EMPIRICAL, MOLECULAR FORMULAS AND CHEMICAL ANALYSIS PROBLEMS

PERCENT COMPOSITION

- Percent of each element a compound is composed of.
- Strategy:
- Assume 1 mole of substance. Get molar mass of substance.
- Find the mass of each element in a mole, divide by the total molar mass, multiply by a 100 .
- Ex: Find the percent composition of CH_{4}
- Molar mass of $\mathrm{CH}_{4}=16.043 \mathrm{~g} / \mathrm{mol}$
- \% C = $12.011 \mathrm{~g} / \mathrm{mol} / 16.043 \mathrm{~g} / \mathrm{mol}=74.9 \%$
- $\% \mathrm{H}=4.032 \mathrm{~g} / \mathrm{mol} / 16.043 \mathrm{~g} / \mathrm{mol}=25.1 \%$

EMPIRICAL VS MOLECULAR FORMULAS

- Empirical Formula the lowest ratio of atoms in a molecule.
- Molecular Formula is the actual \# and types of atoms in a compound
- Ex: Molecular formula for glucose is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
- Glucose has an empirical formula of $\mathrm{CH}_{2} \mathrm{O}$.

EMPIRICAL FORMULA FROM \% COMPOSITION

- Can use percent composition information to obtain an empirical formula:
- Ex: Mercury reacts with chlorine to produce a compound that is $73.9 \% \mathrm{Hg}$ and $26.1 \% \mathrm{Cl}$ by mass. What is the empirical formula for the compound?
- Strategy:
- 1) assume you have 100.0 g of the substance:
- 73.9 g Hg
- 26.1 g Cl
- 2) convert mass to moles of each element
- $73.9 \mathrm{~g} \mathrm{Hg} x(1 \mathrm{~mol} / 200.59 \mathrm{~g})=0.37 \mathrm{~mol} \mathrm{Hg}$
- $26.1 \mathrm{~g} \mathrm{Cl} \mathrm{x} \mathrm{(} 1 \mathrm{~mol} / 35.453 \mathrm{~g})=0.74 \mathrm{~mol} \mathrm{Cl}$
- 3) Divide larger mole quantity by lowest mole quantity to get mole ratios:
- $0.74 \mathrm{~mol} \mathrm{Cl} / 0.37 \mathrm{~mol} \mathrm{Hg}=\sim 2 \mathrm{~mol} \mathrm{Cl}: 1 \mathrm{~mol} \mathrm{Hg}$
- Therefore Empirical Formula is HgCl_{2}

NOW YOU TRY:

- A compound that is usually used as a fertilizer can also be used as a powerful explosive. The compound has the composition, 35.00% nitrogen, 59.96% oxygen and the remainder being hydrogen. What is its empirical formula? Given it is ionic, suggest a name for the compound.
- Answer: $\mathrm{N}_{2} \mathrm{O}_{3} \mathrm{H}_{4}$
- Ionic compound formula: $\mathrm{NH}_{4} \mathrm{NO}_{3}$
- Name: ammonium nitrate

EMPIRICAL TO MOLECULAR FORMULAS

- To get from E.F. to M.F. you will need the molar mass of the actual compound.
- Ex: A compound is made of only sulfur and nitrogen. It is $69.6 \% \mathrm{~S}$ by mass. Its molar mass is $184 \mathrm{~g} / \mathrm{mol}$. What is its formula?
- Strategy:

1) Find the empirical formula first

- Answer: SN

2) Divide the molar mass of the substance by the molar mass of its empirical formula.

- MM of $\mathrm{SN}=46 \mathrm{~g} / \mathrm{mol}$
- MM of compound is $184 \mathrm{~g} / \mathrm{mol}$
- $184 \mathrm{~g} / \mathrm{mol} / 46 \mathrm{~g} / \mathrm{mol}=4$

3) Multiply each atom by this factor.

- Answer: S,

NOW YOU TRY:

- A substance has an empirical formula of $\mathrm{CH}_{2} \mathrm{Br}$ and a molar mass of $188 \mathrm{~g} \mathrm{~mol}-1$. What is the molecular formula of the compound?
- Answer: $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$

CHEMICAL ANALYSIS

- Ex \#1: Hydrates

Washing soda, a hydrate, has a formula of $\mathrm{Na}_{2} \mathrm{CO}_{3} \bullet \mathrm{xH}_{2} \mathrm{O}$, where x is the number of moles of $\mathrm{H}_{2} \mathrm{O}$ per mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. When a 2.558 g sample of washing soda is heated, all the water of hydration is driven off, leaving $0.948 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$. What is the formula for the hydrate (what is the value of x)?

- Strategy:
- 1) determine how many moles of water the hydrate had by subtracting mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ after it has been heated from the mass of the original sample:
- $2.558 \mathrm{~g}-0.948 \mathrm{~g}=1.61 \mathrm{~g} \mathrm{H} \mathrm{H}_{2}$
- 2) Determine the mole ratio of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to $\mathrm{H}_{2} \mathrm{O}$ by dividing moles of $\mathrm{H}_{2} \mathrm{O}$ by moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
- $0.948 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times\left(1\right.$ mole/105.989 g) $=.008945 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$
- $1.61 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times(1 \mathrm{~mol} / 18.015 \mathrm{~g})=.08937 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
- Therefore: . $08936 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} / .008945 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}=9.99=\sim 10$
- That means that for every 1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ there are 10 moles of $\mathrm{H}_{2} \mathrm{O}$. So the formula for the hydrate is: $\mathrm{Na}_{2} \mathrm{CO}_{3} \circ 10 \mathrm{H}_{2} \mathrm{O}$

CHEMICAL ANALYSIS

- Ex \#2: Combustion

A 0.2000 gram sample of a compound (vitamin C) composed of only C, H, and O is burned completely with excess $\mathrm{O}_{2} \cdot 0.2998 \mathrm{~g}$ of CO_{2} and 0.0819 g of $\mathrm{H}_{2} \mathrm{O}$ are produced. What is the empirical formula?

- strategy:
- 1) Write as much of the reaction as you can:

$$
\begin{aligned}
& \text { - } \mathrm{C}_{-} \mathrm{H}_{-} \mathrm{O}_{-}+\mathrm{O}_{2} \rightarrow \underset{2}{\mathrm{CO}_{2}+}{ }^{0.2998 \mathrm{~g}} \mathrm{H}_{2} \mathrm{O} \\
& \cdot 0.0819 \mathrm{~g}
\end{aligned}
$$

- 2) Think about what you know...
- All the carbon in the CO_{2} had to come from the original compound
- All the Hydrogen in the $\mathrm{H}_{2} \mathrm{O}$ has to come from the original compound
- The oxygen in the products came from two places: the original compound and the $\mathrm{O}_{2}=$ gas it was combusted with. So we will deal with this later...
- 3) Determine the moles of C and H since you know where they came only from the original sample and you have a mass for both CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
- $0.2998 \mathrm{~g} \mathrm{CO}_{2} \times(1 \mathrm{~mol} / 44.009 \mathrm{~g})=.0068122 \mathrm{~mol} \mathrm{CO}_{2} \times(1 \mathrm{~mole} \mathrm{C} / 1 \mathrm{~mole}$ $\left.\mathrm{CO}_{2}\right)=.0068122$ mole C
- $0.0819 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O} \times(1 \mathrm{~mole} / 18.015 \mathrm{~g})=.0045462 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times(2 \mathrm{~mole} \mathrm{H} / 1 \mathrm{~mole}$ $\left.\mathrm{H}_{2} \mathrm{O}\right)=.0090924 \mathrm{~mole} \mathrm{H}$
- 4) Determine the moles of Oxygen by subtracting the mass of C and mass of H from the mass of the original compound:
- . 0068122 mole C x $(12.011 \mathrm{~g} / \mathrm{mol})=.081821 \mathrm{~g} \mathrm{C}$
- . 0090924 mole H x ($1.008 \mathrm{~g} / \mathrm{mol})=.0091651 \mathrm{~g} \mathrm{H}$
- .200 g C _H_O $-(.081821 \mathrm{~g} \mathrm{C})-(.0091651 \mathrm{~g} \mathrm{H})=.10901 \mathrm{~g} \mathrm{Ox}(1 \mathrm{~mol} /$ $15.999 \mathrm{~g})=.0068134$ mole 0
- 5) Determine the Empirical formula by dividing each mole quantity by the smallest one:
- . $0068134 \mathrm{~mol} \mathrm{O} / .0068122 \mathrm{~mol} \mathrm{C}=1 \mathrm{~mol} 0$ to 1 mol C
- . $0090924 \mathrm{~mol} \mathrm{H} / .0068122 \mathrm{~mol} \mathrm{C}=1.33 \mathrm{~mol} \mathrm{H}$ to mol C
- Therefore C $\mathrm{H}_{1,33} \mathrm{O}$
- To get whole number, multiply by $3: \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$

