based, uses hint information
provided by storage clients to improve the performance of storage
caches. The DEMOTE scheme proposed by Wong and Wilkes is
an example of this approach [34]. The second one, called client-
controlled, allows storage clients to control the caching of storage
servers. For example, Song and Zhang recently proposed a unified,
level-aware caching protocol called ULC, in which a storage client
decides whose cache should cache a block [19].

Even though previous studies on aggressively-collaborative
caching have shown some good results of aggressively-collabo-
rative approaches for certain workloads, the generality of their
evaluation results is quite limited due to two reasons:
(1) Their conclusions are usually drawn from very limited case
studies, which focus on comparing a particular collaboration ap-
proach with the baseline case, and assumes that the baseline case
uses the simple least recently used (LRU) algorithm to manage all
buffer caches. However, real systems can use different local re-
placement algorithms and apply various optimizations to improve
caching efficiency. For example, recent work has demonstrated the
effectiveness of a new replacement algorithm called ARC [24] in
the IBM TotalStorage DS8000 [16]. Recent work has also shown
that various optimizations, such as exclusive-caching [6, 34] and
cold-block elimination [20], are effective in improving cache per-

formance. Therefore, it is unclear whether aggressively-collabora-
tive caching is still beneficial when these new replacement algo-
rithms and optimizations are uniformly applied to both the baseline
and the collaboration cases.
(2) Most previous work on aggressively-collaborative caching
does not compare with hierarchy-aware caching that does not re-
quire any changes to the I/O interface and storage client software.
Therefore, it is unknown whether sacrificing transparency as in
aggressively-collaborative caching is really worthwhile, i.e., how
much extra performance we can gain by using aggressively-col-
laborative caching over hierarchy-aware caching, especially if
we apply all possible recently-proposed optimizations and local
replacement algorithms to both collaboration approaches?

Providing answers to the above questions is very important. Cur-
rently, storage vendors such as IBM are in the process of investi-
gating collaborative caching between storage clients and storage
servers [15]. Industrial development teams need a guideline to de-
cide whether it is worthwhile to modify the storage client software
and I/O interface to support aggressively-collaborative caching.

Our study provides a rigorous empirical evaluation to address the
above questions. More specifically, our evaluation has the follow-
ing characteristics that make our results much more general than
previous studies:

• Besides the two aggressively-collaborative approaches (hint-
based and client-controlled), we have also designed a new
aggressively-collaborative approach called content-aware
caching, in which a client cache changes its eviction de-
cisions based on the content on the storage server cache.
In addition, we also extend the hint-based approach from
simple hints like eviction information to general hints such
as semantic information (e.g. the importance of a block),
which is usually available at storage clients (e.g. IBM DB2).

• We separate the effects of collaborative caching from lo-
cal replacement algorithms and optimizations, and uniformly
apply several recently proposed local replacement algorithms
and optimizations to all collaboration approaches. In our
comparison of the total 248 combinations, we choose the
best local replacement and optimizations for each collabo-
ration approach.

• Our evaluation is conducted using four different types of
database/file I/O workloads including online transaction pro-
cessing (OLTP), decision-support system (DSS) and file sys-
tem workloads, using traces collected from real commercial
systems such as IBM DB2.

• Our above simulation results are also validated using exper-
iments on a real system running OLTP workloads. The sys-
tem is composed of a database server and a storage server, in
which we have implemented both hierarchy-aware and ag-
gressively-collaborative caching approaches, various cache
replacement algorithms and local optimizations.

• We have also studied the effects of different storage client
and storage cache configurations, and the effects of stor-
age area network (SAN) latency such as IP-storage, Fibre-
Channel and future SANs.

Our study indicates that it is more important and effective to
apply local optimizations or change the local replacement algo-
rithms in hierarchy-aware caching in order to achieve good perfor-
mance. Our results show that aggressively-collaborative caching
evaluated in our study can only provide less than 2.5% perfor-
mance improvement on average over hierarchy-aware caching for
most workloads and cache configurations. In addition, the end per-
formance (database transaction rate) improvement in real systems



Figure 2: Evaluation space of storage client caches and storage
caches.

is only 1.0%. This is because hierarchy-aware caching, with ap-
propriate replacement algorithms and optimizations, can approxi-
mately enable both storage client caches and storage caches to work
as one global cache without resorting to a centralized algorithm.
Furthermore, this observation is also true for different storage net-
works and various cache configurations. In short, comparing the
marginal performance gain of aggressively-collaborative caching
with the simplicity and generality of hierarchy-aware caching, hi-
erarchy-aware caching is more practical.

The rest of this paper is organized as follows. Section 2 describes
the evaluation space for storage client caches, storage caches and
collaboration. Section 3 to section 6 explain in detail of each design
dimension. Experimental methods and workloads are described in
Section 7, followed by trace-based simulation results in Section 8
and real system evaluation results in Section 9. Section 10 summa-
rizes related work and Section 11 draws conclusions.

2. EVALUATION SPACE
To separate factors that can affect the effectiveness of a storage

client-server buffer cache hierarchy, we can envision a large num-
ber of specific design combinations in a three-dimensional evalua-
tion space as shown on Figure 2. The three dimensions are: client-
server collaboration, local cache replacement algorithms and local
optimizations. Along each dimension, there are many different de-
sign choices, which have various effects on the performance of the
cache hierarchy. Since each design dimension is orthogonal to the
others, we should separate their effects. Therefore, to compare dif-
ferent collaborative caching approaches, we need to combine each
collaboration strategy with the other two dimensions: replacement
algorithms and local optimizations.

The first design dimension, also the focus of our paper, is how
a storage client buffer cache and a storage cache collaborate with
each other. Different collaboration approaches require different
levels of information exchange between a storage client and a stor-
age server. For example, the MQ replacement algorithm [37] and
the eviction-based placement [6] require no extra information from
a storage client. In contrast, in the client-controlled approach [19],
the storage cache is managed entirely by the storage client. In the
next section, we will describe different collaboration approaches in
more detail.

The second design dimension is cache replacement algorithms
which make decisions upon replacement based on certain heuris-
tics. Many replacement algorithms have been proposed in the past.
For example, LRU is a commonly used replacement algorithm that
replaces the least recently used block when a buffer cache is full.
ARC [24] is a recently proposed replacement algorithm that consid-

ers both frequency and recency information at replacement. Since
both storage caches and storage client caches can independently de-
cide their cache replacement algorithms, we need to consider vari-
ous combinations.

The third design dimension is local optimizations. Storage
clients and storage servers usually exploit workload specific opti-
mizations to improve their performance. For example, databases
can identify the root block of B+-tree and may prefer caching it
longer than others. On the other hand, some blocks can be evicted
immediately according to workload access patterns. The number
of possible optimizations can be quite large depending on various
workload characteristics.

Obviously, we cannot explore all choices in each design dimen-
sion. Instead, we select those representative ones that are either
commonly used, or have recently been proposed with promising
good results. In particular, in addition to existing collaboration ap-
proaches, we also evaluated a new collaboration approach called
content-aware caching, and extended the hint-based collaboration
approach with more useful hints such as semantic information.

Our evaluation space which we explore is much larger than pre-
vious work, and previous work only examined a limited number of
points in our evaluation space (See Section 6). For example, most
previous work assumes that storage client caches are managed by
simple LRU. They do not consider other replacement algorithms
and various workload specific optimizations. In contrast, our work
considers three dimensions and evaluates 248 design combinations
in total. Therefore, our work can draw more general conclusions
about the effectiveness of collaborating caching strategies.

Our study currently focus only on caching and does not consider
prefetching. We expect that prefetching can be uniformly applied
to all collaboration approaches. Even though it is possible to have
collaborative prefetching schemes, its effectiveness is beyond the
scope of this paper, and remains as our immediate future work.

Moreover, our study assumes a single storage client and a storage
server. This assumption is reasonable because (1) many high-end
industrial configurations usually use a dedicated storage system for
a single database [36] to avoid storage contention; (2) it is relatively
easy to extend collaborative caching to handle multiple clients, us-
ing the dynamic partitioning technique [35] proposed by Zhou et
al.; (3) Only aggressively-collaborative caching requires changes to
deal with multiple clients, while hierarchy-aware caching works for
multiple clients directly. As our results indicate that aggressively-
collaborative caching is not worthwhile performance-wise even for
a single storage client, the issue of handling multiple storage clients
would further push the balance towards hierarchy-aware caching.

3. COLLABORATIVE CACHING
In order to improve the storage client-server cache hierarchy

performance, researchers have proposed several collaboration ap-
proaches. According to whether they change the I/O interface, they
can be categorized into hierarchy-aware caching approaches and
aggressively-collaborative caching approaches.

3.1 Hierarchy-aware Caching Approaches
(HA)

Hierarchy-aware caching improves the storage client-server
cache hierarchy by exploiting storage server intelligence (Fig-
ure 3(a)). Storage servers become aware of the existence of large
storage client caches in their front-ends, but do not require changes
to the I/O interface and storage client software.

Hierarchy-aware caching improves storage caching performance
by transparently estimating the dynamic behavior of storage client
caches. For example, storage servers can estimate eviction of stor-



(a) Hierarchy-aware caching
approaches (b) Aggressively-collaborative caching approaches

Figure 3: Hierarchy-aware and aggressively-collaborative caching approaches. Storage clients are on the left and storage servers are
on the right in graphs.

age client caches by monitoring I/O buffer addresses [6]. If the
storage client tries to read block A into a memory buffer that was
previously used to access block B, the storage server can infer that
block B is very likely evicted from the storage client buffer cache.
Such eviction can also be inferred by exploiting filesystem seman-
tics [1] without explicit hints from storage clients. Such eviction
information can be exploited by a storage server to reload those
blocks evicted from the storage client cache to the storage cache so
that future accesses to these blocks would hit in the storage cache.

Our evaluation investigates two particular hierarchy-aware ap-
proaches. One approach is the basic hierarchy-aware approach
(HAB). It knows the existence of storage client caches. Such
knowledge facilitates storage caches to efficiently exploit certain
optimizations such as exclusive caching (Section 5.1).

The other approach is called HAR, which estimates storage
client evictions and may reload evicted blocks from disks proposed
by Chen et al [6]. In HAR, by monitoring the buffer address of
every read access from the storage client, the storage server maps
client memory addresses to blocks cached by the storage client.
When an address in the storage client is overwritten by another
read access, the storage server detects that the corresponding block
is evicted. Therefore, the storage server can reload the evicted
block into its cache. Although these reloads may incur extra disk
accesses, the disk scheduler can schedule reload operations in the
background and hide some of these overheads using scheduling al-
gorithms such as FreeBlock scheduling [23].

The above method can be readily used when the storage client
accesses one dedicated storage server. In some very large systems
where the storage client accesses multiple storage servers, they of-
ten access storage servers through a storage virtualization module
(e.g. a router) in the storage area network. The above technique
can be applied in such a module rather than in every storage server.

3.2 Aggressively-collaborative Caching Ap-
proaches (AC)

Different from hierarchy-aware approaches, aggressively-collab-
orative caching approaches trade off transparency for better perfor-
mance (Figure 3(b)). They extend I/O interfaces to enable exchange
of extra information between storage clients and storage servers. In
our study, we evaluate two existing aggressively-collaborative ap-
proaches (hint-based and client-controlled) and one new approach
(content-aware). Furthermore, we enhance the hint-based approach
to pass application semantics information to storage servers. These
approaches trade off transparency for performance at different de-
grees. The hint-based caching is the least aggressive one, while
client-controlled caching are the most aggressive one.

3.2.1 Hint-based Caching (ACHB)
In the hint-based caching, storage clients provide hints to guide

storage server cache management. Storage clients can pass two
types of hints: access patterns and application semantics. Both

require small changes to the standard I/O interface and the storage
client software. Hint information is usually so small that it can be
piggybacked along with requests. Such a mechanism of passing
hints from the storage client to the storage server is orthogonal to
how to exploit hints for caching.

Access patterns at storage clients are useful for improving the
performance of storage caches because such patterns are usually
lost after filtering through the storage client cache. For example,
it is easier for the storage client to find out some sequential access
patterns, whereas it is rather difficult for the storage server to find
such patterns due to interleaving of requests from multiple access
streams of the same client (e.g. different database worker threads),
or multiple storage clients. Another example of access patterns is
eviction information. For example, the DEMOTE method proposed
by Wong and Wilkes requires a storage client to send evicted blocks
to storage caches [34].

Semantic hints, which are usually available only at a storage
client, can also help improve storage cache performance. For exam-
ple, storage clients, such as the IBM DB2, know exactly some data
blocks are only accessed once. Such storage client can send this
information to storage servers. Storage caches can avoid caching
such read-once data to save cache space for more important data.
Since semantics hints are application specific, storage servers need
to understand various hints from different applications. As a result,
the change of storage server software would be complex.

This study examines the effects of two kinds of hints. One kind
of hints are evicted blocks. We change the I/O interface and en-
able storage clients to send evicted blocks to storage servers. Upon
receiving evicted blocks, storage servers cache them as the most re-
cently accessed blocks. The other kind of hints are semantic hints.
Specifically, we use data importance as hints. Data importance tells
storage caches how long storage caches should try to keep accessed
blocks, or whether they should evict accessed blocks immediately.

3.2.2 Content-aware Caching (ACCA)
The content-aware caching makes caching decisions based on

the content of other caches. For example, block A is cached by
both the storage client cache and the storage cache. Block B is
cached by the storage client cache, but is not cached by the storage
cache. When the storage client cache needs to replace one block
among A and B according to its cache replacement algorithm, it is
better to evict A than B so that future accesses to A or B would
not incur a disk access. Compared to the hint-based caching, the
content-aware caching requires more changes to the storage client
cache management. Hence, it is more aggressive.

The content-aware caching may incur extra network traffic be-
tween storage clients and storage servers to exchange content in-
formation. If there is only one pair of storage client and storage
server, the client can emulate changes of the storage server cache.
Otherwise, they can piggyback the change of cache content with
regular I/O operations. To further reduce the updating traffic, one



Approach

I/O in-
terface
change

Storage
client
change

Extra
network
traffic

Handle
multiple
clients

Application
specific

HAB No No No Yes No
HAR No No No Yes No
ACHB Yes Yes Yes Possible Yes
ACCA Yes Yes Yes Possible Yes
ACCC Yes Yes Yes Difficult Yes

Table 1: Summary of five collaboration approaches.

cache can use Bloom filters [3] to create a summary of its cache
content and send the summary to other caches periodically [12].

Our study examines one particular method of the content-aware
caching. This method makes storage clients informed about stor-
age cache contents. Instead of choosing exactly one block to evict
directly, a storage client cache selects a group of victim candidates
according to its replacement algorithm. The final victim among
the candidates is the first one which is also cached by the storage
cache. The number of victim candidates is a tunable parameter. In
our evaluation, this parameter is manually tuned to achieve the best
performance for content-aware caching. It can also be dynamically
adjusted based on performance feedback. The dynamic tuning al-
gorithm decreases the number of victim candidates when accesses
hit among the candidates and increases the number otherwise.

3.2.3 Client-controlled Caching (ACCC)
The client-controlled caching uses storage clients to manage

both storage client caches and storage caches as a single unified
cache. Storage servers receive control commands from storage
clients to update its caches. In this way, a storage client is respon-
sible for making global caching decision. Therefore, it is relatively
easy to achieve the global optimal performance.

Although client-controlled caching is intuitively easy to achieve
good performance, it faces many complex issues. First, client-con-
trolled caching requires extensive change of storage client software,
storage server software and I/O interfaces. Second, when multiple
clients are sharing one storage server, client-controlled caching ap-
proaches need to coordinate these clients to make a global decision
at the storage cache and guarantee no malicious clients can inten-
tionally hurt other clients’ performance. Finally, client-controlled
caching limits some functionalities of storage caches, such as read-
ahead caching, write-back policy etc.

Our evaluation uses the ULC [19] algorithm as the representa-
tive method for client-controlled caching, in which each block is
either cached by the storage client cache or the storage cache. The
storage client maintains the meta-data of a larger cache whose size
is the sum of both caches. To reduce moving the data block among
storage client caches and storage caches, ULC decides which cache
to cache the block according to the reference distance between the
last two accesses to this block. If the distance is large, the block
will only be cached in the storage cache. Although the original
ULC algorithm manages the aggregate cache in an LRU fashion,
our evaluation also extends its basic idea to other cache replace-
ment algorithms, such as ARC [24], and combines it with other
optimizations, such as using caching hints (see Section 5.3).

3.3 Summary
In Table 1, we compare the hierarchy-aware and aggressively-

collaborative caching to analyze whether they need to change the
interface and storage client software, whether they incur extra net-
work traffic and how well they can handle multiple clients and sup-

port general applications. We also notice that only content-aware
caching has a tunable parameter among these approaches.

Hierarchy-aware caching is transparent to storage clients while
aggressively-collaborative caching involves both storage clients
and storage servers. Therefore, all aggressively-collaborative
approaches need to change both the I/O interface and storage
client software. Since all aggressively-collaborative approaches
exchange extra information between storage clients and stor-
age servers, they incur additional storage area network traffic.
While hierarchy-aware caching handles multiple clients directly,
aggressively-collaborative caching need special mechanism for
storage servers to coordinate storage clients. In addition, while
hierarchy-aware caching supports general applications, aggres-
sively-collaborative approaches are specific to certain applications.

Aggressively-collaborative approaches sacrifice different de-
grees of transparency. The hint-based approach is the simplest one
to implement in real systems. It only needs to tag with each I/O
operation with a few bits to indicate caching hints. On the other
hand, content-aware and client-controlled approaches require stor-
age clients to maintain the meta-data for storage caches, which in
turn increases the complexity of storage client software and storage
area network traffic. Furthermore, the client-controlled approach
needs to address many issues to deal with multiple storage clients,
such as controlling malicious clients.

4. CACHE REPLACEMENT ALGORITHMS
In previous work, storage caches and storage client caches are

assumed to use LRU as their basic replacement algorithms. How-
ever, many replacement algorithms have been recently proposed
to improve upon LRU [18, 20, 24, 37]. For example, the adap-
tive replacement algorithm (ARC) [24] considers both frequency
and recency of a block in its replacement. It does this by divid-
ing the cache into two components: the recency component and the
frequency component. ARC dynamically adjusts relative sizes of
these two components.

Our study chooses both LRU and ARC as our representative re-
placement algorithms. The rationale for choosing LRU is because
LRU is commonly used and it also allows us to validate against
previous work.

The reason for choosing ARC is because it is the most recently
proposed replacement algorithm and has been shown to outper-
form many existing algorithms including LRU, LFU, FBR [28],
LIRS [18], MQ [37] and 2Q [20], for a variety of workloads, such
as OLTP, ERP, SPC1 and NT workstation workloads [24]. Re-
cently, IBM TotalStorage DS8000 uses ARC as its cache replace-
ment algorithm [16].

ARC or LRU can be used for both storage client caches and stor-
age caches. Both of these two replacement algorithms do not have
any tuning parameters. Therefore, we can have a total of four com-
binations: (1) LRU for client and LRU for storage; (2) LRU for
client and ARC for storage; (3) ARC for client and LRU for stor-
age; (4) ARC for client and ARC for storage. Our study applies all
these four combinations to all collaboration approaches with vari-
ous local optimizations.

5. LOCAL OPTIMIZATIONS
We study three commonly used cache optimization techniques:

quick eviction of duplicated blocks (DU), quick eviction of cold
blocks (CO) and semantics directed caching (SE). These optimiza-
tions have been shown to be effective in recent caching studies [1,
19, 26]. Optimization DU and SE do not have any tuning param-
eters. For CO, we set uniformly its tuning parameter to make fair



comparisons. Although DU and CO have been proposed before,
previous work only studies their effects on some particular storage
client-server cache collaboration approaches. To the best of our
knowledge, no previous work has ever studied SE for the storage
client-server cache collaboration.

5.1 Quick Eviction of Duplicated Blocks (DU)
This technique avoids the storage cache keeping the same

blocks as the storage client cache. Therefore, it is called exclusive
caching [1, 34]. This technique minimizes replications in the
buffer cache hierarchy and effectively enlarges the amount of
available cache spaces. Previous work [1, 34] has demonstrated
good performance improvements with this optimization technique.

It is straightforward to implement DU. Whenever a block is
fetched from the storage cache, the storage cache will replace it
quickly since the storage client cache will cache it.

DU can be applied to only storage caches but can be combined
with all collaboration approaches. However, since the client-con-
trolled approach allows each block to be cached by only one cache,
exclusiveness is already naturally achieved.

5.2 Quick Eviction of Cold Blocks (CO)
Cold blocks are blocks that are rarely accessed. Caching cold

blocks has a negative effect of polluting the cache by evicting some
potentially useful blocks. Much previous work [19, 20, 37] has
shown that quickly evicting cold blocks can effectively improve
buffer cache performance.

One way to identify cold blocks is to extend replacement algo-
rithms with a history buffer. The history buffer records a number
of past accesses in an LRU [19] stack or FIFO [20]. If a block is
accessed while the history buffer still remembers it, this block is a
warm block. Otherwise it is cold. The size of the history buffer
is a tuning parameter for CO. To make fair comparison, our eval-
uation set the history buffer size as same as the cache size for all
collaboration approaches.

Different from DU, this optimization can be applied to both stor-
age caches and storage client caches. But combining with other
optimizations such as DU is a little more complicated because DU
in storage caches already evicts any recently accessed blocks from
storage caches.

5.3 Semantics Directed Caching (SE)
Previous work shows that application semantics is helpful in di-

recting cache replacement [7, 27]. For example, a database can
identify the root block of a B+-tree index or a large sequence of
data blocks which are accessed by a sequential table scan. Accord-
ingly, database buffer management can decide to cache the index
root block for a longer time and quickly evict those data blocks in
the sequential scan [7, 31].

In our evaluation, we utilize the data importance value provided
in two database workloads from IBM DB2. Through query plans,
databases know precisely whether one block will be accessed again.
Accordingly, each block accessed is assigned a value indicating its
importance. Based on such data importance, storage client caches
can selectively avoid caching some blocks and keep others longer.

Although semantics directed caching can be uniformly applied
to all collaboration approaches at the storage client cache, only
the hint-based approach can explicitly pass semantic information
as hints and the storage server can utilize such caching hints. When
the client-controlled approach is combined with semantic directed
caching, the storage client can use such hints directly to manage
both caches globally.

Method Collaboration Replacement Optimizations
EV [6], X-RAY [1] HAR LRU+LRU DU

DEMOTE [34] ACHB LRU+LRU DU
ULC [19] ACCC LRU CO

Table 2: Previously proposed methods in the evaluation space.

6. COVERAGE OF THE EVALUATION
SPACE

The panoramic evaluation space allows us to evaluate much more
storage client-server collaborative caching methods including all
the previously proposed ones.

The evaluation space covers all previous storage client-server
collaborative caching methods. As summarized in Table 2, each
previous method is just a particular combination of collaboration
approach, a replacement algorithm and some optimizations. For
example, the DEMOTE scheme proposed by Wong and Wilkes [34]
is just a hint-based collaboration approach combined with LRU for
both storage client caches and storage caches and the DU optimiza-
tion for storage caches.

In our evaluation space, we evaluate 248 different designs of
client-server cache hierarchy in total. There are 5 collaboration
approaches (HAB, HAR, ACHB , ACCA and ACCC ), 2 replace-
ment algorithms (LRU and ARC), and 3 optimizations (DU, CO
and SE). Each replacement algorithm and most local optimizations
can be applied to both storage client caches and storage caches.

7. EVALUATION METHODOLOGY
We evaluate collaborative caching approaches using both trace-

based simulation and real system implementation.

7.1 Trace-based Simulation
We first evaluate collaborative caching approaches through trace-

driven simulations for multi-level caches. We simulate a system
composed of one storage server and a storage client, which are con-
nected through a storage area network.

Our simulation uses four large real system traces. They are ei-
ther collected by ourselves using industrial benchmarks or by other
researchers in large production systems. They represent OLTP (On-
Line Transaction Processing), DSS (Decision Support System) and
filesystem workloads.

• OLTP workload trace is a database buffer access trace col-
lected on an IBM DB2 database running IBM’s TPCC bench-
mark (1000 warehouses). OLTP workload is dominated by
small random accesses. The trace has 132 million accesses.
The workload accesses 9.7GB data during 12 hours. The
block size is 4KB.

• DSS workload is another database buffer access trace col-
lected on an IBM DB2 database running IBM’s TPCH
benchmark. The benchmark has several sequential table
scans of one huge table (lineitem). The trace contains 59
million references and accesses 15GB data in 2 hours. The
block size is 4KB.

• Cello99 is a low-level disk I/O trace collected on an HP
UNIX server with 2GB memory. The I/O accesses are fil-
tered by the filesystem cache. Therefore, its temporal local-
ity is quite poor. We use one week trace between 12/02/1999
and 12/08/1999 and the block size is 8KB. The data footprint
is as large as 117GB.

• Lair62b is an NFS server RPC trace collected on an NFS
server by SOS project of Harvard University [10]. The origi-
nal Lair62b trace is an NFS trace. We convert it into a block



Block Size 4KB 8KB
Access latency (ms) Th Tm Th Tm

VI/Fibre-Channel 0.125 6.352 0.137 6.940
IP Storage 0.692 6.983 0.979 8.101

Future SAN 0.012 6.238 0.014 6.817

Table 3: Access latencies of different storage network con-
figuration for different block sizes (4KB and 8KB). VI/Fibre-
Channel network is the default network in our evaluation.

access trace through an FFS-like filesystem simulator, which
models i-node and data blocks and ignores other meta-data
information. We use one day trace of 2/24/2003 and the
block size is 4KB. The data footprint is 6.7GB.

We use average read access time as the major performance met-
ric in our simulation experiments (In contrast, our implementation
experiments use end database performance, transaction rates, as the
performance metric). An application access to a data block can be
a hit in the storage client cache (e.g. the database buffer cache), a
hit in the storage cache, or an access to the disk (a miss from both
caches). Let H1, H2 and M denote the total number of such three
types of accesses respectively. Let Th denote the average access
latency of a storage cache hit and Tm denote the average access
latency of a disk access. Relatively, the access latency of a hit in
the storage client cache is negligible. Accordingly, we estimate the
average read access time as follows:

T =
Th × H2 + Tm × M

H1 + H2 + M

To compare the best performance of each collaboration ap-
proach, we do not penalize any collaboration approach with
extra latency charge imposed by the extra information exchange
between the storage client and the storage server in aggressively-
collaborative caching, or the extra data reloads from disks as in
hierarchy-aware caching. This conservative estimation is reason-
able because: (1) Various techniques can be used to hide such
overhead. For example, FreeBlock scheduling can enable reload
operations to be carried out in the background [23]. In this way,
demote operations of hint-based and client-controlled approaches
can overlap with the read operations. For content-aware caching,
the storage client can obtain states of server caches by piggy-
backing messages with normal I/O requests. (2) Our real system
experimental results (Section 9) that include all these overheads
validate our simulation results.

Because both Th and Tm depend on the storage area network
latency, we examine the effect of different networks: VI/Fibre-
Channel SAN, IP Storage and future SAN (Table 3). We measure
storage cache hit and miss latencies on two real systems. One uses
V3 storage servers [36], which is a commercial storage server using
VI network. VI networks have similar network latency as Fibre-
Channel SANs. The IP storage uses the same server and client
platforms as the previous V3 storage. But the network is an Eth-
ernet running IP. To evaluate collaborative caching for even faster
storage network in the future, we assume the future network would
be 10 times faster than VI/Fibre-Channel network while the disk
latency remains the same.

7.2 Real System Implementation
To evaluate collaborative caching approaches in a real system,

we conduct experiments in a system composed of a database server
and a storage server. Each of the two servers has one 2.4GHz Pen-
tium IV processor with 512KB L2 cache and 1GB of main mem-
ory. The storage server runs commercial storage software called

V3 [36], which manages its own storage cache and processes I/O
requests from the database server. The storage server connects to
the database server via a Virtual Interface (VI) network [36] pro-
vided by Emulex cLAN network cards. The peak VI bandwidth
is about 113MBps and the one-way latency for a short message is
5.5µs. The database server runs the Shore database storage man-
ager [5]. The operating systems of both servers are Windows 2000
Advanced Server. The system is driven by a TPC-C like benchmark
developed by CMU [14].

The original Shore and V3 are modified to support collabora-
tive caching. We selectively implemented HAB , HAR for hier-
archy-aware caching and ACHB, ACCC for aggressively-collabo-
rative caching in the prototype, because our simulation results in-
dicate ACCA does not outperform the other approaches for OLTP
workload. The implementation of HAR only needs to modify the
storage server to monitor the eviction of the database and support
reload operation. The ACHB approach require extension of I/O in-
terface to send hints from the database buffer to the storage cache.
In the prototype, Shore is modified to pass the evicted blocks as the
hints to the storage server. Upon receipt of the evicted block, the
storage cache keeps it in the cache and does not to write the data
block to disks. The implementation of ACCC needs two major I/O
interface extensions. One I/O extension is cache-bypass, which al-
lows the database to read/write data from/to the storage server and
informs the storage server not to cache the data. Another extension
is to include storage cache replacement decision in each read/write
I/O operation. In the prototype, Shore is modified to manage both
the database bufferpool and the storage cache. Using the extended
I/O interface, Shore directly controls the storage server whether to
cache a data block and which data block to replace on every access
to the storage server.

8. SIMULATION RESULTS
In this section, we report our simulation results comparing hier-

archy-aware and aggressively-collaborative approaches for the four
workloads. We first report the comparison results with all replace-
ment algorithms and optimizations allowed, among which we pick
the best combination to represent the best case for each collabora-
tion approach. Since the performance gaps between any two col-
laboration approaches are the largest with a 1:1 cache distribution
(the storage client cache and the storage cache have the same sizes),
we use such cache distribution in the discussion of overall results.

We also study the effects of different storage area networks
(SAN) besides the default SAN (Fibre-Channel/VI), including
both IP SAN and future low-latency SAN. We also study the
performance sensitivity to different cache distributions between a
storage client cache and a storage cache. At the end of this section,
we report the result using LRU without any optimizations, just
to compare with previous work and illustrate the importance of
exploring the whole evaluation space.

8.1 Overall Results
Our simulation results show that hierarchy-aware caching, with

proper cache replacement algorithms and local optimizations, can
achieve almost as good performance as aggressively-collabora-
tive caching approaches. The average performance improvement
of aggressively-collaborative approaches over hierarchy-aware
approaches is less than 2.5%.

Tuned for Each Cache Configuration. To examine the best
response time achieved by different hierarchy-aware and aggres-
sively-collaborative caching approaches, we first assume that the
system is manually tuned. For each workload, each cache con-
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Figure 4: Average read response time of optimized approaches tuned for each cache configuration. The storage client and server
have caches of the same size. X-axis shows the aggregate cache size.
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Figure 5: Average read response time of optimized approaches tuned for each workload. X-axis shows the aggregate cache size. For
each approach, one particular optimization strategy is chosen. One strategy specifies cache replacement algorithms and whether
DU, SE and CO are used. For client-controlled, only one replacement algorithm is needed. For example, ACHB.LRU.ARC.DU.SE
means that in the hint-based approach the storage client cache uses LRU, the storage cache uses ARC, DU is applied to the storage
cache and SE is applied to both caches.

Response time OLTP DSS Cello99 Lair62b
improvement (%) MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG

Tuned for cache config 0.0 2.5 0.2 0.0 16.5 1.8 0.0 5.6 0.8 0.0 15.5 1.6
Tuned for workloads 0.0 2.9 0.3 0.0 16.5 2.4 -2.1 5.6 0.7 -0.1 17.4 2.5

IP Storage 0.0 0.4 0.1 0.0 14.5 1.6 0.0 4.5 0.6 0.0 15.0 1.5
Future SANs 0.0 2.9 0.3 0.0 17.0 1.9 0.0 5.7 0.8 0.0 15.6 1.7

Table 4: Summary of the response time improvement. For each workload and each cache configuration, we compare the best
aggressively-collaborative approach with the best hierarchy-aware approach and calculate the relative response time improvement
in percentage. This table shows the minimum (MIN) and the maximum (MAX) improvement for each workload. In addition, it
shows the average (AVG) improvement over all cache configurations for each workload.

figuration and each approach, we choose the best combination
of replacement algorithms and optimization techniques. Figure 4
compares the average response time of each approach at its best.

The result shows that hierarchy-aware approaches can achieve
close performance to aggressively-collaborative approaches. On
average, the response time difference between the best hierarchy-
aware approach and the best aggressively-collaborative approach
is between 0.2% and 1.8% for four workloads(Table 4). This
suggests that the performance gain of aggressively-collaborative
caching does not justify the complexity of changing I/O interface
between storage servers and storage clients to enable their aggres-

sive collaboration. Instead, with better cache replacement algo-
rithms and local optimizations, hierarchy-aware approaches can
achieve performance quite close to the best performance achiev-
able by aggressively-collaborative approaches in real workloads.

For all the workloads, aggressively-collaborative approaches
outperform hierarchy-aware approaches by more than 5.6% at only
two special points. One is DSS workload at 8GB cache and the
other is Lair62b workload at 256MB cache. Such improvements
depend on workload characteristics. For example, in the DSS
workloads, many tables can fit into an 8GB cache, but not a 4GB
buffer cache. Therefore, collaborative caching approaches like
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Figure 6: Average read response time of optimized approaches using an IP network. The storage client and server have caches with
the same size. X-axis shows the aggregate cache size.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

16
M

B
32

M
B

64
M

B
12

8M
B

25
6M

B
51

2M
B

1G
B

2G
B

4G
B

8G
B

16
G

BA
ve

ra
ge

 R
ea

d 
R

es
po

ns
e 

T
im

e 
(m

s)

Aggregate Cache Size

OLTP

HAB
HAR
ACHB
ACCA
ACCC 0.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

32
G

B
16

G
B

8G
B

4G
B

2G
B

1G
B

51
2M

B
25

6M
B

12
8M

B
64

M
B

Aggregate Cache Size

DSS

HAB
HAR
ACHB
ACCA
ACCC 0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

25
6G

B
12

8G
B

64
G

B
32

G
B

16
G

B
8G

B
4G

B
2G

B
1G

B
51

2M
B

25
6M

B
12

8M
B

Aggregate Cache Size

Cello99

HAB
HAR
ACHB
ACCA
ACCC 0.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

4G
B

2G
B

1G
B

51
2M

B
25

6M
B

12
8M

B
64

M
B

32
M

B
16

M
B

8M
B

Aggregate Cache Size

Lair62b

HAB
HAR
ACHB
ACCA
ACCC

Figure 7: Average read response time of optimized approaches using a 10 times faster network than current storage area network.
The storage client and server have caches with the same size. X-axis shows the aggregate cache size.

ACCA that manage both client and storage caches as one large
unified cache are more likely to keep these tables in the cache.
Therefore, ACCA performs 16.5% better than HAB .

Tuned for Each Workload. In practice, it may not be possible to
tune the system for each cache configuration because of dynamic
size of caches. However, it is still feasible to study characteris-
tics of a workload and choose an optimization strategy to achieve
reasonably good performance.

Figure 5 shows the best combination of replacement algorithm
and optimization for each workload and each collaborative ap-
proach. For example, for DSS workload, ACCA performs the best
when the storage client cache uses LRU, the storage cache uses
ARC, and both DU and SE optimizations are applied. This is be-
cause SE and DU effectively avoid the cache pollution of large table
scans to the storage client cache and the storage cache respectively.
ARC is more effective than LRU for the storage cache, accesses to
which have poor temporal locality.

The results still indicate that hierarchy-aware caching can
achieve similar response time of aggressively-collaborative
caching. On average, the difference between optimums of hi-
erarchy-aware and aggressively-collaborative caching is within
0.3%–2.5%, which is similar to the results tuned for each cache
configuration. This further confirms our results that the marginal

performance gain is too small to justify the complexity of imple-
menting aggressively-collaborative caching.

8.2 Effects of Storage Area Network Latency
This section examines whether aggressively-collaborative ap-

proaches would be more helpful with other kinds of storage area
network other than Fibre-channel/VI, which is the default network
in above experiments. There are two trends in the storage network.
To reduce total cost of storage systems, one trend is to use IP net-
work, which usually has much larger network latency. The other
is to use even lower-latency network, such as InfiniBand [17], to
achieve high performance. We use two different storage network
latency configurations (Table 3) to represent these two trends.

IP SAN. With longer latencies of accessing storage caches, Fig-
ure 6 shows the effect of larger network latency of IP network
on overall performance of aggressively-collaborative approaches.
Because aggressively-collaborative caching increases the network
traffic and the cost to access storage cache becomes higher, the ben-
efit of aggressively-collaborative caching can be further offset by
such network cost.

Our results validate that the improvement achieved by aggres-
sively-collaborative approaches over hierarchy-aware approaches
is even smaller than that of Fibre-Channel network. The perfor-
mance gain of hierarchy-aware approaches on a network shown
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Figure 8: Average read response time of optimized approaches using varying ratios of storage client and server cache sizes. Here,
the total cache size for each workload is fixed. X-axis shows the ratio of the storage client cache size versus the storage cache size.
Due to the space limitation, we only show the result of the OLTP workload. Other workloads exhibit similar trends.

in Figure 6 is at most 14.5% and on average the gain is between
0.1% and 1.6% (Table 4). Compared to the performance gain on a
faster network shown in Figure 4, the benefit of aggressively-col-
laborative approaches becomes even smaller. The reason for this is
that aggressively-collaborative approaches tend to take advantage
of storage caches as if they are as fast as its storage client caches.
On a fast storage area network, this assumption is approximately
true because of the extremely low latency. It is not the case, how-
ever, on a slow network such as Ethernet.

In short, as we expected, it is not worthwhile performance-wise
for future IP storage systems to sacrifice transparency in order to
exploit aggressively-collaborative approaches.

Future Low-latency SANs. In Figure 7, we also examines
whether aggressively-collaborative approaches would be worth-
while if the inter-connection between storage clients and servers
becomes much faster than current storage area networks. Intu-
itively, a faster network should give more benefits to aggressively-
collaborative approaches.

Unfortunately, our results indicate that such benefit is small even
with future low-latency SANs that are 10 times faster. The differ-
ence between the best response time of aggressively-collaborative
caching and hierarchy-aware caching is at most 17.0% and on av-
erage the difference is between 0.3% and 1.9% (Table 4), which is
only slightly better than that with current storage area networks.

8.3 Effects of Different Cache Distribution
Fixing the aggregate cache size in a storage client-server cache

hierarchy, the relative sizes of storage client caches and storage
caches affect the effectiveness of this hierarchy.

Figure 8 shows the OLTP workload performance of different
collaborative caching approaches when the aggregate cache size is
fixed but the size ratio of the storage client cache and the storage
server cache varies.

As we expected, the performance gap between hierarchy-aware
and aggressively-collaborative is the largest when the storage cache
has the same size as the storage client cache. At other cache distri-
bution, where either the storage cache is larger or smaller than the
storage client cache, the difference between hierarchy-aware and
aggressively-collaborative is much smaller. The reason is quite ob-
vious: when one cache is larger than the other, the performance
of this cache becomes more important. Therefore, collaborating
with the other smaller buffer cache becomes less beneficial. This
observation also applies to other three workloads.

Figure 9: Normalized transaction rate for TPCC-like bench-
mark on Shore database. The aggregate cache size is kept con-
stant (32MB). 8MB+24MB indicates that the database buffer-
pool is 8MB and the storage cache is 24MB. In baseline, both
database buffer and storage cache are managed by LRU. All
results are normalized to the baseline case of 16MB+16MB.

8.4 Results of Non-optimized Approaches
In Figure 10, we report the results only using LRU and no lo-

cal optimizations in each collaboration approach, just to compare
with previous work and demonstrate the importance of exploring
the large evaluation space.

Our results match with those of previous studies. Compared
to HAB , all collaborative caching approaches improve response
time. In addition, more aggressive approaches achieve better per-
formance. For example, for the OLTP workload, ACHB, ACCA

and ACCC improves the response time over HAB by up to 17.9%,
22.0% and 39.9% respectively.

Compared to the results shown in Figure 10, the performance im-
provement of aggressively-collaborative approaches shown in Fig-
ure 4 is much smaller. This difference shows that considering cache
replacement algorithms and local optimizations are necessary when
we study the effect of collaborative caching between storage client
caches and storage caches.

9. REAL SYSTEM RESULTS
To validate our simulation results and evaluate the effects of

these collaboration approaches on end performance, we imple-
mented these approaches in a real system described in Section 7.
Our experiments are conducted using a TPCC-like database us-
ing Shore storage manager. The database size is around 4GB. In
each experiment, the benchmark program carries out 10,000 trans-
actions. A higher transaction rate, which is the number of transac-
tions finished per minute, indicates a better performance.



0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

16
M

B
32

M
B

64
M

B
12

8M
B

25
6M

B
51

2M
B

1G
B

2G
B

4G
B

8G
B

16
G

BA
ve

ra
ge

 R
ea

d 
R

es
po

ns
e 

T
im

e 
(m

s)

Aggregate Cache Size

OLTP

HAB
HAR
ACHB
ACCA
ACCC 0.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

32
G

B
16

G
B

8G
B

4G
B

2G
B

1G
B

51
2M

B
25

6M
B

12
8M

B
64

M
B

Aggregate Cache Size

DSS

HAB
HAR
ACHB
ACCA
ACCC 0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

25
6G

B
12

8G
B

64
G

B
32

G
B

16
G

B
8G

B
4G

B
2G

B
1G

B
51

2M
B

25
6M

B
12

8M
B

Aggregate Cache Size

Cello99

HAB
HAR
ACHB
ACCA
ACCC 0.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

4G
B

2G
B

1G
B

51
2M

B
25

6M
B

12
8M

B
64

M
B

32
M

B
16

M
B

8M
B

Aggregate Cache Size

Lair62b

HAB
HAR
ACHB
ACCA
ACCC

Figure 10: Average read response time of non-optimized approaches. Both the storage server and the storage client use LRU
replacement algorithms and no optimizations are applied. The storage client and server have caches with the same size. X-axis
shows the aggregate cache size.

Figure 9 shows that the hierarchy-aware caching achieves sim-
ilar end application performance as the aggressively-collaborative
caching can achieve. For example, when both the database buffer
and the storage cache are 16MB, ACCC is only 1.0% better than
HAR. Compared to the baseline case, in which only LRU is
used and no optimization is applied, all collaborative caching ap-
proaches improve the application performance by up to 10.8%.
Using ARC as the storage cache replacement algorithm and opti-
mization DU, HAR improves the baseline case by 9.8%. There-
fore, without resorting to aggressively-collaborative approaches,
real systems can achieve most of the performance improvement by
adopting much simpler methods such as HAR, with ARC as the
storage cache replacement algorithm and the DU optimization.

10. RELATED WORK
Much research has studied cache replacement algorithms over

the last forty years. Belady’s MIN off-line algorithm gives lower
bound on cache miss ratio for a single cache [2]. Most online cache
replacement algorithms are based on access recency, frequency or
both. LRU, LFU, 2Q [20] and EELRU [30] are classical algorithms
representative of each categories. Recently, ARC is proposed to be
adaptive to changing workload [24]. In practice, CLOCK and its
generalized variant approximates LRU well and commonly used by
database buffer management because of its small lock contention in
real implementation [26].

Previous research in different environment has noticed the weak-
ness of LRU-like algorithms for lower level buffer cache in a hi-
erarchy and pointed out feasible solutions for different systems.
Dan et al. conduct a theoretical analysis of hierarchical buffer-
ing in a shared database environment [9]. Muntz and Honey-
man investigate multi-level caching a distributed file system, show-
ing that server caches have poor hit ratios because of caching of
clients [25]. Willick et al. demonstrate that FBR algorithm per-
forms better for lower level caches than locality based replacement
algorithms such as LRU [33]. Cao and Irani show that GreedyD-
ualSize replacement algorithm is superior to other known policies
for web caches [4]. Zhou et al. observe different access patterns
to the storage cache and propose MQ algorithm for better storage
cache management [37].

Wong and Wilkes point out the need for exclusive caching at
the storage cache and propose DEMOTE operation [34]. Eviction-
based data placement estimates the client eviction through monitor-
ing addresses in each storage accesses and also achieves exclusive

storage cache without complex interface change [6]. Assuming the
storage client is a file server, X-RAY builds an image of the file
server cache based on file system semantic and achieves exclusive
storage caching by only caching a different set of blocks from the
file server [1].

Various systems harvest caching capability distributed among
clients and servers. Cooperative caching enables file system clients
to access cached blocks in caches of other clients [8, 29]. Franklin
et al. explore database client-server caching and cache consistency
problem in object-oriented database context [13]. Summary cache
weaves web proxies together to build a bigger web proxy [12].
Content distribution network is composed of many content servers
working as one scalable web caching system [21, 22]. All these
systems cooperate caching among the same software systems.

Jiang and Zhang recently propose ULC, a client controlled
cache placement and replacement protocol for multi-level buffer
caches [19]. Their work shares the same motivation of this paper.
ULC requires all the levels in the cache hierarchy understand the
new protocol. This paper shows this complexity is not necessary.
By limiting modification to only one level of cache, we can also
achieve similar system performance as a global managed LRU.

11. CONCLUSION
This paper investigates potential benefit of aggressively-collabo-

rative approaches between storage clients and storage servers. Sur-
prisingly, although aggressively-collaborative approaches are ef-
fective in improving storage system performance, we find hier-
archy-aware caching can achieve similar performance as long as
proper optimization techniques are used. In other words, to achieve
such improvement, complex approaches such as client-controlled
approaches are not necessary in most cases.

Through our rigorous empirical study of various collaborative
caching approaches with 248 combinations using real system work-
loads, we quantitatively demonstrate that the benefit of aggres-
sively-collaborative caching is less than 5.6% for most cases and
less than 2.5% on average. Besides, we also find that even if
the storage area network changes, say IP storage or future SAN,
the benefit of aggressively-collaborative caching is still not signif-
icant. Furthermore, our real system results show that the end per-
formance benefit of aggressively-collaborative caching is less than
1.0%, which validates our simulation results.

This work is currently being extended in several aspects. First,
even though our evaluation space covers a large design space with



total 248 combinations (many of which are new approaches and
new combinations), it is still conceivable to design new collabo-
ration approaches, replacement algorithms or local optimizations.
But we expect our general conclusions are very likely to hold, es-
pecially if these new approaches are general and not application-
specific. Second, we are conducting evaluations on workloads with
multiple storage clients. Third, we are in the process of adding col-
laborative prefetching into our evaluation space. Fourth, we will
evaluate more workloads other than database and file systems.

12. REFERENCES
[1] L. N. Bairavasundaram, M. Sivathanu, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. X-RAY: A non-invasive exclusive caching
mechanism for RAIDs. In Proceedings of the 31th Annual
International Symposium on Computer Architecture, pages 176–187,
Jun 2004.

[2] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2):78–101, 1966.

[3] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, 1970.

[4] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In
Proceedings of the 1st USENIX Symposium on Internet Technologies
and Systems, pages 193–206, Dec 1997.

[5] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L.
McAuliffe, J. F. Naughton, D. T. Schuh, M. H. Solomon, C. K. Tan,
O. G. Tsatalos, S. J. White, and M. J. Zwilling. Shoring up persistent
applications. In Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data, pages 383–394,
May 1994.

[6] Z. Chen, Y. Zhou, and K. Li. Eviction-based cache placement for
storage caches. In Proceedings of the 2003 USENIX Annual
Technical Conference, pages 269–282, Jun 2003.

[7] H.-T. Chou and D. J. DeWitt. An evaluation of buffer management
strategies for relational database systems. In Proceedings of the 11th
International Conference on Very Large Data Bases, pages 127–141,
Aug 1985.

[8] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson.
Cooperative caching: Using remote client memory to improve file
system performance. In Proceedings of the 1st Symposium on
Operating Systems Design and Implementation, pages 267–280, Oct
1994.

[9] A. Dan, D. M. Dias, and P. S. Yu. Analytical modelling of a
hierarchical buffer for a data sharing environment. In Proceedings of
the 1991 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 156–167, May 1991.

[10] D. Ellard, J. Ledlie, P. Malkani, and M. I. Seltzer. Passive NFS
tracing of email and research workloads. In Proceedings of the 2nd
USENIX Conference on File and Storage Technologies, pages
203–216, Mar 2003.

[11] EMC Corporation. Symmetrix 3000 and 5000 Enterprise Storage
Systems product description guide. http://www.emc.com/, 1999.

[12] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a
scalable wide-area web cache sharing protocol. In Proceedings of the
1998 ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pages
254–265, Sep 1998.

[13] M. J. Franklin, M. J. Carey, and M. Livny. Global memory
management in client-server database architectures. In Proceedings
of the 18th International Conference on Very Large Data Bases,
pages 596–609, Aug 1992.

[14] S. Harizopoulos and A. Ailamaki. STEPS towards cache-resident
transaction processing. In Proceedings of the 30th International
Conference on Very Large Data Bases, pages 660–671, Aug 2004.

[15] IBM. Personal communication with IBM, Sep 2003.
[16] IBM Corporation. The datasheet for IBM TotalStorage DS8000

series. http://www-5.ibm.com/storage/europe/uk/disk/ds8000/, 2004.
[17] InfiniBand Trade Association. Infiniband Architecture Specification,

Oct 2000.
[18] S. Jiang and X. Zhang. LIRS: an efficient low inter-reference recency

set replacement policy to improve buffer cache performance. In

Proceedings of the 2002 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems,
pages 31–42, Jun 2002.

[19] S. Jiang and X. Zhang. ULC: A file block placement and replacement
protocol to effectively exploit hierarchical locality in multi-level
buffer caches. In Proceedings of the 24th International Conference
on Distributed Computing Systems, Mar 2004.

[20] T. Johnson and D. Shasha. 2Q: A low overhead high performance
buffer management replacement algorithm. In Proceedings of the
20th International Conference on Very Large Data Bases, pages
439–450, Sep 1994.

[21] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi. Web caching
with consistent hashing. In Proceeding of the 8th International
Conference on World Wide Web, pages 1203–1213, May 1999.

[22] T. Leighton. The challenges of delivering content on the Internet. In
Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, page 246, May 2001.

[23] C. R. Lumb, J. Schindler, and G. R. Ganger. Freeblock scheduling
outside of disk firmware. In Proceedings of the 2002 USENIX Annual
Technical Conference, pages 213–226, Jan 2002.

[24] N. Megiddo and D. S. Modha. ARC: A self-tuning, low overhead
replacement cache. In Proceedings of the 2nd USENIX Conference
on File and Storage Technologies, pages 115–130, Mar 2003.

[25] D. Muntz and P. Honeyman. Multi-level caching in distributed file
systems -or- your cache ain’t nuthin’ but trash. In Proceedings of the
Winter 1992 USENIX Conference, pages 305–314, Jan 1992.

[26] V. F. Nicola, A. Dan, and D. M. Dias. Analysis of the generalized
clock buffer replacement scheme for database transaction processing.
In Proceedings of the 1992 ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer Systems,
pages 35–46, Jun 1992.

[27] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed prefetching and caching. In Proceedings of the
15th ACM Symposium on Operating Systems Principles, pages
79–95, Dec 1995.

[28] J. T. Robinson and M. V. Devarakonda. Data cache management
using frequency-based replacement. In Proceedings of the 1990 ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 134–142, May 1990.

[29] P. Sarkar and J. Hartman. Efficient cooperative caching using hints.
In Proceedings of the 2nd USENIX symposium on Operating Systems
Design and Implementation, pages 35–46, Oct 1996.

[30] Y. Smaragdakis, S. Kaplan, and P. Wilson. EELRU: simple and
effective adaptive page replacement. In Proceedings of the 1999
ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer systems, pages 122–133, May 1999.

[31] M. Stonebraker. Operating system support for database management.
Communications of the ACM, 24(7):412–418, 1981.

[32] Transaction processing performance council. http://www.tpc.org.
[33] D. L. Willick, D. L. Eager, and R. B. Bunt. Disk cache replacement

policies for network fileservers. In Proceedings of the 13th
International Conference on Distributed Computing Systems, pages
2–11, May 1993.

[34] T. Wong and J. Wilkes. My cache or yours? Making storage more
exclusive. In Proceedings of the 2002 USENIX Annual Technical
Conference, pages 161–175, Jun 2002.

[35] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and
S. Kumar. Dynamic tracking of page miss ratio curve for memory
management. In Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and Operating
Systems, pages 177–188, Oct 2004.

[36] Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. F. Philbin, and
K. Li. Experiences with VI communication for database storage. In
Proceedings of the 29th Annual International Symposium on
Computer Architecture, pages 257–268, May 2002.

[37] Y. Zhou, J. Philbin, and K. Li. The multi-queue replacement
algorithm for second level buffer caches. In Proceedings of the 2001
USENIX Annual Technical Conference, pages 91–104, Jun 2001.


