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This paper develops econometric models for discrete games. Specifically, we model the payoffs 
of games where a researcher observes qualitative or censored information about agents’ 
decisions and payoffs. These models extend single-person qualitative choice models introduced 
by McFadden (1974) and others to multiple-person choice problems. The equations describing 
players’ equilibrium strategies depend on the game’s structure and the equilibrium solution 
concept. We show that one can describe the equilibria of a simultaneous-move Nash game with a 
linear system of dummy endogenous variables. We also show that sequential-move and coopera- 
tive models have different, but related, econometric structures. A series of applied examples 
address identification and estimation issues. These examples include models of market entry, 
technology adoption, tax auditing, and cooperative family labor supply. 

1. Introduction 

The theory of games provides a general analytical framework for modeling 
interrelated economic decisions. Applied researchers have used this theory to 
test several different models of strategic behavior. Industrial organization 

economists, for instance, have modeled the extent of oligopolistic competi- 
tion using game-theoretic models of price and quantity competition. [See 
Bresnahan (19891.1 To date, almost all applied game-theoretic models pre- 
sume that economic agents choose continuous-valued strategies. Often, 
however, agents make discrete decisions or one only observes qualitative 
information about players’ actions. These games pose new empirical issues, 
as one must now draw inferences about players’ incentives from qualitative 
data. 

This paper develops econometric models of games where players have 
discrete strategies. Specifically, we consider the following estimation prob- 
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lem: How can one draw inferences about agents’ unobserved payoffs from 
qualitative data describing their actions? Our answer to this question follows 
the approach of single-person discrete choice models [e.g., McFadden (1974, 
1982) and Hausman and Wise (197811. In single-person choice models, one 
estimates parameters of agents’ preferences using threshold models of con- 
sumer behavior. In multiple-person choice models, one estimates parameters 
of agents’ payoffs using threshold models of games. 

In contrast to single-person choice models, game-theoretic models can 
have many different forms. In this paper, we illustrate our general approach 
to modeling players’ decisions using one-shot perfect-information games. We 
focus on these simple games because they raise most of the modeling issues 
present in more complicated games. We begin by showing how multiple-per- 
son choice models differ from single-person choice models. In multiple-per- 
son choice models, the presence of simultaneity among players’ choices 
complicates the econometric model of players’ strategies. In some cases, this 
simultaneity makes it impossible to define probability statements for players’ 
decisions. These problems can occur even when the underlying game has 
well-dejined equilibria. We illustrate these problems and our resolution of 
them using several common two-by-two games. We show that one can 
represent the equilibria of a simultaneous-move Nash game with a linear 
dummy endogenous variable system. Thus, simultaneous-move games provide 
an economic rationale for dummy endogenous variable models. We also 
describe the structure of sequential-move and cooperative games. These 
games do not have simple dummy endogenous variable representations, but 
do have structures related to the simultaneous-move Nash model. We com- 
pare the econometric structures of these different games using a series of 
economic games. These examples include models of market entry, technology 
adoption, tax auditing, and family labor supply. Our examples also address 
identification and estimation issues that arise when players use mixed strate- 
gies. The conclusion discusses practical issues associated with the application 
of these models. 

2. Stochastic specifications of games 

Following McFadden’s (1974) analysis of individual discrete choice models, 
we would like to use the theory of games to derive probability statements for 
players’ choices (i.e., equilibrium strategies). To understand how our multi- 
ple-person choice models differ from single-person choice models, consider 
how an applied economist might model the entry decisions of potential 
producers. Suppose the economist observes a large sample of separate 
markets, each with a different set of potential entrants. Assume that these 
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firms can either ‘Enter’ or ‘Not enter’ a market.‘_Single-person models of 
entry would estimate the parameters of firms’ profit functions from threshold 
conditions that presume firm i enters when 

n’=F(x,,e) -&i20. (1) 

Here, &i represents profits the econometrician does not observe and n’(X,, 13) 
represents the conditional mean of firm i’s profits. In this model, the 
conditional mean of firm i’s profits depends on an exogenous vector of 
observed covariates, X,, and a set of unknown parameters, 0. The econome- 
trician includes in X any observed variables that explain differences in firms 
profits within and across markets. The error term, E, summarizes any remain- 
ing differences in firms’ fixed costs or variable profits. [See Bresnahan and 
Reiss (19901.1 

Multiple-person choice models differ from single-person models because 
they include the actions of other players in (1). That is, they recognize that 
entrants’ profits depend on competitors’ entry decisions. The presence of 
other players’ strategies suggests that one should estimate (1) as part of a 
system of threshold equations. The structure of this system depends on the 
economic structure of the entry game and the assumptions one makes about 
the distribution of firms’ unobserved profits. In the games we study, we follow 
the single-person discrete choice models discussed above by assuming that 
each player receives an additive payoff of the form: 

=figx,,e> -&I. (2) 

Here, a equals an N-dimensional vector of integers describing all players’ 
actions. We summarize the payoffs of the game by the vector I7 = n(X, 0) - F. 
Although our ZI notation suggests that the players receive monetary payoffs, 
the 17’s also can represent utility functions. In single-person discrete choice 
models, E represents unobserved heterogeneity in individual tastes or charac- 
teristics. Commonly, the econometrician assumes that these unobserved 
tastes have a normal or logistic distribution in the population of individuals. 
We interpret the vector F in a similar way. Players of the game observe & and 
have complete information about other players’ actions. The econometrician, 
however, does not observe players’ payoffs and therefore treats them as 
random variables. 

‘These firms also may choose continuous-valued strategies, such as how much to produce. 
Here we assume that the econometrician only observes whether the firm produced. 
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Although the games we model assume players have complete information, 
one also can use our framework to model games of incomplete information. 
Incomplete-information games have more complicated error structures how- 
ever. In the simplest incomplete-information games, players have rational 
expectations and common knowledge about the uncertainty each player 
faces. These games fit most easily into our complete-information framework. 
Indeed, one can often model these games using the profit functions in (2), 
provided one interprets IT’ as player i’s expected payoff given i’s knowledge. 
The error terms, the E, then represent that part of players’ expected profits 
one does not observe. Games with private information pose much more 
complicated estimation issues. For example, in games where only player i 
observes &i [e.g., Harsanyi (197311, one must model differences in player 
information sets and expectations. Similar issues arise in games with mixed- 
strategy equilibria where players condition their strategies on private signals 
[e.g., Milgrom and Weber (198611. We do not consider these games here. 

In addition to payoff functions, a game contains an equilibrium solution 
concept. Game theorists use the solution concept to derive players’ optimal 
decision rules from players’ payoffs. Here, we derive our econometric models 
in much the same way. The equilibrium solution concept allows us to infer 
players’ decision rules from the observed and unobserved variables. These 
rules have the general form 

a; =a*(n,E,a(;,). (3) 

where aIij contains all strategies other than player i’s. To illustrate how one 

computes a:, consider the widely used Nash solution concept for simultane- 
ous-move games. The Nash equilibrium concept imposes a series of threshold 
conditions on players’ payoffs. Formally, the strategy a: is a Nash best 
response to atI if 

n’(a:: )..., a; )...) a;) 217qa: )...) ai )...) a,$), 

for all feasible a,. These equilibrium conditions have the same revealed 
preference structure as those in single-person discrete choice models, except 
that they depend on others’ choices. To determine exactly which actions form 
an equilibrium, one solves these relations to obtain a series of reduced-form 
equations. These reduced-form equations, which we denote by at* = 
a,**(X,O, E), relate the observed and unobserved payoff components to 
players’ actions. In solving these systems, theorists sometimes impose equality 
or inequality restrictions on players’ payoffs. These restrictions insure that 
equilibrium strategies exist and are perhaps unique. In an entry game, for 
example, economists often assume that firms’ profits never increase when 
competing firms enter. This economic assumption insures the existence of 
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pure strategies and rules out some nonunique equilibria. (We illustrate this 
point in section 3.1.) 

Generally, games do not always have unique pure-strategy equilibria. We 
denote the vector of all possible equilibrium strategies by the vector a**. 
When the game has a unique pure-strategy equilibrium for admissible values 
of Ll, u** is a single-valued function of X, 0, and E. When a pure-strategy 
equilibrium exists but is not unique, u** is a correspondence of the form 

{a, a’, a”, . . .) E u**(fl(X, /3>, F). When there are no pure-strategy equilibria, 

U ** is empty. Finally, when the game has mixed-strategy equilibria, we 
express the outcomes of the game in terms of probability distributions over 
the equilibrium strategies.’ 

Games that only have unique pure-strategy equilibria are the easiest to 
model econometrically. In these games, one uses the stochastic structure of 
the model to define outcome probabilities, much as one would in single-per- 
son choice models. For example, let I(a, X, 0, E) equal 1 when u** 
(n(X, 0), E) = a, and 0 otherwise. The probability of a given outcome a’ 

equals 

Pr(u’;X,8) =/RI(u’,X,O,~)dF(~). 
> 

(5) 

where R, is the relevant range of the E’S and dF(e) is the multivariate 
probability density function of the unobserved payoffs. 

Games with unique mixed-strategy equilibria pose somewhat more compli- 
cated analytical issues, but raise few additional conceptual problems. We 
discuss the treatment of mixed strategies below in our examples. Much more 

difficult issues arise when the structural equations a,*#?, E‘, uJ have more 
than one solution for an admissible value of X, 0, and e. In these games, a** 
has multiple values. When a game has several outcomes for a single value of 
F, the probability that any one a occurs in equilibrium is not well-defined. 
This is not a trivial theoretical concern. 

2.1. Pitfalls in stochastic models of games 

When a game has multiple equilibria, there is no longer a unique relation 
between players’ observed strategies and those predicted by the theory. 
Although it might seem as though this would rarely happen, it always 
happens in simultaneous-move Nash models when the errors have sufficiently 
wide supports. In particular, it occurs when one assumes that the errors in (2) 
have normal or logistic distributions. 

‘Bjorn and Vuong (1985) take a somewhat different approach to games by defining distribu- 
tions over reaction functions. It is also possible to model other types of strategies, such as the 
correlated strategies discussed by Aumann (1974). 
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To see how arbitrary assumptions about the unobserved heterogeneities in 
players’ payoffs can create modeling problems, suppose that the errors in (2) 

have the following conditional density: 

f(E~(a)l&t~+z),XJ?) > 0, 

f(Eya;,u(‘)) lEyai,a(‘)),X,e) > 0, 

for all a, a; # ui, and ei(u) E (- m,~). In this equation, we use the notation 
E(‘)(U) to represent a vector of errors that does not include ~~(a). The first 
line of (6) maintains that there is some independence of the errors across 
players, while the second maintains there is some- independence across 
outcomes of the game. Such a specification holds, -for example, if we assume 
that for each outcome of the game players’ profits have independent normal 
distributions. We define any two outcomes of the game, a and a’, as adjacent 
if no more than one player’s action differs between a and a’. Similarly, two 
outcomes are nonadjacent when u’ fur1 and ui f uri for players i and j. 

The following proposition states that nonunique equilibria always occur in 
simultaneous-move games with nonadjacent outcomes and errors generated 
from (6): 

Proposition 1. Let a and a’ be nonadjacent outcomes of a simultaneous-move 
game. The assumptions in (2) and (6) imply that 

P both=Pr({u,u’) Eu**(n(X,0),~))>0. 

See the appendix for a proof. 

Proposition 1 establishes that ‘probabilistic nonuniqueness’ occurs in mul- 
tiple-person choice models whose errors have infinite support. This 
nonuniqueness occurs for any value of n. It can also occur when the errors 
do not have arbitrarily wide supports. Intuitively, the proposition states that 
if one does not restrict the errors on players’ payoffs, then the errors can take 
on values that would preclude the existence of equilibrium strategies. Thus, 
the econometrician’s model of payoffs can violate economic restrictions that 
guarantee unique strategies in the underlying game. 

When the econometric model of the game permits nonunique outcomes, 
one cannot define probability statements for the events a and a’. While one 
can define the probability of the events ‘only a is an equilibrium’, P,, and, 
‘only a’ is an equilibrium’, PO., there is a third event: ‘either a or a’ is an 
equilibrium’.3 Thus, without additional assumptions, one cannot construct 

3The region that has two pure-strategy equilibria also contains a mixed-strategy equilibrium. 
One could model the use of mixed strategies, but these mixed strategies complicate the 
nonuniqueness problem. 



T. F. Bresnahan and P. C. Reiss, Empirical models of discrete games 63 

probability statements for the events ‘a is the observed equilibrium’ or ‘~7’ is 
the observed equilibrium’. 

One could respond to this nonuniqueness problem by changing the model 
in an ad hoc way. For example, one could arbitrarily assume that players 
randomly choose among nonunique equilibria. Suppose, for instance, that a 
and a’ are both equilibria. The econometrician could assume that a occurs 
with probability A,,, and a’ with probability (1 - A,,.). While this procedure 
solves the nonuniqueness problem, it adds many nuisance parameters to the 
model. In a 2 x 3 game, for example, it would add 18 separate h parameters. 
The introduction of these nuisance parameters often complicates estimation 
and makes it difficult to interpret players’ behavior. 

Instead of introducing nuisance parameters, one also could resolve 
nonuniqueness problems by treating the events a and a’ as one event. This 
approach changes the model of players’ strategies to one that predicts only 
the outcome a U a’. The aggregation of nonunique equilibrium outcomes 
clearly involves some loss of information and thereby restricts the class of 
games that can be studied. To see this, suppose that we divide all simultane- 
ous-move games into two categories: 2 X 2 games, in which each of two 
players chooses one of two actions, and games with two or more players, each 
with two or more strategies. Without further restrictions on the game, the 
observational equivalence of nonunique equilibria and aggregation implies: 

Proposition 2. In games other than 2 X 2 games, all outcomes are obseruu- 

tionally equkalent under the assumptions in (6). Further, in 2 X 2 games there 

are two obsercational equirvzlence classes: (O,O>, (1, 1) and (0, 11, (l,O>. 

See thz appendix for a proof. 

Thus, in the absence of further restrictions, nearly all outcomes are 
observationally equivalent. One can also show: 

Proposition 3. The probability that there is no pure-strategy equilibrium under 

the assumptions in (2) and (6) is positiL?e. 

To summarize these three propositions, one cannot construct econometric 
models of simultaneous-move games when players’ payoffs have the un- 
bounded supports in (6). While other equilibrium concepts are less troubling 
in this regard, the presence of this problem in simultaneous-move models 
means that we cannot simply assume that the errors in (2) have unrestricted 
normal or logistic distributions. 

Amemiya (1974) and Heckman (1978) have also noted that similar nonexis- 
tence and nonuniqueness problems occur in dummy endogenous dependent 
variable models. These papers suggest that one can resolve these problems by 
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making the model recursive. Below we show that this approach often rules 
out interesting interactions among players. This leads us to modify the error 
structure of these models so that we can preclude nonunique and nonexistent 
equilibria. 

3. Models of simple games 

This section illustrates the specification and identification issues raised 
above using 2 X 2 games. The first example discusses nonexistence and 
nonuniqueness problems in simultaneous-move Nash games. It also shows 
that by making a game recursive, one makes the game trivial. This leads us to 
consider different restrictions on (2). Later subsections explore the econo- 
metric structure of different games forms and solution concepts. 

3.1. Simultaneous-move games 

This subsection constructs a latent variable model of a 2 X 2 simultaneous- 
move game. In this game, the two players choose one of two strategies, 
a’ = (0, 1). The players have complete information about each other. Any pair 
of players only plays the game once. 

We assume the payoffs to each player are: 

Player l’s payoffs Player 2’s payoffs 

a2 = 0 a2= 1 a2 = 0 a*= 1 

:;:; -1 -1 

To fix ideas, suppose this game models the decisions of two potential market 
entrants. Each potential entrant’s profits depends on action of their competi- 
tor. The subscripts on the firms’ profit functions, the II, denote each firm’s 
action. To interpret the structure of the payoff matrices, let a, = 0 indicate 
firm i stays out and a, = 1 denote the event that firm i enters. The A’s have 
natural economic interpretations. The quantity Aa equals the incremental 
profit firm i obtains from being the only firm to enter. The term A’, is the fall 
in firm i’s profits when firm j enters i’s monopoly market. Economic theory 
suggests that entry by a competitor always lowers profits, i.e., Af I 0.4 

4Economic theory also suggests that no0 - ’ - I7& and IIf& = II:,. These restrictions do not, 
however, affect the players’ decisions. 
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The Nash equilibrium conditions for this game form a two-equation 
system. From (41 one can derive 

u’ = 0 - A' 0 + a2A1 5 0 ) I 

(7) 
a*=0 e A2 0 +a’A’sO . 1 

The econometrician adds to these equations a stochastic specification for 
firms’ unobserved profits. One could, for example, treat the A’, as constants 
and the Ai, as random variables that vary across firms and markets (i.e., 
games). If we assume that the incremental profit firm i receives as a 
monopolist in any given game is a linear function of observables and 
unobservables, i.e., AL = Xpb - E’, then the structural equations determining 
the Nash equilibria of this 2 X 2 game have the form 

y: =X,@,+a*A; -E’, 

Y2 * =X2& + a’d: - .s2, 

with 

i 

0 if y,Y <O 

” = 1 if y: 2 0 
for i= 1,2. 

These two equations form a discrete endogenous variable system for the 
unobserved yI*. This system is a version of the systems considered by 
Heckman (1978). Thus, the theory of simultaneous-move games provides one 
possible economic justification for linear dummy endogenous variable mod- 
els. Notice that the linearity of the A’s in observable and unobservable 
variables is a maintained assumption. One also could create more general 
models by making the Ai functions of both observables and unobservables. 

Amemiya (19741, Heckman (19781, Maddala and Lee (19761, Schmidt 
(1981), and others have shown that if the errors in (8) have unbounded 
support, then the reduced form of (81 is not well-defined. More generally, 
Propositions 1 through 3 suggest that more complicated dummy endogenous 
variable models also have this problem. A necessary and sufficient condition 
for model (8) to have a well-defined reduced form for the outcomes: no 
entrants, monopoly for firm 1, monopoly for firm 2, and duopoly, is that the 
system (8) be recursive, i.e., A\ x A: = 0.” It might seem natural to impose 

‘See, for example, Amemiya (1974) and Heckman (1978). To see that recursivity is necessary, 
consider realizations of F’ such that A; is negative and 3;) + A’, is positive. Such events occur 
with positive probability if, for example, the range of the E’S is the real line. Under these 
conditions, both (a’ = 0, a2 = 0) and (a’ = 1, a2 = 1) solve (7). In other words, the mapping from 
exogenous variables and errors to endogenous variables is not single-valued. Setting one of these 
A; to zero prevents this problem. 
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this restriction here by.assuming that 

Yl * =X&+a,A; -esl, 

Y2 *=x&-F*, 

with 

i 

0 if y: <O 

” = 1 if yi* 2 0 
for i= 1,2. 

This convenient econometric assumption produces a very unattractive model 
of entry. It presumes firm 2’s profits do not depend on the presence of firm 1 
in the market. Thus, recursive models make very special assumptions about 
players’ interactions. 

The previous section also proposed resolving nonexistence and nonunique- 
ness problems by insuring that the stochastic assumptions of the econometric 
model match the assumptions of the economic game. In entry games, the Ai 

are always less than or equal to zero. By imposing this assumption, we obtain 
an econometric model with the following five equilibrium outcomes: the four 
unique solutions (O,O), (0, l), (l,O), and (1,l) and the nonunique outcome 
(0,l) or (l,O). Notice that both the underlying theoretical entry game and the 
econometric model have the same nonunique equilibrium solution: (0,l) or 

(l,O). By assuming that Al is negative, however, we remove two types of 
problems. First, this assumption insures that a pure-strategy equilibrium 
exists. Second, it precludes the nonunique equilibrium (0,O) or (1,l) from 
occurring. 

Figs. 1, 2, and 3 illustrate these points graphically. Each figure assumes 
without loss of generality that X/3; = 0, each .C has infinite support, and the 
Ai are constants. Fig. 1 represents an entry game where entry by a competi- 
tor is costly (i.e., Af < 0). Fig. 2 assumes the opposite, namely that entry by 
another firm is beneficial (i.e., A’, > 0). Fig. 3 represents an intermediate case 
where entry by firm 1 is costly for firm 2 (i.e., A: < 0), but entry by firm 2 
helps firm 1 (i.e., A: > 0). The assumptions underlying figs. 2 and 3 make 
little or no economic sense in a strategic entry game, and they are precisely 
the cases ruled out by imposing the constraint At I 0. The center rectangle in 
each figure is of special note. In fig. 1, either firm could maintain a monopoly 
in this region. Thus, this region contains nonunique monopoly outcomes. The 
probability integrals in (5) count the probability mass in this region twice: 
once when firm 1 could have a monopoly and once when firm 2 could have a 
monopoly. This double counting makes the outcome probabilities sum to 
more than one. In fig. 2, a similar nonuniqueness problem occurs in the 
center rectangle. Here, because entry by one firm encourages entry by the 
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Firm I or 2 
Monopoly 

Firm 1 
Monopoly 

Firm 2 
Monopoly 

Fig. 1. The simultaneous-move entry game with costly entry (i.e., A! < 0 and A: < 0). 

other firm, the center region supports either no firms producing or both firms 
producing as equilibria. In fig. 3, there are no pure-strategy Nash equilibria 
in the center rectangle. Because (5) does not include this center region in the 
outcome probabilities, the outcome probabilities will sum to less than one.’ 

To summarize, figs. 1 through 3 show why restrictions on the errors are 
useful. By assuming that At < 0 we insure the existence of pure-strategies 
and preclude one set of nonunique strategies. One region of nonunique 
outcomes remains. This region with nonunique outcomes, however, can occur 
in the underlying theoretical game. We now consider whether this residual 
nonuniqueness prevents the identification of the model’s parameters. 

3.2. A specification strategy for the entry game 

Proposition 2 suggests why the econometrician may want to treat nonunique 
outcomes as observationally equivalent. If we aggregate the monopoly out- 

‘Regions in which pure-strategy equilibria do not exist often support mixed-strategy equilibria. 
One can extend the model to include mixed strategies. See section 3.5 below. 
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No 
Entrants 

Duopoly 

Fig. 2. The simultaneous-move entry game with beneficial entry (i.e., A: > 0 and AT > 0). 

comes in the entry model, we transform the model from one that explains 

each entrant’s strategy to one that predicts the number of entrants: N = 0, 1, 
or 2. The likelihood function for this model contains the following probability 
statements: 

Pr( a, = 0, a2 = 0) = Pr(n0 entrants) = Pr( X& < E’, X& < E2), 

Pr( a, = 1, a2 = 1) = Pr(duopoly) 

= Pr( Xph + A: > F l, xp,’ + A: > Ed), 

Pr( monopoly) = 1 - Pr( no entrants) - Pr( duopoly) . (9) 

The joint distribution of the df determines the specific functional form for 
these probability statements. To estimate the parameters of this model using 
maximum-likelihood methods, one must select a joint distribution for the A; 
that respects the economic constraints on players’ payoffs and permits 
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Firm 1 

Monopoly 

Fig. 3. The simultaneous-move entry game with asymmetric entry costs (i.e., A! > 0 and AT < 0). 

identification of key parameters. An expedient restriction for the entry model 
is to assume that the Ai, are negative constants. More general specifications 
also might allow for unobserved heterogeneities among players. For example, 
we could set 

A; =g(Zy’) + vi, 

where g(.) is a function that is everywhere negative and 7’ is a random 
variable with an upper bound of zero. Bresnahan and Reiss (1990) estimate 
an entry model with this structure. 

The practice of constraining payoff distributions may sometimes compli- 
cate both estimation and inference procedures in these models. By aggregat- 
ing outcomes, one may also introduce an identification problem. In our entry 
model where we combine the monopoly outcomes, for example, we must 
typically impose restrictions on A’, and A; to identify the model. In general, 
identification must proceed on a case-by-case basis. The following subsection 
illustrates this point using an alternative equilibrium solution concept. 
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3.3. Sequential-move games 

In many games, players move sequentially rather than simultaneously. In 
these sequential-move games the possibility of preemption arises. Preemption 
occurs when a prior mover takes an action that forecloses options to later 
movers. In an entry game, for example, an early entrant could forestall later 
entrants. Similarly, in a technology adoption game, early adopters may 
preempt later adopters. [See, for example, Gilbert and Newbery (1982I.l In 
this subsection, we model preemption in a sequential technology adoption 
game. In this game, each player can either choose to ‘adopt’ or ‘not adopt’ a 
new technology. The first firm to adopt is the ‘innovator’. The second firm 
adopting is an ‘imitator’. Preemption occurs when the first mover blocks the 
second firm from adopting. 

Suppose that firm 2 moves first. Solving for firm l’s optimal strategy 
conditional on firm 2’s possible moves, we obtain the same structural equa- 
tion for firm 1 as we did for the simultaneous-move game, _ 

a’=0 e A’ +a’A’ ~0 0 l- . (10) 

Here, Aa is the value of being the only firm to innovate and Ai is the effect 
on firm l’s profit when firm 2 also innovates. If A: > 0 (< O), then innovation 
by the leader, firm 2, raises (lowers) firm l’s adoption profits. Eq. (10) 
determines a single value of a’ for any distribution of the A’s and any 
value of a2. In a subgame-perfect equilibrium, firm 2’s structural equation 
follows from its best response to eq. (10). That is, firm 2 maximizes 
IZ*(a’,(a’, A:, A:), a2). The solution to firm 2’s problem is a2 = 1 when 

Region Conditions 

(1) A;>A;, Ah+A; CO, A:>O, 

firm 1 is preempted; 

(2) Af,>O, A;+A+O, Ah-d, 

firm 1 never adopts; 

(3) A;+A;+A:>O, Ah+A:>O, A’,<O, 

firm 1 imitates; 

(4) A;+Af>O, A;+A;kO, A;?O, 

firm 1 always adopts; 

(11) 

where AZ = II& - II&. In region (l), both firms can individually innovate, but 
by moving first firm 2 establishes itself as the innovator. In the second region, 
firm 1 never finds adoption profitable, no matter what firm 2 does. Area (3) is 
one where firm 1 can adopt only after firm 2 innovates. The last region is one 
where firm 1 always adopts, no matter what firm 2 does. 
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The conditions defining these regions do not have a convenient dummy 

endogenous variable representation. However, if the A’s have continuous 
distributions, then relation (11) almost surely gives a unique strategy for 
player 2. Similarly, relation (10) almost surely generates a unique value of a’ 
conditional on a2. Thus, the sequential-move game has a unique equilibrium 
even when the errors have infinite support. From the conditions in (111, one 
can compute the probability of the event a2 = 1. From (lo), one can compute 
conditional probability statements for the event a1 = 1. One can similarly 
determine the probabilities of the remaining strategies. From these probabil- 
ity statements, one can construct and maximize a likelihood function for 
firms’ technology choices. One also can estimate the parameters of firms’ 
profits using two-stage estimation methods. Two-stage methods provide more 
flexible models of the unobserved errors by exploiting the sequential struc- 
ture of decisions. In the first stage, one would estimate relation (11). In the 
second stage, one would estimate relation (10). While two-stage methods may 
sometimes be less complicated than maximum-likelihood methods, two-stage 
methods have their own complications. For instance, one cannot easily 

Firm 1 

Innovates 

Firrrl 2 

Innovates 

Fig. 4. The sequential-move entry game. 



72 T. F. Bresnahan and P. C. Rein, Empirical models of discrete games 

impose cross-equation constraints on the threshold conditions using two-stage 
methods. 

Finally, depending on the functional forms of the A’s, not all the parame- 
ters in this model may be identified. Identification again must be determined 
on a case-by-case basis. Economic theory may occasionally help with identi- 
fication. In a sequential-move entry game, for instance, when a firm does not 
enter, its profits do not depend on the other firm’s action. Fig. 4 shows how 
this restriction partitions the associated payoff space. (This figure uses the 
same assumptions as fig. 1.1 The center region of this figure corresponds to 
the profit outcomes where firm 2 preempts firm 1 from entering. Comparing 
fig. 4 to fig. 1, we see that the ability of firm 2 to move first assigns all 
nonunique monopoly markets in the simultaneous-move game to firm 2. 

The uniqueness of players’ strategies in sequential-move games seems to 
favor the use of sequential-move models over simultaneous-move models. 
Notice, however, that sequential-move games impose their own special re- 
quirements. If the econometrician does not know the order in which the 
players moved, the sequential-move econometric model is indistinguishable 
from the simultaneous-move model. To see this, recall that the center region 
in fig. 1 contains the nonunique equilibria of the simultaneous-move game. In 
the sequential-move entry game, the first mover claims these monopoly 
markets. If we do not know which firm moved first, we cannot assign these 
markets to either firm. In this case, the sequential-move game has the same 
indeterminant outcomes as the simultaneous-move game. 

3.4. Cooperative games 

In many multi-person decision problems, players cooperate. This subsec- 
tion develops the implications of a simple cooperative game where a husband 
and wife jointly make their labor force participation decisions. Unlike many 
previous econometric models of labor force participation, this model exam- 
ines how the discrete participation decision of each spouse affects the 
participation decision of the other spouse.7 

Suppose that we observe the labor force participation decisions of many 
two-person households. Assume that in addition we also observe characteris- 
tics of the household members, such as members’ ages, education levels, 
incomes, and so on. Denote the utility functions of the husband and the wife 
by UH and U”, respectively, and let a’ = 0 when member i does not work 
and ai = 1 when i works. Although we do not observe members’ hours of 
work, we know each member’s utility depends on the hours worked by both 

‘Early examples of discrete family labor supply models include Kniessner (1976) and Wales 
and Woodland (1976), among others. Later work by Heckman and MaCurdy (1980) and Ransom 
(1987) recognize the endogeneity of household decisions, but do not explicitly model household 
decision-making. 
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members, i.e., Uw = U W(LH, Lw, Xl and UH = UH(LW, LH, Xl, where LH 

and Lw equal the hours worked by the husband and wife and X represents 
exogenous characteristics of the household. By maximizing the sum of these 
two utility functions subject to the household budget constraint, we obtain 
two reduced-form labor supply equations as a function of X. These coopera- 
tive labor supply schedules have four pieces or segments, depending on which 
of the following constraints bind: ( LH > 0, Lw > 0}, (LH = 0, Lw > 0}, {LH > 0, 

Lw = 01, or { LH = 0, Lw = 0). In other words, each member’s labor supply 
schedule varies, depending upon whether both work, only the husband works, 
only the wife works, or neither works. Substituting these reduced-form labor 
supply schedules into the spouses’ utility functions, we obtain the indirect 
utility functions 

UH = 0,;” + aHAy + awAy + aHawAy, (12) 

Uw= f?,,w+awA~+aHA~+aHaWA~. (13) 

By construction, I?: equals each member’s baseline utility should neither 
work. The variable A’, equals the change in i’s utility when only i works. 
Consumer demand theory suggests that A’, is positive if wage income more 
than compensates for foregone leisure. The variable Ai equals the incremen- 
tal utility (disutility) of having a spouse work. This change in utility does not 
depend on whether the individual works. Finally, the variable A; represents 
the individual utility (disutility) from having both work. The signs and 
magnitudes of the A’,, Ai,, and A; determine the household preferences for 
work. Both the u(; and the A’s depend on the exogenous variables in X. 

To see how cooperative behavior affects the estimation of the indirect 
utility functions UH and U “, consider the simple case of a balkanized 
household. In a balkanized household, each member’s indirect utility func- 
tion depends on whether they alone work. Household members maximize 
household utility by working whenever A; > 0. Fig. 5 depicts this solution 
under the assumption that a,; = 0. Following the specifications we adopted in 
our earlier models, we assume that the Af contain unobserved differences in 
tastes. If we assume that these differences have a logistic or normal distribu- 
tion, then we obtain a conventional probability model for each of the four 
household labor supply outcomes depicted in fig. 5. 

The balkanized household model resembles previous labor force participa- 
tion models because individual utilities do not depend on their spouse’s labor 
supply decision. One obvious extension of the previous model that would 
allow for some interdependence is 

UH = 0” + aHA” + aWAH 0 I 23 

UW=~W+aWAW+aHAW 0 I 2’ 
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Fig. 5. The cooperative labor supply model with no interpersonal effects. 

The cooperative solution for these utilities depends on both Af and A;. 

Notice, however, that the probability statements for the discrete labor supply 
decisions have the same form as those in the previous model. (To see this, 
define two new random variables A, = Af’ + A? and A, = A: + Ay.y.) Thus, in 
the absence of identifying restrictions on individual utility functions, we 
cannot distinguish between the disutility of having a spouse work and the 
own utility of working. 

To obtain interesting externality effects in labor supply decisions, we must 
allow the indirect utility function to have interaction effects. Suppose without 
loss of generality that Ai = 0, 

lJH = OH + aHAH + aHaWAH II 1 3, 

Uw= ~W+aWAW+aWaHAW 0 1 3’ 

In this model, own and spouse labor supply decisions interact, and not 
necessarily in the same way for each member. Figs. 6 and 7 illustrate the 
consequences of these interaction effects. Fig. 6 graphs the equilibrium 
configurations using the assumption that 0; = 0. This figure assumes that A\ 
is fixed and uses the notation A, = A? + AT. Fig. 6 also assumes that A, > 0, 



T F. Bresnahan and P. C. Reiss, Empirical models of discrete games 75 

Wife Works 
Both Work 

Husband Works 

Fig. 6. The cooperative labor supply model with A, > 0. 

Wife Works 

(0, -& 

Husband Works 

Fig. 7. The cooperative labor supply model with A, < 0. 



16 T.F. Bresnahan and P. C. Reiss, Empirical models of discrete games 

while fig. 7 assumes the opposite, namely A, < 0. In other words, figs. 6 and 7 
differ according to the degree of complementarity between joint home and 
work production. In each figure, whether only one member works depends on 
the other member’s relative disutility of being the only one to work. While in 
principle one might like to identify the individual A\ terms, one usually 
cannot unless one has more information about each spouse’s preferences. 

One can easily extend the household utility models considered here to 
more general models of household behavior. For example, one might include 
the decisions of other family members and also model household members’ 
hours of work. These models present estimation problems similar to those in 
the individual continuous/discrete choice models discussed by Hanemann 
(1984) and Dubin and McFadden (1984). Reiss and Spiller (1989) discuss 
some of these problems in an oligopoly model where firms make discrete 
entry and continuous price decisions. 

3.5. Games with mixed strategies 

So far we have considered only the pure-strategy equilibria of discrete 
games. We now consider a simple example where the underlying game has a 
mixed-strategy equilibrium. Games with mixed-strategy equilibria pose dif- 
ficult inference problems because the researcher does not know whether an 
action reflects a randomized or a pure-strategy equilibrium outcome. In this 
example, we relate the randomization probabilities and the threshold condi- 
tions to a common set of variables that identify the pure-strategy equilibrium. 

Consider a 2 x 2 game played between a tax auditor and a taxpayer.s The 
auditor decides whether to audit the taxpayer for cheating. The taxpayer 
decides whether to cheat. Assume the payoffs to each are 

No auditing 
Auditing 

Auditor’s payoffs Taxpayer’s payoffs 

No cheating Cheating No cheating Cheating 

0 0 0 s 

-C P+S-c 0 -P-S 

where C equals the auditor’s cost of auditing, P represents the taxpayer’s 
penalty if caught cheating, and S equals the taxpayer’s potential tax savings if 
he or she cheats. 

It is easy to see that the only pure-strategy equilibrium of this game is ‘no 
auditing’ and ‘cheating’. Further, this pure-strategy equilibrium exists only 
when C 2 P + S. When C <P + S (i.e., it is profitable to audit), only a 
mixed-strategy equilibrium exists. The mixed-strategy equilibrium is: audit 

‘Others have studied the auditing inference problem from slightly different perspectives. See 
Dubin and Wilde (19861, Shibano (19861, and Alexander and Feinstein (1986). 
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with probability p and cheat with probability q, where 

s C 

p= P+2S 
and q= - 

P+S’ 

If we do not know the costs of auditing and cheating, then we must also 
estimate p and q. To see how one might do this, consider the event ‘do not 
audit’ and ‘cheat’. This event occurs with probability one when C 2 P + S 
and with probability q(1 -p) = C/(P + 2s) when C < P + S. Because we do 
not observe the ratio C/(P + 2S), we must define the event probabilities in 
terms of their expected probability. Let B represent the event P + S > C, 
and let EB[ .I represent the econometrician’s expectation operator condi- 
tional on the event P + S > C. The probability of observing the outcome ‘do 
not audit’ and ‘cheat’ equals 

Pr(cheating,noauditing)=E,[q(l-p)]Pr(P+S>C) 

+Pr(P+S<C). (14) 

The probabilities of observing each of the other three outcomes equal 

Pr(nocheating,noauditing)=E,[(l-q)(l-p)]Pr(P+S>C), 

Pr( no cheating, auditing) = E, [ ( 1 - q)p] Pr( P + S > C) , (15) 

Pr( cheating, auditing) = EB[ qp]Pr( P + S > C) . 

The complexity of the likelihood function for this model depends on the 
distribution of the unobserved costs and penalties. As in our previous 
models, the researcher must exercise care when selecting these distributions. 
If one assumes the payoffs are normally distributed, then C, P, and S can be 
negative, in which case the expectations for the randomization probabilities 
do not exist. Just as there are assumptions that complicate estimation of the 
model, there are also assumptions that can simplify estimation. For instance, 
if one knows or assumes that the auditor penalizes cheaters in proportion to 
the amount they underreport (i.e., P = as), then the event probabilities 
simplify to p = l/(2 + a) and q = C/S(l + (Y). If one also assumes C and S 
are proportional to independent chi-squared random variables, then q is 
proportional to an F random variable. This latter assumption makes it easy 
to compute the expectations and probabilities in (14) and (15). 

Although it appears that the likelihood function for this problem is no 
more complicated than previous likelihood functions, it may be difficult to 
estimate this type of model. In most applications, the investigator will require 
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a large amount of cross-section or panel data to estimate the randomization 
probabilities with any reasonable degree of precision. Large amounts of data, 
however, also increase the computational burdens associated with estimating 
the expectation parameters and the payoff functions. By collecting more data 
the investigator may also introduce other problems. For example, by repeat- 
edly sampling the same auditor one introduces correlation among the ob- 
served outcomes. One also may raise new modeling issues, since the same 
auditor may use strategies designed to affect more than one taxpayer. Such a 
possibility requires restructuring the empirical model to recognize both the 
common auditor problem and the sequencing of audits. 

4. Conclusion 

This paper developed econometric models of finite outcome games from 
assumptions about the distribution of players’ payoffs. These models ex- 
tended conventional single-person discrete choice models to situations involv- 
ing interrelated choice. When agents make decisions noncooperatively and 
simultaneously, unrestricted stochastic specifications of players’ payoffs pro- 
duce ill-defined probability models. In response, we developed several alter- 
native models of choice. Our simultaneous-move models had linear dummy 
endogenous variable representations. We also showed that sequential-move 
and cooperative games had related, but more complicated structures. 

In concluding, we would like to comment on the relevance of our methods 
for practical applied work. We have written (2) and (4) as though all players 
have complete information. We also assumed that players only played these 
games once. In many practical applications, agents have imperfect informa- 
tion and interact repeatedly. One can, however, extend our approach to 
consider these applications, although the econometric models become more 
complicated. An important class of games that our basic framework does not 
address are games in which players’ actions affect each others’ information 
sets. Such situations arise in signalling and reputation games. [See, for 
example, Roberts (1987) and Tirole (1988j.l In these games, the econometri- 
cian must model both players’ priors about their competitors and their true 
types. Just as the players in these games often have trouble drawing infer- 
ences about their opponents, so too will the econometrician. 

We regard the insights of game theory as central to many applied problems 
in economics, especially those involving with agency, moral hazard, and 
self-selection problems. To apply the models we have developed here, one 
will need detailed data on a series of independent, yet related games. One 
also will have to match the structure of the theoretical game to the hypotheti- 
cal distributions of the observed and unobserved variables. These tasks pose 
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challenges, but they are not insurmountable challenges. Elsewhere 
[Bresnahan and Reiss (1990)], we have used cross-section data on retail 
markets to test structural models of entry. We also believe that these models 
will prove useful in the study of such strategic practices as bargaining, 
contracting, and auditing. 

Appendix 

Proof of Proposition I. Let A(a) denote the set of outcomes that are 
adjacent to a. Let a’ denote an outcome that is not adjacent to a. It is 
sufficient to prove that the event ‘both a and a’ are Nash equilibria’ occurs 
with positive probability. That is, 

W(a) 2I7’(a), 

F( a’) 2 ny a) 

occurs with positive probability for all (Y E {A(a) U&a’)}. From (2), this 
event occurs when 

I@,X,8) -Til(a,X,0) 2&l(a) _&‘((Y) 

fiQz’,X,0) -Gl((Y,X$) >&‘(a’) -?(a, 1 

for each (Y. The conditional probability assumptions (6) imply that this event 
has positive probability. 

Proof of Proposition 2. In a finite outcome game with the error structure (6), 
any outcome can be an equilibrium with positive probability. Without loss of 
generality, suppose that there are two observationally distinct outcome sets, 
A and B. We know from Proposition 1 that all the elements of A are 
adjacent to all the elements of B. That is, if 

q,={q )...) a;,a ,‘..” O,]EA, 

then if j’ fj and i’ + i, aifj, E A. 

Suppose first that the game allows either i or j to have more than two 
strategies. Assume without loss of generality that this is player i. Then there 
exists some u,,~ E A, where k fj or j’. However, uifk is nonadjacent to 
a,,. E B. By Proposition 1, A and B therefore cannot be observationally 
distinct. 
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We now consider the multiple-player case where each player has only two 
strategies. Without loss of generality, suppose that there are only three 
players. Each outcome of this game is nonadjacent to three other outcomes. 
Because this game has at most eight possible outcomes, there are at most two 
observationally distinct sets of outcomes. If the two sets are observationally 
distinct, then all cells in each set are mutually nonadjacent. Consider then 
the outcomes (O,O, I>, (0, l,O), and (l,O, 1). Although the first two outcomes 
are nonadjacent, it is not true that both outcomes are simultaneously nonad- 
jacent to the third. Thus, all outcomes are observationally equivalent. 

The second part of the proposition is immediate given the above proofs. 
The two observationally distinct outcomes are A = ((O,O),(l, 1)) and B = 
{(LO>, (0,111. 

Proof of Proposition 3. Immediate from the proof of Proposition 1. 
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