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1. Introduction

This project aims to verify the Central Limit Theorem for four differ-
ent probability distributions by computer simulation. For a sequence of
n i.i.d. random variables Xi, each with finite mean µ and finite variance
σ2, the theorem asserts that

(1.1) lim
n→∞

P

[
X̄ − µ
σ/
√
n
≤ z

]
= P [Z ≤ z] ,where Z ∼ Normal(0, 1)

and where

X̄ =
X1 +X2 +X3 + . . .+Xn

n
.

is the sample mean. For a continuous distribution with range (a, b),
the mean is defined as

µ =
1

b− a

∫ b

a

f(x) dx,

and for a discrete distribution,

µ =
1

n

n∑
i=1

xi

For a continuous distribution the variance is defined as

σ2 =

∫
(x− µ)2f(x)dx,

and for a discrete distribution,

σ2 =
n∑
i=1

(xi − µ)2fi

In each case, f(x) represents the probability density function (pdf)
of the distributions. The pdf gives the probability of each outcome
in the sample space of the distribution. The four distributions used
are the Poisson distribution, the binomial distribution, the exponential
distribution, and the Irwin-Hall distribution. For each distribution,
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1000 samples each of size n = 40 were drawn using algorithms that
employ the random number function in Mathematica. These sample
averages were standardized using the equation

(1.2) X∗ =
X̄ − µ
σ/
√
n

The resulting distributions were then compared to the standard nor-
mal distribution by plotting the histograms and comparing visually, by
comparison of results to the numerical value of certain z-values on the
standard normal distribution, and by the Chi-square goodness-of-fit
test.

Definition 1.1. A normal distribution with mean µ and variance σ2,
written as Normal(µ, σ2), is defined as

(1.3) f(x) =
1√

2π σ
e−(x−µ)2/2σ2

, −∞ < x <∞

A variable X ∼ Normal(µ, σ2) is called a normal random variable. We
also say that X is normally distributed. [2, p.37]

Definition 1.2. The probability mass function of a discrete random
variable X, denoted as p(a), returns the probability that X = a. [2,
p.27]

Definition 1.3. The probability density function f(x) of a continuous
random variable X gives the probability P [a ≤ X ≤ b] by evaluating∫ b
a
f(x) dx. [2, p.34]

Definition 1.4. The moment generating function φ(t) of a random
variable X is defined for all values of t by the expected value for etX .

φ(t) = E
[
etx
]

(1.4)

=

{∑
x e

tXp(x) , if X is discrete∫∞
−∞ e

tx f(x) dx , if X is continuous.

[2, p.64]

Two notable properties of moment generating functions are:

(1) The moment generating function of the sum of independent
random variables is just the product of the individual moment
generating functions.[2, p.68]

(2) The moment generating function uniquely determines the distribution.[2,
p.69]
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The cumulative distribution function (denoted cdf) of the random
variable X is defined by F (b) = P [X ≤ b] for any real number b in
(−∞,∞).

A variable X ∼ Normal(0, 1) is a standard normal random vari-
able. Its cumulative distribution function is P [Z ≤ z] = F (z) =

1√
2π

∫ z
−∞ e

−x2/2 dx. Its moment generating function is φ(t) = et
2/2.

1.1. Central Limit Theorem.

Theorem 1.5 (The Central Limit Theorem). Let X1, X2, . . . be a se-
quence of independent, identically distributed random variables, each
with mean µ and variance σ2. Then the distribution of

X1 +X2 + . . .+Xn − nµ
σ
√
n

approaches the standard normal curve as n→∞. That is, as n→∞:

(1.5) P

{
X1 +X2 + . . .+Xn − nµ

σ
√
n

≤ z

}
→ 1√

2π

∫ z

−∞
e−x

2/2 dx

[2, 79]

The following heuristic proof of the central limit theorem is from
Ross [2, p.82-83].

Proof. Suppose that every Xi in X1, X2, . . . , Xn has mean 0 and vari-
ance 1, and let E

[
etX
]

denote their common moment generating func-

tion. Then, the expression X1+···+Xn√
n

will have a moment generating

function of

φ(t) = E

[
exp

{
t

(
X1 + · · ·+Xn√

n

)}]
, by (1.4)

= E
[
etX1/

√
netX2/

√
n · · · etXn/

√
n
]

Since each Xi in X1, X2, . . . , Xn is independent and has a common
moment generating function, we have that

(1.6) E
[
etX1/

√
netX2/

√
n · · · etXn/

√
n
]

=
(
E
[
etX/

√
n
])n

We then obtain from the Taylor series expansion of etX/
√
n for large

values of n that

etX/
√
n ≈ 1 +

tX√
n

+
t2X2

2n
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Since each Xi has mean 0 and variance 1, taking expectations for
when n is large we get

E
[
etX/

√
n
]
≈ 1 +

tE[X]√
n

+
t2E[X2]

2n

= 1 +
t2

2n
(1.7)

By combining (1.6) and (1.7), we get

(1.8) E

[
exp

{
t

(
X1 + · · ·+Xn√

n

)}]
≈
(

1 +
t2

2n

)n

By taking the limit of (1.8) as n approaches ∞, we get:

(1.9) lim
n→∞

E

[
exp

{
t

(
X1 + · · ·+Xn√

n

)}]
= lim

n→∞

(
1 +

t2

2n

)n

which is in the indeterminate form of 1∞.
To solve this expression, we let

y =

(
1 +

t2

2n

)n
, then(1.10)

ln(y) = ln

[(
1 +

t2

2n

)n]
= n ∗ ln

(
1 +

t2

2n

)
lim
n→∞

ln(y) = lim
n→∞

n ∗ ln
(

1 +
t2

2n

)
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which is in the indeterminate form ∞· 0. Rearranging the terms allow
us to apply L’Hospital’s Rule:

lim
n→∞

n ∗ ln
(

1 +
t2

2n

)
= lim

n→∞

ln
(

1 + t2

2n

)
1
n

(
in the indeterminate form

0

0

)

= lim
n→∞

(
1

1+ t2

2n

)(
t2

2

) (−1
n2

)
−1
n2

(by L’Hospital’s Rule)

= lim
n→∞

(
1

1 + t2

2n

)(
t2

2

)
=

(
1

1 + 0

)(
t2

2

)
=

t2

2
(1.11)

Combining equations (1.9), (1.10) and (1.11), we get:

(1.12) y = eln(y) = lim
n→∞

E

[
exp

{
t

(
X1 + · · ·+Xn√

n

)}]
= et

2/2,

which is the moment generating function of a standard normal ran-
dom variable. Thus, the moment generating function of X1+···+Xn√

n
con-

verges to the moment generating function of a standard normal random
variable with mean 0 and variance 1. Using the uniqueness of the mo-
ment generating functions, we can say that the distribution function
of the random variable X1+···+Xn√

n
converges to the standard normal

distribution function. [2, p.82-83]
In the case of random variable Xi having mean µ and variance σ2,

the random variable Ui = Xi−µ
σ

has a mean of 0 and variance 1. The
above proof can then be applied. �

Remark 1.6. Another version of the central limit theorem states that:

Theorem 1.7 (The Central Limit Theorem*). Let X be a random vari-
able that follows a distribution with finite mean µ and finite variance
σ2, and let X1, X2, X3, . . . , Xn be a random sample from this distribu-
tion. Then the sample average

(1.13) X̄ ≡ X1 +X2 + . . .+Xn

n
,
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when the sample size n is large, follows a distribution which is approxi-
mately normal with mean µ and variance σ2

n
. More precisely, it asserts

the following asymptotic result:

lim
n→∞

P

[
X̄ − µ
σ/
√
n

]
≤ z] = P [Z ≤ z]

Proof.

lim
n→∞

P

[
X̄ − µ
σ/
√
n

]
= lim

n→∞
P

[
X1+X2+...+Xn

n
− µ

σ/
√
n

]
, by (1.13)

= lim
n→∞

P

[
X1+X2+...+Xn−nµ

n

σ/
√
n

]

= lim
n→∞

P

[
X1 +X2 + . . .+Xn − nµ

(σ/
√
n) (n)

]
= lim

n→∞
P

[
X1 +X2 + . . .+Xn − nµ

σ
√
n

]
=

1√
2π

∫ z

−∞
e−x

2/2 dx, by (1.5)

= P [Z ≤ z] cdf of Normal(0,1)

We have that:

E[X̄] =
1

n

m∑
i=1

E[Xi]

= µ [2, p.55]

Var(X̄) =

(
1

n

)2

Var

(
n∑
i=1

Xi

)

=

(
1

n

)2 n∑
i=1

Var(Xi)

=
σ2

n
[2, p.55]

�
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2. Method

For each distribution, the 1000 sample means were tabulated and
standardized using (1.2). First, these means were graphed on a his-
togram to compare their distribution pictorially with a standard nor-
mal distribution. Psuedo-probabilites were then calculated for several
values of z in the following manner:

(2.1) Ppsuedo

[
X̄ − µ
σ/
√
n
≤ z

]
=
number of X̄ ≤ z

1000

These values were then compared to the actual values given by the
CDF of the standard normal distribution using z as the upper limit
of integration. Finally, the standardized means were verified using the
Chi-square goodness-of-fit test.

2.1. Inverse Transformation Method.

Proposition 2.1. To simulate a random variable with a continuous
distribution function F using the inverse transformation method, set
the random variable

(2.2) X = F−1[U ]

where U is a U(0, 1) random variable. The random variable X has the
same distribution function F .

Proof.

FX(a) = P [X ≤ a]

= P [F−1(U) ≤ a]

Since F is a monotonically increasing function,

FX(a) = P [U ≤ F (a)]

= F (a)

�

2.2. The Chi-Square Goodness-of-Fit Test. The chi-square goodness-
of-fit test statistically determines whether a set of data follows a hy-
pothesized distribution. Intuitively, it determines how distant observed
values are from expected values.

There are two assumptions for the goodness-of-fit test:

(1) The data are obtained from a random sample; and
(2) The expected frequency for each category is 5 or more.

If the data satisfies the assumptions, a hypothesis can now be formed.
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Definition 2.2. A null hypothesis, denoted as H0, is a statistical hy-
pothesis that states that there is no difference between two distribu-
tions.

Definition 2.3. An alternative hypothesis, denoted as H1, is a sta-
tistical hypothesis that states the existence of a difference between
distributions1 .

The null hypothesis being tested is that there is no difference between
the distribution of sample means and a standard normal distribution.
Now that a hypothesis is present, the data or the distribution of data
is separated into categories of sufficient size. Too many categories can
result with expected frequencies being less than 5, dissatisfying as-
sumption (2). Two parameters are then identified: degrees of freedom,
and α. The parameter degrees of freedom is one less than the num-
ber of categories. The parameter α is a value used in statistics that
corresponds to the probability for error. This parameter, as a type of
probability, is a number between 0 and 1. We choose α = 0.05.

A test statistic is then determined using the formula:

(2.3) χ2∗ =
∑ (O − E)2

E
, where

O = observed frequency; and

E = expected frequency.

The value of χ2∗ derived from equation (2.3) is then compared to a
critical value. This value is determined by the chi-squared distribution
at the chosen α and the degrees of freedom. If χ2∗ is less than the
critical value, then there is not enough evidence to reject the hypothe-
sis that a distribution follows the predetermined pattern.2 [1, p.585-592]

When the pattern being compared is the normal distribution, the
expected values used should be

(2.4) E = n

∫ zmax

zmin

1√
2π
e−x

2/2, where

1These definitions use the word distributions, but these definitions can extend to
include terms such aas parameters and randomness.

2In statistics, one cannot conclude that a hypothesis is true. One can only reject
or fail to reject a hypothesis based on the data from the goodness-of-fit test.
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n = total number of sample averages,

zmax = z-value of upper limit of category; and

zmin = z-value of lower limit of category.

3. The Four Distributions

3.1. Poisson Distribution. The Poisson distribution gives the prob-
ability that a number of events k will occur in a set period of time
with the parameter λ being the expected number of events to occur
in the given period of time. A discrete random variable X follows the
Poisson(λ) distribution, λ > 0, if its probability mass function is given
by

f(k) =
λke−λ

k!
, where k ∈ {0, 1, 2, ...}.

The expected value and variance of a random variableX ∼ Poisson(λ)
can be determined by

E(X) = λ(3.1)

V ar(X) = λ(3.2)

A Poisson random variable N can be simulated by:

N = min{n :
n∏
i=1

Ui < e−λ} − 1 , where Ui ∼ U(0, 1).

The following histogram illustrates a Poisson(4) distribution simu-
lated with the above method.

2 4 6 8 10 12

500

1000

1500

Figure 1. Histogram showing the distribution of simu-
lated random variable X ∼ Poisson(4).
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3.2. Binomial Distribution. A binomial distribution, denoted asBin(n, p),
depicts n independent discrete random variables, each with probabil-
ity p of success and probability (1 − p) of failure. The probability
mass function of a binomial random variable having parameters (n, p)
is given by

P [X = x] =

(
n

x

)
px(1− p)n−x =

n!

x!(n− x)!
px(1− p)n−x

The expected value and variance of a binomial distribution can be
determined by

E(X) = np(3.3)

V ar(X) = np(1− p)(3.4)

To simulate the binomial distribution, we must introduce the Bernoulli
distribution. The Bernoulli distribution depicts a single event with
probability p of success and (1 − p) of failure. It can be described as
the case of the binomial distribution with parameters (1, p). A random
variable X ∼ Bin(n, p) can however be defined as the number of suc-
cesses from n repetitions of Bernoulli(p). The simulation algorithm
is based on this principle. Ross [2, p.686-687] proposes the following
steps to simulate a binomial distribution with events Xk:

(1) Let α = 1
p
; β = 1

1−p
(2) Set a counter k to 0.
(3) Generate a uniform random number from U(0, 1).
(4) If k = n, stop. Otherwise, reset k to equal k + 1
(5) If U ≤ p, then Xk = 1 and reset U to αU . If U > k, then Xk

= 0 and reset U to β(U − p). Return to Step 4.

This algorithm uses U(0, 1) only once. The randomness of the con-
sequent values is based on the uniformity of (0, p) for the event of a
success and the uniformity of (p, 1), due to the use of α and β. To
find out how many successes have occured, we only need to count the
number of instances where Xk = 1.

The following histogram illustrates a Bin(100, 0.3) distribution sim-
ulated with the above method.
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Figure 2. Histogram showing the distribution of simu-
lated random variable X ∼ Bin(100, 0.3).

3.3. Irwin-Hall Distribution. The Irwin-Hall distribution is a con-
tinuous probability distribution of the sum of k independent uniformly
distributed random variables on the interval (0, 1). Though the distri-
bution functions themselves become quite complicated for large values
of n, simulation is fairly simple due to the definition of the distribu-
tion. We consider the case of the sum of k = 4 random variables.
To simulate, using Mathematica, a table of 1000 means of samples
of size n = 40 were generated. Each element in each sample was the
sum of four different random variables generated by Mathematica from
U (0, 1). The following is the probability density function for the case
of k = 4.

fX(x) =


1
6
x3 , when 0 ≤ x ≤ 1

1
6
(−3x3 + 12x2 − 12x+ 4) , when 1 ≤ x ≤ 2

1
6
(3x3 − 24x2 + 60x− 44) , when 2 ≤ x ≤ 3

1
6
(−x3 + 12x2 − 48x+ 64) , when 3 ≤ x ≤ 4

The expected value and variance of the Irwin-Hall distribution of the
sum of k random variables from U(0, 1) can be determined by

E(X) = k/2(3.5)

V ar(X) = k/12(3.6)

The following histogram illustrates an Irwin(4) distribution simu-
lated with the above method.
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1 2 3

50

100

150

Figure 3. Histogram showing the distribution of simu-
lated random variable X ∼ Irwin(4).

3.4. Exponential Distribution. The exponential distribution expresses
the time between continuously and independently occurring events of a
random process with an average rate of λ. A continuous random vari-
able X follows the exponential distribution with parameter λ, λ > 0,
if its cumulative distribution function is given by

F (x) =

{
1− e−λx , when x ≥ 0,

0 , when x < 0.

The expected value and variance of a random variable X ∼ Exp(λ)
can be determined by

E(X) =
1

λ
(3.7)

V ar(X) =
1

λ2
(3.8)

The following simulates a random variable X ∼ Exp(λ) using the
inverse transformation method (2.2) by generating a U(0, 1) random
variable:

X = F−1(U) =
ln(1− U)

−λ
.

The following histogram illustrates an Exp(4) distribution simulated
with the above method.
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Figure 4. Histogram showing the distribution of simu-
lated random variable X ∼ Exp(4).

4. Data and Results

4.1. Comparing Histograms. The following histograms show the
distribution of the 1000 standardized simulated sample averages for
each of the four distributions. The standard normal curve is plotted
on each histogram to pictorially compare each distribution of sample
averages with the standard normal distribution.

-3 -2 -1 0 1 2 3

20

40

60

80

(a) X ∼ Poisson(4)
-3 -2 -1 0 1 2 3

20

40

60

80

(b) X ∼ Bin(100, 0.3)

-3 -2 -1 0 1 2 3

20

40

60

80

(c) X ∼ Irwin(4)
-2 -1 0 1 2 3

20

40

60

80

(d) X ∼ Exp(4)

Figure 5. Histograms showing the standardized distri-
bution of 1000 sample averages of a simulated random
variable X of sample size n = 40.
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The distribution of the sample averages for each of the simulated
distributions closely fits the standard normal distribution, supporting
the Central Limit Theorem.

4.2. Comparing Probabilities. The following table compares the
pseudo-probabilities, calculated with (2.1), of each of the four sim-
ulated standardized distributions of sample averages with the actual
P [Z ≤ z], where Z ∼ Normal(0, 1), for values of z, where −2 ≤ z ≤ 2
and has a step size of 0.4. The P [Z ≤ z] is given by the cumulative
distribution function of the standard normal distribution using z as the
upper limit of integration. The percent error for a certain value of z is
given by

(4.1) %error =
|Ppsuedo

[
X̄−µ
σ/
√
n
≤ z
]
− P [Z ≤ z]|

P [Z ≤ z]
× 100.

The percent error between each pseudo-probability and the cor-
responding value of P [Z ≤ z] for the standard normal distribution
for a certain value of z is given in parentheses following the pseudo-
probability for that z value.

Pseudo-probabilities from Simulation Actual
z Poisson(4) Bin(100, 0.3) Irwin(4) Exp(4) Normal(0, 1)

-2.0 0.025 (9.89%) 0.021 (7.69%) 0.022 (3.30%) 0.015 (34.07%) 0.023
-1.6 0.057 (4.02%) 0.052 (5.11%) 0.050 (8.76%) 0.035 (36.13%) 0.055
-1.2 0.120 (4.28%) 0.116 (0.81%) 0.106 (7.88%) 0.101 (12.23%) 0.115
-0.8 0.210 (0.88%) 0.207 (2.29%) 0.202 (4.65%) 0.205 (3.24%) 0.212
-0.4 0.348 (0.99%) 0.365 (5.93%) 0.326 (5.39%) 0.330 (4.23%) 0.345
0.0 0.500 (2.22%) 0.519 (3.80%) 0.493 (1.40%) 0.481 (3.80%) 0.500
0.4 0.653 (0.37%) 0.645 (1.59%) 0.654 (0.22%) 0.640 (2.35%) 0.655
0.8 0.798 (1.25%) 0.781 (0.91%) 0.786 (0.27%) 0.783 (0.65%) 0.788
1.2 0.895 (1.14%) 0.890 (0.57%) 0.888 (0.35%) 0.883 (0.22%) 0.885
1.6 0.949 (0.40%) 0.946 (0.08%) 0.935 (1.08%) 0.940 (0.55%) 0.945
2.0 0.976 (0.13%) 0.972 (0.54%) 0.969 (0.84%) 0.977 (0.03%) 0.977

Figure 6. Table of pseudo-probabilities for the distri-
bution of the standardized sample averages for the four
simulated distributions and the P [Z ≤ z] for the stan-
dard normal distribution evaluated at certain z-values.
(Percent error)

The psuedo-probabilites of the simulated distributions are close to
the actual values P [Z ≤ z] evaluated at the given z values, which



VERIFICATION OF THE CENTRAL LIMIT THEOREM 15

supports the Central Limit Theorem. In 41 out of the 44 pseudo-
probabilities, the percent error was less than 10 percent.

4.3. Chi-Square Test Statistics. The null hypothesis being tested
is that the distribution of sample means illustrates a standard normal
distribution.

To simplify the method, each distribution was standardized before
being separated into 6 intervals:

(−∞,−2], (−2,−1], (−1, 0], (0, 1], (1, 2], (2,∞)

The number of sample means that lie in each interval was counted
and used as the observed frequencies for (2.3). Formula (2.4) was used
to determine the expected frequencies.

Since 6 intervals were used, our critical value according to the table
of values in Bluman[1, p.772] is 11.071 at α = 0.05 and degrees of
freedom = 5. The test statistics for each distribution are shown in the
following table:

Distribution Poisson(4) Bin(100, 0.3) Irwin(4) Exp(4)
Test Statistic 1.998 4.273 4.487 3.841

Figure 7. Table of test statistics acquired for the Chi-
square goodness-of-fit test

Since all of the test statistics are less than the critical value of 11.071,
we fail to reject our null hypothesis. There is not enough data to
exhibit a difference between the distribution of sample means for all 4
distributions and the standard normal distribution. This statistically
verifies the central limit theorem.

5. Conclusions

For each distribution, the results of the simulation and analysis sup-
ported the claim of the Central Limit Theorem. However, the theorem
states the asymptotic result of a limit as the sample size n goes to in-
finity. While we do not show any results generated by varying n, trials
were taken with n values of 400 and 4000. These simulations with the
greater n values did not show any significant difference in accuracy of
the X∗ value when applied to (1.7). In some cases, the higher n value
yielded a less accurate simulation. This is most likely due to the nature
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of the simulation, and the fact that 40 is already a large enough sample
size for a good simulation.
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