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Abstract

Many storage cache allocation methods use the miss ratio

curve (MRC) to improve cache efficiency. However, they have
focused only on single-tier cache architectures and require
the whole MRC as input for cache management, while mod-
ern datacenters embrace hierarchical caching architectures to
maximize resource utilization. Generating the MRC for multi-
tier caches – we call it the miss ratio function – is far more
challenging due to different eviction policies and capacities
in each cache tier. We introduce eMRC, a multi-dimensional
miss ratio approximation technique, to enable efficient MRC
generation for multi-tier caching. Our approach uses a novel
multi-dimensional performance cliff removal method and con-
vex hull approximation technique to efficiently generate a
multi-dimensional MRC without cliffs using a small number
of sampling points. To demonstrate the benefits of eMRC,
we designed ORCA, a multi-tier cache management frame-
work that orchestrates caches residing in different hierarchies
through eMRC and provides efficient multi-tier cache config-
urations to cloud tenants with diverse service level objectives.
We evaluate the performance of our eMRC approximation
technique and ORCA with real-world datacenter traces.

1 Introduction

Caching is often provisioned on multiple tiers in cloud storage
systems. When client applications running in virtual machines
(VMs) generate block IOs to remote storage media, the re-
quests pass through a series of intermediate layers, such as
user-space libraries, hypervisors, and actual storage nodes.
Each layer presents a caching opportunity, and thus most
cloud providers adopt multi-tier caching architectures to max-
imize the utilization of scattered resources in the system [11].

Multi-tier caching necessitates an effective, low overhead
cache management scheme as arbitrary cache configurations

∗Hee Won Lee conducted this project when he was at AT&T Labs Re-
search.

for multiple tiers may not benefit tenants due to their side ef-
fects such as double caching effects [27]. Configuring caches
for tenants with diverse service level objectives (SLOs) re-
quires efficient and accurate cache performance analysis for
each tier of the cache.

It is well known that effective cache management requires
a good understanding of IO workload characteristics. Without
understanding the workload, systems usually rely on trial-
and-error tuning methods that can be very inefficient. The
miss ratio curve (MRC) is a useful tool to capture workload
characteristics and tune system behavior. The MRC represents
the relationship between cache size and the corresponding
cache miss ratio. Assuming workloads are relatively stable
over time, the MRC derived from observed IO traces is known
to work effectively for single-tier caches [13].

The general workflow of utilizing miss ratio information
for cache management is as follows: 1) the IO streams of
tenants are analyzed, and a miss ratio function is generated to
represent the miss ratio for any given cache configurations for
each tenant; 2) based on tenants’ SLOs, a cache management
framework allocates the optimal cache size for each tenant. In
this workflow, the performance primarily depends upon how
quickly it estimates the miss ratio of a particular sized cache
for each tenant, given that the cache management framework
needs to handle multiple tenants, each with a different IO
pattern in a datacenter.

Evaluating the miss ratios for all possible cache sizes is
a very time-consuming task. SHARDS [25] and Miniature
Simulation [24] allow rapid MRC construction with reduced
overhead, and other efficient techniques have also been pro-
posed [7, 10, 26].

These previous techniques are either specific to single-tier
caches or are inefficient for multi-tier caches. As shown in
Figure 1, there are performance cliffs on the miss ratio surface
where miss ratios change dramatically with small changes in
cache size. The miss ratio surface is a multi-dimensional func-
tion representing the relationship between cache size in each
tier of the cache hierarchy and the corresponding cache miss
ratios. While evaluating cache configurations using multi-tier
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Figure 1: Miss ratio surface of MSR web_2 trace.

cache simulators such as PyMimircache [8, 30] is possible,
and MRC cliff removal techniques [4, 6] are available for
single-tier caching, to the best of our knowledge, there are
no known algorithms that can remove performance cliffs in
miss ratio functions for multi-tier caches, or that can generate
continuous miss ratio functions efficiently.

In this paper, we present our eMRC approach to achiev-
ing the efficient, rapid generation of multi-dimensional miss
ratio functions for multi-tier caching. eMRC is enabled by
our convex hull algorithm and cache partitioning algorithm.
The convex hull algorithm efficiently divides the whole multi-
dimensional space into multiple regions without full knowl-
edge of the multi-dimensional MRC. This convex hull al-
gorithm only requires a small number of sampling points
that significantly reduces the computation time. The cache
partitioning algorithm then removes performance cliffs for
multi-tier caching within any region bounded by data points
with known miss ratio values; the resulting miss ratio func-
tion is always equal to or better than the original miss ratio
function without eMRC’s cache partitioning.

We also developed the ORCA cache orchestration frame-
work for multi-tenant, multi-tier caching that leverages eMRC.
We evaluate both eMRC and ORCA using real-world IO
traces released by Microsoft [1].

Our key contributions can be summarized as follows:

• We are the first to provide an algorithm, eMRC, that
removes performance cliffs in multi-dimensional miss
ratio functions for multi-tier caching.

• For eMRC, we develop a technique called Convex Hull

Approximation. In terms of the number of sampling
points required, it speeds up MRC generation by 14
times for two-tier caching and 4,527 times for four-tier
caching.

• ORCA uses eMRC to efficiently provide effective cache
configurations for tenants with diverse SLOs by selecting
optimal cache sizes and replacement policies.

• We evaluate our eMRC approximation method with real
datacenter traces and validate that ORCA provides ef-
fective multi-tier cache configurations and boosts the
performance for various types of mixed workloads.

2 Background

In this section, we will review three concepts upon which our
eMRC approximation is built.

2.1 Sampling and Statistical Similarity

Statistical similarity means a smaller sampled IO trace can be
used to estimate the miss ratio of the original IO trace. Kessler
et al. [12] defined the “10% sampling goal” for statistical

similarity: “A method meets the 10% sampling goal if, at
least 90% of the time, it estimates the trace’s true misses per
instruction with ≤ 10% relative error using ≤ 10% of the
trace”, and showed that constant-bits sampling satisfies such
a goal. Constant-bits sampling means selecting the IO entries
that have the same value in some address bits.

Spatial sampling is a recently proposed technique to sample
IO traces with statistical similarity. It means taking the hash
values of IO addresses A and then using modulus P and a
threshold T on the hash value to determine what fraction of
IO operations to sample, hash(A)mod P < T . The resulting
sampling rate is R = T/P.

Statistical similarity has been used in various MRC based
studies, e.g., accelerating trace-driven simulations [24, 25]
and altering cache behaviors by using shadow partitions [4].

2.2 Talus Cache Partitioning

Talus [4] is a recently proposed cache partitioning algo-
rithm that can remove MRC performance cliffs for single-tier
caching. Talus utilizes statistical similarity of spatial sam-
pled IO streams. Assuming the original miss ratio is m(x) for
cache size x, passing a fraction1 ρ of an original IO stream
into a proportionally smaller cache partition of size x′ = ρx

will result in a statistically similar miss ratio:

m′(x′) = m(
x′

ρ
), where 0 ≤ ρ ≤ 1 (1)

The Talus algorithm divides a single cache into two par-
titions so that the cache has a miss ratio that interpolates
between two points on the MRC of an original unpartitioned
cache. To demonstrate the Talus algorithm, we use an MRC
example shown in Figure 2. A performance cliff exists be-
tween cache sizes α and β, which are two convex hull points.
If their cache miss ratios are m(α) and m(β), respectively,
Talus partitioning technique can provide cache miss ratio m(x)
whose value is between m(α) and m(β). The small-dotted
MRC is the miss ratio after applying the Talus algorithm. The
Talus MRC curve is convex and lower than the MRC of the
unpartitioned cache.

Now let us assume we want to configure cache partitions so
that the overall miss ratio is lowered from 66% to 53% with a
cache size of x= 0.99 GB that falls between α= 0.23 GB and

1The fraction means the sampling rate of spatial sampling.
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Figure 2: Talus miss ratio cliff removal.

β = 1.60 GB. We can determine the miss ratio using the Talus

equation: mtalus(x) =
β−x
β−α m(α)+ x−α

β−α m(β). Hence, for the

example of Figure 2, we can obtain:

mtalus(0.99) =
1.60−0.99

1.60−0.23
m(0.23)+

0.99−0.23

1.60−0.23
m(1.60)

= 0.45×0.76+0.55×0.35

= 0.53.

To achieve this miss ratio, Talus method allocates two cache
partitions of size x1 and x2 such that x = x1 +x2. A fraction ρ
of the IOs will pass through the first cache partition of size

x1 = ρα where ρ = β−x
β−α , and the remaining fraction (1−ρ)

of the IOs will pass through the second cache partition of size
x2 = x− x1.

The resulting miss ratio for the first partition is m1(x1),
which equals m(x1/ρ) by Equation 1. And the miss ratio for
the second partition, m2(x2), equals m( x−x1

1−ρ ).
The resulting Talus miss ratio is:

mtalus(x) = ρm1(x1)+(1−ρ)m2(x2)

= ρm(
x1

ρ
)+(1−ρ)m(

x− x1

1−ρ
)

=
β− x

β−α
m(α)+

x−α

β−α
m(β)

In sum, we want to have the Talus cache behave like a mix
of cache sizes α and β. The sample point x = 0.99 GB results

in ρ= β−x
β−α = (1.60−0.99)/(1.60−0.23) = 0.45. Thus, 45%

of the IOs will use a cache partition of x1 = ρα = 0.45×
0.23 = 0.10 GB and they will have a miss ratio of m(x1/ρ) =
m(α) = 0.76. The remaining 55% of the references will use
a cache size of x− x1 = 0.99−0.10 = 0.89 GB with a miss
ratio of m( x−x1

1−ρ ) = m(β) = 0.35. Across all the IOs, the miss
ratio will be 0.45×0.76+0.55×0.35 = 0.53.

As this process is repeated for different points x between α
and β, the resulting miss ratio curve will be a linear interpola-
tion between the miss ratios at α and β.

2.3 Rapid MRC Generation

Existing research has mainly focused on using a subset of the
original trace to accelerate MRC generation. Some of them

focused on stack-based eviction policies, while others can
apply to all eviction policies.

Stack-based cache eviction policies have the inclusion prop-

erty, meaning that for the same input IO, the cache of a larger
size always contains all cached items in the cache of a smaller
size. Simple cache eviction policies such as LRU and LFU are
stack-based policies, but more complex eviction policies such
as ARC [17] or MQ [32] are not stack-based. SHARDS [25]
is based on the stack distance algorithm of Mattson et al. [16],
which generates the MRC with a single pass of the work-
load trace. With the help of spatial downsampling, SHARDS
can significantly reduce the computation time and memory
footprint for long traces while generating relatively accurate
MRCs.

Miniature-Simulation [24] is another recent advance in
MRC generation for both stack and non-stack based eviction
policies. It shows that heavy spatial downsampling can be
used to generate a relatively accurate MRC by running a
separate scaled-down simulation for each cache size.

3 eMRC: Miss Ratio Approximation for
Multi-Tier Caching

We will begin with an illustrative example to intuitively show
how eMRC works. After that, we will demonstrate that spa-
tial sampling also works for more than one cache tier in
Section 3.2. We will show how eMRC can remove multi-
dimensional performance cliffs in a cliff region bounded by
data points with known miss ratios in Section 3.3. We explain
how to partition the whole multi-dimensional MRC into mul-
tiple regions efficiently to apply eMRC for the entire space in
Section 3.4. To simplify explanation, we first address two-tier
caching and then generalize our algorithm for three or more
tier caching in Section 3.5.

3.1 Illustrative Example for eMRC

In single-tier caching, Talus achieves a convex MRC by par-
titioning the cache into two partitions and letting the miss
ratio of each partition be related to one of the boundary point
miss ratios. In two-tier caching, as the example in Figure 3
illustrates, there are four boundary points. eMRC partitioned
the last tier cache (2nd tier) into four partitions, with each
partition related to one of the boundary point miss ratios.

In the particular example in Figure 3, there is a cliff region
in the MRC of a workload using two-tier caching. The four
boundary point miss ratios are: M(2,2) = 0.9, M(2,6) = 0.5,
M(6,2) = 0.5 and M(6,6) = 0.5. If we use the two tiers of
caches without partitioning, the miss ratio for 3GB of tier-1
cache and 3GB of tier-2 cache is M(3,3) = 0.9.

eMRC ensures that if we partition the tier-1 cache into
two partitions of [1.5GB, 1.5GB] and the tier-2 cache into
four partitions of [1.125GB, 1.125GB, 0.375GB, 0.375GB],
and then divide the IOs into the different partitions using
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Figure 3: Example of how eMRC removes performance cliffs.

Figure 4: Relative errors in approximating cache miss ratios
by sampling at rate ρ across all workloads. The error bars
represent the 10th & 90th percentile values.

spatial sampling based hash functions, we have the following
relation:

[

M1
M2
M3
M4

]

=

[

0.75×0.75 0 0 0
0 0.75×0.25 0 0
0 0 0.25×0.75 0
0 0 0 0.25×0.25

][

M(2,2)
M(2,6)
M(6,2)
M(6,6)

]

This means each of the miss ratios after the four tier-2 cache
partitions is only related to one of the boundary point miss
ratios. For example, M1 = 0.75×0.75×M(2,2), meaning no
matter how the miss ratios change at the boundary points,
M1 is only related to the miss ratio at M(2,2) on the original
surface.

The resulting miss ratio using eMRC for 3GB tier-1 cache
and 3GB tier-2 cache is now MeMRC(3,3) = 0.725 compared
to the original miss ratio at M(3,3) = 0.9. If we apply eMRC
to all the cache configurations in the bounded region, we can
obtain a convex eMRC surface as shown in Figure 3.

In Section 3.3, we show how eMRC determines the parti-
tion parameters for cliff removals in detail.

3.2 Spatial Sampling and Statistical Similar-
ity for Multi-tier Caching

To construct the eMRC miss ratio function, we need to parti-
tion caches in each tier repeatedly; this requires spatial sam-
pling to work in multiple cache tiers. Here we are empirically
validating that a spatially sampled IO stream can also be
used to estimate the miss ratio at the tier-2 cache, extending
Kessler’s assumption concerning calculating the tier-1 cache
miss ratio accurately.

We validated this using the MSR IO traces [1]. Figure 4
shows the approximation error in miss ratio at the tier-2 cache
when sampling at different sampling rates ρ before the tier-1

Y1

m(X1, Y1)

Tier-1 Cache 
Size

Tier-
2 Cach

e S
ize

X1

m(X2, Y1)

Y2

M
iss

 R
at

io

m(X1, 0)

m(X2, 0)

m(X1, Y2)

m(X2, Y2)

X2

Figure 5: Illustration of a performance cliff region.

cache, with no sampling before the tier-2 cache. We generated
the result shown in Figure 4 as follows. For each trace, we
evaluated the first 10M entries with 2,601 different tier-1
and tier-2 cache configurations. The tier-1 and tier-2 caches
can take 51 different cache sizes incrementing from 0 to
max_cache_size, based on the unique item count in the first
10M entries of each trace. We calculate the relative difference
on the tier-2 cache miss ratio using sampled vs. unsampled
traces. We show a bar plot in Figure 4 with more than 70K
data points for each spatial sampling rate (i.e., ρ = 0.1, 0.01,
and 0.001). The result shows sampling at a 10% rate causes at
most 0.62% relative difference across 90% of the data points.
Kessler’s sampling goal is met even when approximating the
miss ratio using only 0.1% of the original trace.

This demonstrates that spatial sampling can be used to
estimate the tier-2 cache miss ratio. This property supports
the construction of the eMRC convex miss ratio function
and enables rapid cache simulation to explore key miss ratio
points in the multi-dimensional miss ratio function.

3.3 Partitioning Scheme for Cliff Removal

This section demonstrates how eMRC removes performance
cliffs for two-tier caching systems, which can be easily ex-
tended to work with multi-tier caches.

Figure 5 illustrates a miss ratio surface in a two-tier caching
system. We assume that the discrete miss ratio surface m(x,y)
is generated from a single IO stream and there are four
miss ratio data points, i.e., m(X1,Y1), m(X1,Y2), m(X2,Y1) and
m(X2,Y2), which surround a performance cliff region. How
can we remove the performance cliff using only the four given
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Input IOs
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Input IOs
IN

Input IOs
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Figure 6: IO sampling scenarios in two-tier cache system.

data points? The Talus algorithm only works for a single-tier
cache because it needs two data points using the same input
IO stream. For example, in Figure 5, Talus cannot apply be-
tween m(X1,Y1) and m(X2,Y1) because these two data points
use different input IO streams; one is the missed IOs when
the tier-1 cache size is X1, and the other is when the tier-1
cache size is X2.

The eMRC algorithm removes performance cliffs for two
(or more) tier cache systems using the partitioning scheme
outlined in Figure 8.

We present our assumption and theorems that lead to the
construction of a miss ratio surface meMRC(x,y) without per-
formance cliffs. Figure 6 shows three scenarios that cover all
possible IO sampling cases in two-tier cache systems. Sce-
narios 1 and 2 are used in the proof of Theorem 1. All three
scenarios are used in the proof of Theorem 2.

• Scenario 1: No sampling. Let m1(x) and m2(y) denote
the cache miss ratios observed at the tier-1 and tier-2
caches, respectively. OUT (x,0) is the missed IO stream
after the tier-1 cache, and OUT (x,y) is the one after the
tier-2 cache. Then the miss ratio after the tier-1 cache
m(x,0) equals m1(x), and the miss ratio after the tier-2
cache m(x,y) equals m1(x)m2(y).

• Scenario 2: Sampling only before the tier-1 cache.
When a fraction ρ1 of an IO stream is processed by two
cache tiers, m′

1(x
′) and m′

2(y
′) denote the cache miss ra-

tios observed at the tier-1 and tier-2 caches, respectively.
The miss ratio after the tier-1 cache m′(x′,0) will become
ρ1m′

1(x
′) due to a fraction ρ1 of an input IO stream. Then

the fractional miss ratio is m′(x′,y′) = ρ1m′
1(x

′)m′
2(y

′).
The fractional miss ratio is the miss ratio when a fraction
of an IO stream is used.

• Scenario 3: Sampling before both tier-1 & tier-2
caches. We sample the missed IO stream after the tier-1
cache of size x′ (which is denoted by OUT ′(x′,0)) again
with fraction ρ2, and feed that into another tier-2 cache of
size y′′. Then the fractional miss ratio m′′(x′,y′′) equals
ρ1m′

1(x
′)ρ2m′′

2(y
′′).

With these three scenarios described, we introduce our
assumptions and theorems.

Assumption 1 If x′ = ρ1x and y′ = ρ1y, then the miss ratio

at the tier-2 cache m′
2(y

′) and m2(y) are statistically similar.

This was shown empirically in §3.2. With this assumption
we can now find the relationship between the fractional miss
ratios m′(x′,y′), m′′(x′,y′′) in Scenarios 2 & 3 and the miss
ratio m(x,y) in Scenario 1 for a two-tier cache system.

Theorem 1 For an input IO stream that is processed by two

tiers of caches with the resulting miss ratio surface m(x,y), a

fraction ρ1 of spatial sampled IO stream will have a fractional

miss ratio surface:

m′(x′,y′) = ρ1m(
x′

ρ1
,

y′

ρ1
)

Proof: In a two-tier caching setup, when a fraction ρ1 of
an input IO stream passes through the tier-1 cache of size
x′ and then the tier-2 cache of size y′, the fractional miss
ratio is m′(x′,y′) = ρ1m′

1(x
′)m′

2(y
′). From the Talus theorem,

we find m′
1(x

′) = m1(x′/ρ1). Under Assumption 1, m′
2(y

′) =
m2(y′/ρ1). Putting them all together, we obtain:

m′(x′,y′) = ρ1m1(
x′

ρ1
)m2(

y′

ρ1
) = ρ1m(

x′

ρ1
,

y′

ρ1
).

Theorem 2 For a given IO stream that is processed by two

tiers of the caches with resulting miss ratio surface m(x,y),
downsampling with fraction ρ1 before the tier-1 cache of size

x′ and again downsampling with fraction ρ2 before the tier-2

cache of size y′′ results in new fractional miss ratio surface:

m′′(x′,y′′) = ρ1ρ2m(
x′

ρ1
,

y′′

ρ1ρ2
)

Proof: From the Talus theorem, we find m′′
2(y

′′) = m′
2(y

′′/ρ2).

Hence, m′′(x′,y′′) = ρ1m′
1(x

′)ρ2m′
2(

y′′

ρ2
). As m′(x′,y′) =

ρ1m′
1(x

′)m′
2(y

′), m′′(x′,y′′) = m′(x′, y′′

ρ2
)ρ2. Applying Theo-

rem 1, we obtain:

m′′(x′,y′′) = ρ1ρ2m(
x′

ρ1
,

y′′

ρ1ρ2
).

We now use Theorem 2 to remove cliffs in the miss ratio
surface. Let m(x,y) denote a region of the miss ratio sur-
face of a two-tier caching system without any partitioning, for
x ∈ [X1,X2],y ∈ [Y1,Y2], where m(X1,Y1),m(X1,Y2),m(X2,Y1)
and m(X2,Y2) are known values. The meMRC(x,y) can be im-
plemented by partitioning both cache tiers.

Figure 8 illustrates the partitioning scheme. The final miss
ratio consists of four different fractional miss ratios after the
tier-2 cache. Hence, meMRC(x,y) is the summation of all the
four miss ratios:

meMRC(x,y) = m1(σ1x,ρ1σ2y)

+m2(σ1x,ρ1(1−σ2)y)

+m3((1−σ1)x,(1−ρ1)σ2y)

+m4((1−σ1)x,(1−ρ1)(1−σ2)y).

(2)

where

ρ1 =
X2−x

X2−X1
,σ1 = ρ1

X1
x ,ρ2 =

Y2−y
Y2−Y1

,σ2 = ρ2
Y1
y . (3)
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(a) Original MRC, constructed by evaluat-

ing 2,601 cache configurations.

(b) Ideal convex MRC, constructed from

original MRC.

(c) eMRC, constructed using 2 MRCs on

the edge and 30 additional data points se-

lected by convex hull approximation.

Figure 7: Convex hull approximation applied to MSR trace web_2.
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Figure 8: eMRC partitioning scheme for two-tier caching.

Since σ1 and σ2 are dependent upon ρ1 and ρ2, the values
of ρ1 and ρ2 dictate the convex shape of the meMRC(x,y) in
the region of x ∈ [X1,X2] and y ∈ [Y1,Y2].

Equations 2 and 3 can be combined into:

meMRC(x,y) = m1(ρ1X1,ρ1ρ2Y1)

+m2(ρ1X1,ρ1(1−ρ2)Y2)

+m3((1−ρ1)X2,(1−ρ1)ρ2Y1)

+m4((1−ρ1)X2,(1−ρ1)(1−ρ2)Y2).

(4)

By applying Theorem 2 into m1,m2,m3,m4 in Equation 4,
we finally obtain:

meMRC(x,y) = ρ1ρ2m(X1,Y1)

+ρ1(1−ρ2)m(X1,Y2)

+(1−ρ1)ρ2m(X2,Y1)

+(1−ρ1)(1−ρ2)m(X2,Y2).

(5)

In summary, given a cliff region in m(x,y) with four known
boundary values, we can remove the cliffs with our eMRC
partitioning scheme and parameter set {ρ1,ρ2}.

3.4 Convex Hull Approximation

Figure 7b is an ideal convex MRC of the known miss ratio
surface, shown in Figure 7a. It is generated using the convex

hull algorithm from quickhull [3]. The ideal convex MRC
represents the best case in multi-tier cache management. But
it requires an algorithm to remove miss ratio cliffs in regions
bounded by three arbitrary points in space, which does not
exist.

Our partitioning scheme can achieve cliff removals in a
"grid" region (x,y),x ∈ [X1,X2],y ∈ [Y1,Y2]. To apply it for
the whole miss ratio surface, we partitioned the surface using
the ideal convex MRC.

In particular, this is a four-step process: (1) Obtain the
original MRC; (2) Generate the ideal convex MRC using the
convex hull algorithm; (3) Construct eMRC grid regions; (4)
Perform cliff removal in each region.

The process is very time-consuming because of step (1).
In our case, for an MRC surface with cache size resolution
res = 51, a total of 2,601 miss ratio data points have to be
evaluated.

But we found that the vertices of the ideal convex MRC

almost entirely reside on the edge of the surface, where the

tier-1 or tier-2 cache size is 0. And we can find those vertices
by constructing 2D convex hulls of the two MRCs, where
the tier-1 or tier-2 cache is 0, respectively (black curves in
Figure 7b).

Based on our evaluation with all traces, we observed that:
at least 81% of the vertices in the Ideal Convex MRC are
associated with the convex hull points of 2D MRCs along the
two edges plus one additional cache configuration when both
the tier-1 and tier-2 caches take the maximum values.

We now can greatly simplify the process of applying eMRC
to the whole surface with new steps (1) and (2): (1) Obtain the
two MRCs along the edges where the tier-1 or tier-2 cache is
0, respectively. (2a) Obtain the vertices along the two edges
using convex hull algorithm. (2b) Obtain the additional miss
ratio values on eMRC grid points (highlighted in Figure 7c).

In the particular case outlined in Figure 7, our new ap-
proach only needs to evaluate two MRCs along the edges plus
30 additional data points, while the conventional approach
requires knowledge of all 2,601 data points.
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3.5 Extension to Multi-Tier Caching (3+)

To generalize eMRC for N-tier caching, we first extend our
notations used in Figures 5, 6 and 8 to vectors:

• B = {b | bi ∈ {Xi
1,X

i
2},∀i ∈ {1,2, ...,N}} for the set of

boundary coordinates that defines a multi-dimensional
hypercube cliff region.

• x = [x1,x2, ...xN ] for the cache size on each tier within
the cliff region, Xi

1 ≤ xi ≤ Xi
2,∀i ∈ {1,2, ...,N}.

• ρρρ = [ρ1,ρ2, ...ρN ] for the fraction of an IO stream before
each tier.

• σσσ = [σ1,σ2, ...σN ] for the cache partition ratio on each
tier.

• m(x) is the original miss ratio function without any cache
partitioning.

Theorem 3 (Extension of Theorem 2) For an input IO

stream that is processed by N tiers of the cache with resulting

miss ratio function m(x), when a fraction ρρρ is applied to the

IO stream before each cache tier, the new fractional miss ratio

function is:

mN(x)=∏N
i=1ρi·m(x′), where x′=

[

x1
ρ1
, x2

ρ1ρ2
,..., xN

∏N
i=1ρi

]

.

Extension of Equation 3. The eMRC partitioning parameter
for each cache tier is defined using the following equations:

ρi =
Xi

2 − xi

Xi
2 −Xi

1

,∀i ∈ {1,2, ...,N}

σi = ρi
X i

1

xi
,∀i ∈ {1,2, ...,N}.

Extension of Equation 5. The miss ratio after the tier-N
cache is composed of 2N different miss ratios (from 2N parti-
tions; see Figure 8). Hence, meMRC(x) is computed by aggre-

gating all the 2N miss ratios meMRC(x) = ∑2N

i=1 mN
i , where mN

i

is the miss ratio after each partition at the tier-N cache.
By applying Theorem 3 into this equation, we finally obtain

our eMRC miss ratio function:

meMRC(x) = ∑
b∈B

(

N

∏
i=1

fi ·m(b)

)

,

where fi =

{

ρi, bi = Xi
1

1−ρi, bi = Xi
2

,∀i ∈ {1,2, ...,N}.

4 eMRC-based Cache Orchestration

We present the ORCA (ORchestration for CAches) multi-
tier cache orchestration framework, which identifies the op-
timal cache configuration that meets tenants’ diverse SLO
requirements using eMRC while also minimizing the cloud
provider’s cost. ORCA is designed for a cloud provider to
serve customers with elastic cache resources. This objective
can be achieved by providing each tenant with the lowest pos-
sible cache cost to meet its SLO and accommodate as many
tenants as possible.

While our approach addresses N-tier caching systems for
N ≥ 2, we consider a two-tier caching distributed storage
system to simplify our discussion. The system consists of a
faster and more expensive tier-1 cache (e.g., DRAM) closer
to the clients and a slower and relatively cheaper tier-2 cache
(e.g., NVMe SSD) while having a central storage backend
(e.g., SATA SSD). For each tenant i with a specific SLO
requirement in IOPS (which is a key SLO metric for storage
IO), denoted as Ri

IOPS, our cache orchestration framework will
find an optimal cache configuration {Pi

1,P
i
2,T

i
1 ,T

i
2} satisfying

tenant i’s SLO with a provisioned IOPS Pi
IOPS ≥ Ri

IOPS while
minimizing overall cache resources allocated, where Pi

j is

the cache eviction policy at tier- j for tenant i, and T i
j is the

allocated cache capacity at tier- j for tenant i.

4.1 SLO Modeling with eMRC

To find an optimal cache size and policy configuration for a
given SLO, we first need to map eMRC’s miss ratio informa-
tion to IOPS. The provisioned IOPS of a storage workload
depends on both the cache configuration {Pi

1,P
i
2,T

i
1 ,T

i
2} and

the performance of the underlying hardware.

An exact analysis of IOPS performance is complicated
with MRCs, as it requires all the input IO to be reorganized
into an equal chunk size (e.g., 4KB), making it difficult to
study any performance benefit of large sequential IOs. We
treat both read and write IOs as cache references during MRC
generation, modeling a simple write-back cache policy. We
present an analytical lower bound of provisioned IOPS using
4KB random IO performance at the tier-1 cache (IOPST1

), the
tier-2 cache (IOPST2

), and the storage backend (IOPSB). Miss
ratios for each cache tier, Mi

1 and Mi
2, as well as the joint miss

ratio Mi can be obtained from a eMRC miss ratio function for
tenant i: (Mi,Mi

1,M
i
2) = FeMRCi(T

i
1 ,T

i
2 ,P

i
1,P

i
2).

The provisioned IOPS of tenant i can then be modeled as:

IOPSi =
1

1−Mi
1

IOPST1

+
Mi

1 −Mi

IOPST2

+
Mi

IOPSB

(6)

where 1−Mi
1, Mi

1 −Mi and Mi represents the probability that
a storage IO is executed at the tier-1 cache, the tier-2 cache
and storage back-end, respectively.

The IOPS function FIOPS(T i
1 ,T

i
2 ,P

i
1,P

i
2) from Eq. 6 is visu-

alized by a 3D plot in Figure 9. This IOPS surface shows the
relationship of provisioned IOPS with respect to the cache
size at each tier for a specific cache policy combination, e.g.,
tier-1 uses LRU and tier-2 uses ARC.

eMRC surface is convex, and the corresponding IOPS sur-
face will be an always increasing surface for the cache size in
each tier, according to Eq. 6.
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Figure 9: IOPS surface translated from eMRC surface for
MSR proj_3 trace.

4.2 Cache Orchestration with eMRC

ORCA provides an optimal cache configuration {T i
1, T i

2, Pi
1,

Pi
2} that minimizes the overall cost of cache resources while

meeting each tenant’s SLO requirements. The cost on cache
resource of tenant i with capacity configuration {T i

1, T i
2} can

be denoted as Ci = C1 ×T i
1 +C2 ×T i

2, where C1 and C2 are
the unit costs for the tier-1 and tier-2 caches, respectively.

For M tenants, the problem can be formulated as follows:

minimize
M

∑
i=1

Ci (7a)

subject to Ci =C1T i
1 +C2T i

2 (7b)

IOPSi = FIOPS(T
i

1 ,T
i

2 ,P
i
1,P

i
2) (7c)

IOPSi ≥ Ri
IOPS,∀i ∈ {1, ...,M} (7d)

var. {T i
1 ,T

i
2 ,P

i
1,P

i
2} (7e)

The unit cost of the tier-1 and tier-2 caches (C1 and C2)
are adjustable by the cloud provider. By adjusting the ratio
of C1/C2, the cloud provider will be able to shift utilization
between the tier-1 and tier-2 caches.

4.3 Two-Stage ORCA Optimization

The cache orchestration problem is challenging even with
eMRC. We need to search through tons of configuration can-
didates for each tenant’s optimal multi-tier cache configura-
tion, with all the SLO and cache capacity constraints, which
would incur a heavy computation overhead. Because an online
cache orchestration system requires an efficient and yet accu-
rate algorithm to adapt to large-scale, dynamic workloads, we
propose an efficient Two-stage ORCA optimization algorithm.
The ORCA optimization splits the optimization over its ob-
jective (minimizing cache resource cost) and its constraints
(required IOPS and cache sizes), significantly reducing the
search space for the optimization problem.

We propose Algorithm 1 to construct the set Bi, which
contains cache configurations that are just enough to satisfy
Ri

IOPS +Di for tenant i, where Ri
IOPS is the requested IOPS

from tenant i and Di is an additional margin added to account
for the prediction error caused by spatial downsampling and
workload dynamics. We define the tier-1 cache size x1, algo-
rithm step m as a function of cache size resolution res and

Algorithm 1: ORCA-Space Search

Input: TMAX ,FIOPS,res,Ri
IOPS,D

i

tier-1 cache size x1[m] = m
res−1 ·TMAX ,m ∈ range(res)

tier-2 cache size x2[n] =
n

res−1 ·TMAX ,n ∈ range(res)

Ri
IOPS = Ri

IOPS +Di

for each cache policy combination (Pi
1,P

i
2) do

Do binary search to find m such that

FIOPS(x1[m−1],x2[0])< Ri
IOPS and

FIOPS(x1[m],x2[0])>= Ri
IOPS

Add (x1[m],x2[0],P
i
1,P

i
2,) to Bi

for n in [1, ..., res−1]) do
m′ = m

use (x1[m
′],x2[n]) as starting point to find m such

that

FIOPS(x1[m−1],x2[n])< Ri
IOPS and

FIOPS(x1[m],x2[n])>= Ri
IOPS

Add (x1[m],x2[n],P
i
1,P

i
2) to Bi

end

end

Output: Bi, a reduced set of cache configurations

TMAX
2. We define x2 as the tier-2 cache size and the algo-

rithm step as n in a similar way. Then, for each cache policy
configuration {Pi

1, Pi
2}, we first find the first cache configura-

tion (via binary search) that satisfies the IOPS SLO when the
tier-2 cache size is zero x2[0] = 0. Then we search among its
nearest neighbor points where x2[1] =

1
res−1 ·TMAX to find the

next candidate cache configuration.

The algorithm will complete when the search reaches TMAX

for the tier-2 cache size; at this point, Bi will be constructed
for a given cache policy configuration. We do this for all
cache policy configurations to construct a complete set of Bi

for each tenant i; such a set of Bi includes all cache config-
urations that are just enough to satisfy tenant i’s SLO plus
a margin. We then apply Algorithm 2 to perform optimiza-
tion over cache configuration set Bi for each tenant i, which
will provide the cache configuration with minimum cache
resource cost, defined in Eq. (7a) and Eq. (7b). According
to Eq. (7a), ∑M

i=1 Ci gets minimized when each Ci gets mini-
mized; thus Algorithm 2 aims at minimizing the cost for each
tenant i over cache configurations that already meet the SLO
requirements from Algorithm 1.

5 Performance Evaluation

We evaluated our eMRC approximation technique and ORCA
on a server with two Xeon Gold 6142 CPUs at 2.6GHz with
384GB of memory, with a subset of Microsoft’s MSR IO
traces obtained from SNIA [1, 18]. We treat both read and
write IOs as cache references during MRC generation, mod-
eling a simple write-back cache policy. We break any large
IOs into 4KB blocks. For IOs smaller than 4KB, we treat
them as a full 4KB access. The traces we use all have more

2The unique IO entries in the trace.
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Algorithm 2: ORCA-Cost Objective

for each cache tenant i do
Call ORCA-Space Search (Algorithm #1) to obtain

cache configuration set Bi

Initialize cmin=MAX

for b in Bi do
Compute current cost objective value c from b

if c < cmin then
cmin = c , bout = b

end

end

Add (i,bout ,cmin) to S

end

Output: S

Server Function Traces Used

hm Hardware monitoring 0, 1

mds Media server 0, 1

prn Print server 0, 1

proj Project directories 0, 1, 2, 3, 4

prxy Firewall/web proxy 0, 1

rsrch Research projects 0

src1 Source control 0, 1, 2

src2 Source control 0, 1, 2

stg Web staging 0, 1

ts Terminal server 0

usr User home directories 0, 1, 2

wdev Test web server 0

web Web/SQL server 0, 1, 2

Table 1: Microsoft MSR traces [1] used.

than one million 4KB IO entries after processing, their names
and functions are shown in Table 1. We omitted small traces
inappropriate for downsampling methods. In our evaluation
for eMRC and ORCA, where we used the entire trace, we
applied different spatial sampling rates ranging from 0.1 for
traces with 1M entries to 0.0001 for traces with more than
600M entries.

For the ORCA evaluation, we assume that we have a stor-
age cloud that uses DRAM as the tier-1 cache, NVMe SSDs as
the tier-2 cache, and SATA SSD as the backend storage; and
for random 4KB IOs they perform at IOPST 1 = 10,000,000,
IOPST 2 = 100,000, and IOPSB = 20,000.

5.1 eMRC Performance

Computation speedup with convex-hull approximation.
The main challenge of utilizing miss ratio information in
multi-tier caching is the exponentially increasing size of all
cache configurations. With eMRC’s convex-hull approxima-
tion, only a limited number of cache configurations will be
evaluated to reduce the computation cost. We evaluated two
to four tiers of caches using a mix of stack and non-stack
based replacement policies (e.g., LRU→ARC→LRU→ARC)
on all the traces we have with resolution res = 51, meaning
the cache size of each tier can take 51 different values during

MRC generation.
We compare the number of data points required to gener-

ate eMRC’s continuous and convex miss ratio function with
and without convex-hull approximation. Figure 10 shows the
speedup factor for a different number of cache tiers. We can
see that the benefits increase with the number of cache tiers.
The convex-hull approximation resulted in 14x speedup on
average for two cache tiers and 4,527x speedup on average for
four cache tiers. We have more speedup for workloads with
more cliff regions and less for the ones without many cliffs be-
cause the presence of cliffs reduces the number of data points
that need to be evaluated. Most real workloads have some
level of cliff features, and these features will help to speed
up our algorithm. Figure 10 shows the number of data points
required but the actual processing time will vary based on the
eviction policies used in each cache tier because stack-based
eviction policies can benefit from SHARDS, which can eval-
uate multiple cache sizes with a single pass of the trace. For
the two-tier caching using LRU and ARC policy, the largest
difference in computation time is 54 seconds for the src1_0
trace with 200M IO entries with sample rate R = 0.0002 com-
pared to 42 minutes for generating the whole original MRC
(47 times faster). The smallest difference in computation time
is 2 minutes versus 8.2 minutes for the prxy_0 trace with
22M IO entries with R = 0.02 (4.1 times faster).

Accuracy of cliff removal. For each trace, we also evaluated
2,601 individual cache configurations for two-tier caching
with eMRC partitioning parameters and compared it with the
predicted miss ratio using eMRC. We use the Mean Absolute
Error (MAE) to examine the distance between these two sur-
faces. As shown in Figure 11, we were able to achieve < 2%
MAE for all the traces we use, meaning the eMRC partitioned
caches act as predicted in removing performance cliffs.

Convex-hull approximation. Our convex-hull algorithm is
based on the two miss ratio curves at the edge of the miss
ratio surface; the convex hull points along the edges are the
majority of the vertices of the ideal convex MRC. The shape
of the original miss ratio surface dictates how much we can
reduce the miss ratios by removing cliffs, and also the number
of regions generated by the convex-hull algorithm, which is
related to computation time. Figure 13 highlights the convex-
hull algorithm with several traces with representative shapes.

For traces with shapes like proj_2 and the web_2 trace
shown earlier, our algorithm is able to construct the whole
eMRC surface with very few data points and significantly
reduces the performance cliffs in the entire space.

For traces with shapes like prxy_0, the original surface
does not have any significant cliffs; our algorithm needs more
data points to construct the whole eMRC surface. Although it
only reduces performance cliffs in small areas, it only needs
to evaluate 25% cache size configurations compared with
generating the complete miss ratio surface.

For the prn_0 trace, the particular shape of the original
MRC causes our algorithm to produce non-convex regions in
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Figure 10: Comparison of data points
required to generate the whole eMRC,
with and without convex-hull approxi-
mation.

Figure 11: Error between the predicted
eMRC surface versus the evaluated
miss ratio surface using eMRC parti-
tioning parameters over all traces.

Figure 12: MRC generation error with-
out any partitioning, with respect to dif-
ferent down-sampling factor R.

the area marked by red lines in Figure 13. This can be easily
corrected by combining the multiple small regions in question
into a single large region using the red lines’ four boundary
points. Since all cache simulations on the marked data points
are already done, reconfiguring the grid regions and applying
eMRC does not have any additional overheads. This also
demonstrates the flexibility of our eMRC partitioning scheme;
it can remove a cliff in any region marked by four boundary
points with known miss ratio values.

Spatial downsampling in multi-tier cache. Other re-
searchers have studied the effect of spatial downsampling
for a single-tier cache. Our experiments show that it also
works well for multi-tier caching. When downsampled with
a factor R, the computation time is proportionally reduced
by R while maintaining a relatively accurate miss ratio es-
timation. To evaluate the accuracy, we calculated the MAE
between two discrete miss ratio surfaces with and without
spatial downsampling using the first 10M entries of all the
traces. Both surfaces are generated without any cache parti-
tioning. Figure 12 shows the MAE distribution for different
downsampling rates across the evaluation traces. Note that
the traces are downsampled only once before the IO stream is
processed at the tier-1 cache. We can see that single-tier and
two-tier caches have similar error rates.

5.2 ORCA Performance

This subsection shows how our approach can help cloud
providers determine efficient cache configurations for cloud
tenants with diverse SLOs. We assume the SLOs of tenants
are expressed in requested IOPS RIOPS.

Cache optimization for a single tenant. We consider LRU
and ARC cache policies. Then four different cache policy
combinations are possible (four eMRC surfaces per trace).
For all the traces, we use resolution res = 51. ORCA will first
obtain each eMRC surface with cache partitioning. eMRC
can then determine the cache partitioning parameters for each
cache size combination in the first and second-tier caches.
From the eMRC surface, we can derive the FIOPS surface, as
shown in Figure 14b. Because the MAE between our eMRC
prediction and eMRC evaluation is very small, the FIOPS sur-
face is also very close to F ′

IOPS evaluated values (with the

Mean Absolute Percentage Error (MAPE) of 1% using all
traces). From Figures 14a and 14b, we can see that by utiliz-
ing cache partitioning, we not only improved overall IOPS
performance but also removed performance plateaus and local
dips.

Figure 14b shows FIOPS with eMRC cache partitioning
where the tier-1 replacement policy is LRU and the tier-2 pol-
icy is ARC. Due to page limitations, we are only presenting
the results for six traces here. In Figure 14b, the solid blue ar-
eas represent cache configurations that lead to IOPS > RIOPS.
Note that we do not have to search the entire FIOPS surfaces,
which contains 2,601 sampling points for every cache policy
combination when using resolution res = 51. We are only
interested in the sampling points that are just enough to meet
the tenant’s SLO, eliminating unnecessary solutions; hence
they will be ≤ 51 cache size combinations for each cache
policy pair. By using Algorithm 1, we can calculate the entire
related cache configuration set B within a second.

Cache optimization for multiple tenants. In this experi-
ment, we test how ORCA can effectively allocate cache re-
sources for multiple tenants. Six tenants are using the six
traces presented in Figure 14 with the corresponding require-
ments RIOPS, respectively. We assume the cloud provider can
handle many tenants and has sufficient cache resources to ini-
tially accommodate these six tenants but seeks to limit the re-
sources to meet the requirements. In the ORCA optimization
equation (Eq. 7b), the cost ratio between the two cache tiers
C1/C2 can be tuned by the cloud provider to adjust utilization
between them. This evaluation sets C1/C2 = 10, roughly rep-
resenting the per-GB cost difference between DDR4 DRAM
and datacenter NVMe SSDs.

Table 2 shows how ORCA allocates cache resources for
the six tenants with provisioned IOPS PIOPS. As seen in the
table, tenants using mds_1, proj_2 and src1_0 traces with
relatively low RIOPS requirements will be only assigned the
tier-2 cache, and other tenants will be assigned combined
tier-1 and tier-2 caches.

6 Related Work

Research on efficient cache allocation among tenants has
focused on single-tier caching architectures. Two recent
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Figure 13: Effect of convex hull algorithm on various original miss ratio surface shapes.

Tenant
trace/size

R RIOPS PIOPS
Tier1 cache
GB/policy

Tier2 cache
GB/policy

mds_1/ 25M 0.002 21500 21580 0 6.72/ARC

proj_2/ 340M 0.0002 40000 40397 0 294.29/LRU

proj_3/ 7.7M 0.01 60000 61012 0.12/ARC 1.63/ARC

src2_2/ 17M 0.004 60000 60081 15.79/LRU 19.84/LRU

src1_0/ 406M 0.0002 60000 61785 0 106.34/ARC

web_2/ 74M 0.001 60000 60361 20.08/ARC 65.60/ARC

Table 2: Cache optimization by ORCA for 6 tenants.

works [21, 22] present an approach allowing host-side page
caches to be partitioned by VMs individually so those cache
parameters can be configured independently between tenants.
Cloudcache [2] proposes an on-demand cache management
solution to meet each tenant’s performance demand by intro-
ducing a new cache demand model. Recent MRC approxima-
tion techniques [7,10,24–26] also have focused on improving
MRC efficiency for online cache management for single-tier
caching.

Existing efforts on multi-tier caching include works focus-
ing on minimizing the duplication in cached data among dif-
ferent cache tiers to improve cache efficiency [9,14,15,19,27–
29, 31, 32]. Stefanovici et al. [23] propose a software-defined
cache allocation approach for multi-tier caching, which al-
lows cloud providers to coordinate multiple tiers of cache to
provide isolation and QoS for tenants.

Dynacache [5] is an LP (Linear Programming) solver to
find an optimal slab cache configuration when the total cache
size is fixed for single-tenant, single-tier cache scenarios.

Cliffhanger [6] extends Dynacache. Cliffhanger uses a novel
iterative algorithm to identify a local hit rate gradient without
constructing the whole MRC and uses the gradient at differ-
ent cache slabs to determine the optimal cache configuration.
It also utilizes the Talus algorithm to remove performance
cliffs. However, both Cliffhanger and Dynacache tackle the
single-tier cache focusing on single application optimization,
whereas our work targets multi-tier, multi-tenant caching sys-
tems.

7 Discussion

eMRC allows the efficient study of miss ratio profiles with
built-in cliff removal for multi-tier caching systems. It is the
first step towards efficient online cache management for multi-
tier caching with two challenges: 1. how to efficiently recom-
pute miss ratio profiles/MRCs periodically, 2. how to manage
the boundary migration of cache partitions.

Recomputing MRC periodically. Prior works generate the
MRC for single-tier cache in a fixed time or using a fixed rate
periodically. Talus [4] is originally designed for CPU cache.
It recalculates the MRC on a fixed interval (e.g., 10ms) and
uses that to configure cache partitions for the next interval.
SLIDE [24] in Miniature Simulation recalculates the MRC
every 1M IO entries with Exponentially Weighted Moving
Average (EWMA). Both Talus and SLIDE require the knowl-
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(a) IOPS surfaces without cache partitioning. (b) IOPS surfaces with cache partitioning.

Figure 14: IOPS surfaces with and without cache partitioning for 6 MSR traces.

edge of the whole MRC to perform cliff removal and cache
management. Cliffhanger [6] is another Talus inspired work
that can remove performance cliff without knowledge of the
whole MRC, but due to the limited visibility, it can only work
for one cliff. Talus based approaches require the knowledge
of the entire MRC to achieve maximum utility. This makes
multi-tier cache analysis and management challenging, as the
computation time goes up exponentially. Our eMRC with a
convex-hull approximation can construct multi-tier miss ra-
tio functions with regional cliff removal while using limited
data points without generating the whole original miss ratio
function. This enables the timely and periodic generation of
multi-dimensional miss ratio functions for multi-tier caching.

Managing the boundary migration of cache partitions.
Our eMRC based approach relies heavily on cache partition-
ing within each workload, 2N partitions for the Nth cache tier
to be specific. For a practical online system, the size and par-
titioning parameters of caches will change over time, and it
may cause some cached items to fall into the wrong partitions.
Talus [4] builds on top of CPU cache partitioning schemes
such as Vantage [20]. SLIDE [24] uses a shadow partition-
ing based approach to manage partition boundary migration.
SLIDE uses a single unified cache to handle IO and defer
partitioning decisions till eviction time.

Our future work includes incorporating such boundary mi-

gration mechanisms for cache partitions into our ORCA de-
sign and evaluating it with more real-world traces.

8 Conclusion

Our eMRC approximation technique enables efficient MRC
generation for multi-tier caching. eMRC uses 1) a partition-
ing scheme to remove performance cliffs in a grid region
with known boundary miss ratio values and 2) a convex hull
approximation technique that generates all grid regions effi-
ciently using a small number of sampling points. Based on
eMRC, we also designed ORCA, a multi-tier cache orchestra-
tion framework that uses a lightweight two-stage algorithm
that effectively provides efficient cache configurations for ten-
ants with diverse SLOs. Our performance evaluation shows
that our eMRC and ORCA are useful tools for multi-tier cache
orchestration.
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