EN 10088-2:2005

Stainless steels

Part 2: Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for general purposes

The European Standard EN 10088-2:2005 has the status of a British Standard

ICS 77.140.20; 77.140.50

National foreword

This British Standard is the official English language version of EN 10088-2:2005. It supersedes BS EN 10088-2:1995 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee ISE/30, Stainless steels, which has the responsibility to:

aid enquirers to understand the text;

present to the responsible international/European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed;

monitor related international and European developments and promulgate them in the UK

BS EN 10088 is published in three parts. Two further parts of this series (prEN 10088-4 and prEN 10088-5) are currently in preparation and have been designed to meet the needs of the Construction Products Directive (CPD).

A list of organizations represented on this committee can be obtained on request to its secretary.

Cross-references

The British Standards which implement international or European publications referred to in this document may be found in the *BSI Catalogue* under the section entitled "International Standards Correspondence Index", or by using the "Search" facility of the *BSI Electronic Catalogue* or of British Standards Online.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, the EN title page, pages 2 to 43 and a back cover.

The BSI copyright notice displayed in this document indicates when the document was last issued.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2005

Amendments issued since publication

Amd. No	Date	Comments	

 $\ensuremath{\mathbb{C}}$ BSI 30 June 2005

ISBN 0580463362

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 10088-2

June 2005

ICS 77.140.20; 77.140.50

Supersedes EN 10088-2:1995

English version

Stainless steels - Part 2: Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for general purposes

Aciers inoxydables - Partie 2: Conditions techniques de livraison des tôles et bandes en acier de résistance à la corrosion pour usage général

Nichtrostende Stähle - Teil 2: Technische Lieferbedingungen für Blech und Band aus korrosionsbeständigen Stählen für allgemeine Verwendung

This European Standard was approved by CEN on 4 May 2005

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

Contents

	Pa	age
Forewo	ord	3
	Scope	4
2	Normative references	4
3	Terms and definitions	5
4 4.1 4.2	Designation and ordering Designation of steel grades Designation to be used on ordering	5
5	Classification of grades	6
6 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10	Requirements Steelmaking process Delivery condition Chemical composition Chemical corrosion properties Mechanical properties Surface quality Internal soundness Formability at room temperature Dimensions and tolerances on dimensions and shape Calculation of mass and tolerances on mass	7 7 7 7 8 8
7 7.1 7.2 7.3 7.4 7.5	Inspection and testing	8 9 9
8	Marking	10
Annex	A (informative) Guidelines for further treatment (including heat treatment) in fabrication	37
Annex	B (informative) Applicable dimensional standards	42
Bibliog	raphy	43

Foreword

This document (EN 10088-2:2005) has been prepared by Technical Committee ECISS/TC 23 "Steels for heat treatment, alloy steels and free-cutting steels - Qualities and dimensions", the secretariat of which is held by DIN

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by December 2005, and conflicting national standards shall be withdrawn at the latest by December 2005

This document supersedes EN 10088-2:1995

EN 10088, under the general title "Stainless steels", consists of the following parts

Part 1: List of stainless steels (including a table of European Standards, in which these stainless steels are further specified, see Annex D),

Part 2: Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for general purposes,

Part 3: Technical delivery conditions for semi-finished products, bars, rods, wire, sections and bright products of corrosion resisting steels for general purposes

The European Organisation for Standardisation (CEN) draws attention to the fact that it is claimed that compliance with this document may involve the use of patents concerning four steel grades

CEN takes no position concerning the evidence, validity and scope of these patent rights

The holder of these patent rights has assured CEN that they are willing to negotiate licenses, under reasonable and non-discriminatory terms and conditions, with applicants throughout the world. In this respect, the statements of the holders of these patent rights are registered with CEN. Information may be obtained from

Grades 1.4362, 1.4410 and 1.4477

Sandvik AB SE-811 81 SANDVIKEN Sweden

Grade 1.4652

Outokumpu Stainless AB SE-77480 AVESTA Sweden

Attention is drawn to the possibility that some of the elements within this document may be the subject of patent rights other than those indicated above. CEN shall not be responsible for identifying any or all such patent rights

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom

Scope

- 1.1 This part of EN 10088 specifies the technical delivery conditions for hot or cold rolled sheet/plate and strip of standard grades and special grades of corrosion resisting stainless steels for general purposes
 - NOTE General purposes include the use of stainless steels in contact with foodstuffs
- **1.2** The general technical delivery conditions specified in EN 10021 apply in addition to the specifications of this European Standard, unless otherwise specified in this European Standard.
- **1.3** This European Standard does not apply to components manufactured by further processing of the product forms listed in 1.1 with quality characteristics altered as a result of such further processing

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

- EN 10002-1, Metallic materials Tensile testing Part 1: Method of test at ambient temperature.
- EN 10002-5, Metallic materials Tensile testing Part 5: Method of test at elevated temperature
- EN 10021, General technical delivery requirements for steel and iron products
- EN 10027-1, Designation systems for steels Part 1: Steel names, principal symbols.
- EN 10027-2, Designation systems for steels Part 2: Numerical system
- EN 10045-1, Metallic materials Charpy impact test Part 1: Test method.
- EN 10052, Vocabulary of heat treatment terms for ferrous products.
- EN 10079, Definition of steel products
- EN 10088-1, Stainless steels Part 1: List of stainless steels
- EN 10163-2, Delivery requirements for surface condition of hot rolled steel plates, wide flats and sections Part 2: Plate and wide flats
- EN 10168:2004, Steel products Inspection documents List of information and description
- EN 10204:2004, Metallic products Types of inspection documents
- EN 10307, Non-destructive testing Ultrasonic testing of austenitic and austenitic-ferritic stainless steels flat products of thickness equal to or greater than 6 mm (reflection method)
- EN ISO 377, Steel and steel products Location and preparation of samples and test pieces for mechanical testing (ISO 377:1997)
- EN ISO 3651-2, Determination of resistance to intergranular corrosion of stainless steels Part 2: Ferritic, austenitic and ferritic-austenitic (duplex) stainless steels Corrosion test in media containing sulfuric acid (ISO 3651-2:1998)
- EN ISO 6506-1, Metallic materials Brinell hardness test Part 1 Test method (ISO 6506-1:1999)

EN ISO 6507-1, Metallic materials - Vickers hardness test - Part 1: Test method (ISO 6507-1:1997)

EN ISO 6508-1, Metallic materials - Rockwell hardness test - Part 1: Test method (scales A, B, C, D, E, F, G, H, K, N, T) (ISO 6508-1:1999).

EN ISO 14284, Steel and iron - Sampling and preparation of samples for the determination of chemical composition (ISO 14284:1996)

3 Terms and definitions

For the purposes of this European Standard, the following terms and definitions apply

3.1

stainless steels

definition in EN 10088-1 applies

3.2

corrosion resisting steels

steels with at least 10,5 % Cr and max. 1,20 % C if their resistance to corrosion is of primary importance

3.3

product forms

definitions in EN 10079 apply

3.4

types of heat-treatment

definitions in EN 10052 apply

3.5

general purposes

purposes other than the special purposes mentioned in the Bibliography

3.6

standard grades

grades with a relatively good availability and a wider range of application

3.7

special grades

grades for special use and/or with limited availability

4 Designation and ordering

4.1 Designation of steel grades

The steel names and steel numbers (see Tables 1 to 4) were formed in accordance with EN 10027-1 and EN 10027-2 respectively

4.2 Designation to be used on ordering

The complete designation for ordering a product according to this document shall contain the following information

desired quantity,

product form (strip or sheet/plate),

where an appropriate dimensional standard is available (see Annex B) the number of the standard, plus any choice of requirements;

ıf there is no dimensional standard, the nominal dimensions and tolerances required,

type of material (steel);

number of this document,

steel name or steel number,

If for the relevant steel in the table for the mechanical properties more than one treatment condition is covered, the symbol for the desired heat treatment or cold worked condition;

desired process route (see symbols in Table 6),

If a verification of internal soundness is required, flat products with thickness ≥ 6 mm shall be tested in accordance with EN 10307;

if an inspection document is required, its designation according to EN 10204

EXAMPLE 10 plates of a steel grade with the name X5CrNi18-10 and the number 1.4301 as specified in EN 10088-2 with nominal dimensions, thickness = 8 mm, width = 2000 mm, length = 5000 mm; tolerances on dimensions, shape and mass as specified in EN 10029 with thickness tolerance class A and flatness tolerance class N, in process route 1D (see Table 6), inspection document 3.1 as specified in EN 10204

10 plates EN 10029-8A x 2000 x 5000 Steel EN 10088-2 - X5CrNi18-10+1D Inspection document 3.1

or

10 plates EN 10029-8A x 2000 x 5000 Steel EN 10088-2 - 1.4301+1D Inspection document 3.1

5 Classification of grades

Steels covered in this document are classified according to their structure into

ferritic steels,

martensitic steels,

precipitation hardening steels,

austenitic steels,

austenitic-ferritic steels

See also Annex B to EN 10088-1

6 Requirements

6.1 Steelmaking process

Unless a special steelmaking process is agreed at the time of enquiry and order, the steelmaking process for steels conforming to this document shall be at the discretion of the manufacturer

6.2 Delivery condition

The products shall be supplied in the delivery condition agreed at the time of enquiry and order by reference to the process route given in Table 6 and, where different alternatives exist, to the treatment conditions given in Tables 7 to 11, 17 and 18 (see also Annex A)

6.3 Chemical composition

- **6.3.1** The chemical composition requirements given in Tables 1 to 4 apply with respect to the chemical composition according to the cast analysis
- **6.3.2** The product analysis may deviate from the limiting values for the cast analysis given in Tables 1 to 4 by the values listed in Table 5

6.4 Chemical corrosion properties

Referring to resistance to intergranular corrosion as defined in EN ISO 3651-2, for ferritic, austenitic and austenitic-ferritic steels the specification in Tables 7, 10 and 11 apply

NOTE 1 EN ISO 3651-2 is not applicable for testing martensitic and precipitation hardening steels

NOTE 2 The corrosion resistance of stainless steels is very dependant on the type of environment and can therefore not always be clearly ascertained through laboratory tests. It is therefore advisable to draw on the available experience of the use of the steels

6.5 Mechanical properties

6.5.1 The mechanical properties at room temperature as specified in Tables 7 to 11 apply for the relevant specified heat treatment condition. This does not apply to the process route 1U (hot rolled, not heat treated, not descaled)

If by agreement at the time of ordering the products are to be supplied in a non-heat-treated condition, the mechanical properties specified in Tables 7, 8, 9, 10 and 11 shall be obtained from reference test pieces which have received the appropriate heat treatment (simulated heat treatment)

For cold worked products, the tensile strength levels at ambient temperature as specified in Table 17 apply The available tensile strength levels in the cold worked condition are indicated in Table 19

Alternatively, cold worked products can be ordered according to their 0,2 %-proof strength as given in Tables 18 and 20

NOTE Austenitic steels are insensitive to brittle fracture in the solution annealed condition. Because they do not have a pronounced transition temperature, which is characteristic of other steels, they are also useful for application at cryogenic temperatures

6.5.2 The values in Tables 12 to 16 apply for the 0,2 %- and 1 %-proof strength at elevated temperatures

6.6 Surface quality

Slight surface imperfections, inherent in the rolling process, are permitted

When products are delivered in coil form, the degree and extent of such imperfections may be expected to be greater, due to the impractibility of removing short lengths of coil. For hot-rolled quarto-plates (symbol P in Tables 7 to 11), the requirements in EN 10163-2, class A2, apply unless otherwise agreed. For other products, where necessary, more precise requirements on surface quality may be agreed at the time of enquiry and order

6.7 Internal soundness

The products shall be free of internal defects which would exclude them from being used for their usual purpose. Ultrasonic testing of austenitic and austenitic-ferritic stainless steel flat products ≥ 6 mm may be agreed at the time of enquiry and order in accordance with EN 10307

6.8 Formability at room temperature

Cold formability may be verified by elongation in the tensile test

6.9 Dimensions and tolerances on dimensions and shape

The dimensions and the tolerances on dimensions and shape are to be agreed at the time of enquiry and order, as far as possible with reference to the dimensional standards listed in Annex B. EN 10029 shall normally only be applied for product form P (individually rolled plates, "quarto plates") and not for product form H (continuously rolled strip and plate), for which EN 10051 is to be applied. When applying EN 10029, thickness tolerance class B shall apply, unless specifically agreed otherwise at the time of enquiry and order

6.10 Calculation of mass and tolerances on mass

- **6.10.1** When calculating the nominal mass from the nominal dimensions the values given in EN 10088-1 shall be used as a basis for the density of the steel concerned
- **6.10.2** If the tolerances on mass are not specified in the dimensional standard listed in Annex B, they may be agreed at the time of enquiry and order

7 Inspection and testing

7.1 General

The appropriate process control, inspection and testing shall be carried out to ensure that the product complies with the requirements of the order

This includes the following

- suitable frequency of verification of the dimensions of the products,
- adequate intensity of visual examination of the surface quality of the products,
- appropriate frequency and type of test to ensure that the correct grade of steel is used

The nature and frequency of these verifications, examinations and tests is determined in the light of the degree of consistency that has been determined by the evidence of the quality system. In view of this, verifications by specific tests for these requirements are not necessary unless otherwise agreed

7.2 Agreement on tests and inspection documents

7.2.1 At the time of ordering the type of inspection document in accordance with EN 10204 may be agreed for each delivery

- 7.2.2 If it is agreed to issue a test report 2.2 in accordance with EN 10204:2004 it shall indicate the following information
- a) Information groups A, B and Z of EN 10168:2004,
- b) results of the cast analysis in accordance with the code numbers C71 to C92 in EN 10168:2004
- **7.2.3** If the issuing of an inspection certificate 3.1 or 3.2 according to EN 10204:2004 has been agreed, specific inspections according to 7.3 are to be carried out and the following information shall be given in the inspection document with the code numbers and details required by EN 10168:2004
- a) under 7.2.2 a),
- b) under 7.2.2 b),
- c) results of the mandatory tests marked in Table 21, second column, by "m";
- d) result of any optional test or inspections agreed at the time of enquiry and order.

7.3 Specific inspection and testing

7.3.1 Extent of testing

The tests to be carried out, either mandatorily (m) or by agreement (o) and the composition and size of the test units, and the number of sample products, samples and test pieces to be taken are given in Table 21

7.3.2 Selection and preparation of samples and test pieces

- **7.3.2.1** Sampling and sample preparation shall be in accordance with the requirements of EN ISO 14284 and EN ISO 377. In addition, the stipulations in 7.3.2.2 apply for the mechanical tests.
- **7.3.2.2** The test samples for the tensile test shall be taken in accordance with Figure 1 in such a way that they are located halfway between the centre and a longitudinal edge. If it has been agreed that impact tests shall be carried out, the test samples shall be taken from the same location

The samples shall be taken from products in the delivery condition. If agreed, the samples may be taken before flattening. For samples to be given a simulated heat treatment the conditions for annealing, hardening and tempering shall be agreed

7.3.2.3 Samples for the hardness test and for the resistance to intergranular corrosion test, where requested, shall be taken from the same locations as those for the mechanical tests. For direction of bending the test piece in the resistance to intergranular corrosion test, see Figure 2

7.4 Test methods

- **7.4.1** The chemical analysis shall be carried out using appropriate European Standards. The choice of a suitable physical or chemical analytical method for the analysis shall be at the discretion of the manufacturer The manufacturer shall declare the test method used if required
 - NOTE The list of available European Standards on chemical analysis is given in CR 10261
- **7.4.2** The tensile test at room temperature shall be carried out in accordance with EN 10002-1 taking into account the additional or deviating conditions specified in Figure 1, footnote a

The tensile strength, elongation after fracture and the 0,2 % proof strength shall be determined. In addition for austenitic steels only, the 1 %-proof strength shall be determined

- **7.4.3** If a tensile test at elevated temperature has been ordered, this shall be carried out in accordance with EN 10002-5. If the proof strength is to be verified, the 0,2 %-proof strength shall be determined, for ferritic, martensitic, precipitation hardening and austenitic-ferritic steels. In the case of austenitic steels, the 0,2 %-and the 1 %-proof strength shall be determined
- **7.4.4** If an impact test has been ordered, it shall be carried out in accordance with EN 10045-1 on test pieces with a V-notch. The average obtained from three test pieces is considered to be the test result (see also EN 10021)
- **7.4.5** The Brinell hardness test shall be carried out in accordance with EN ISO 6506-1, the Rockwell hardness test in accordance with EN ISO 6508-1, and the Vickers hardness test in accordance with EN ISO 6507-1
- 7.4.6 The resistance to intergranular corrosion shall be tested in accordance with EN ISO 3651-2
- **7.4.7** Dimensions and dimensional tolerances of the products shall be tested in accordance with the requirements of the relevant dimensional standards, where available

7.5 Retests

See EN 10021

8 Marking

- **8.1** Unless otherwise agreed in the order, with the exception mentioned in 8.4, each product shall be marked with the information given in Table 22
- **8.2** Unless otherwise agreed the method of marking and the material of marking in accordance to 8.1 shall be at the option of the manufacturer

Its quality shall be such that it shall be durable for at least one year in unheated storage under cover Corrosion resistance of the product shall not be impaired by the marking

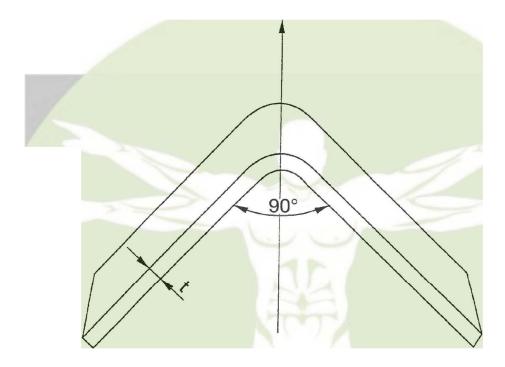
- **8.3** One surface of the product shall be marked. This will normally be the prime surface of products, where only one surface is guaranteed to the required standard
- **8.4** As an alternative, for items that are wrapped, bundled or boxed, or where the surface is ground or polished, the marking may be applied to the packaging, or to a tag securely attached to it

Type of test piece	Product thickness	piece in relat	axis of the test tion to the ection of rolling	Distance of the test piece from the rolled surface
	mm	< 300 mm	≥ 300 mm	mm
Tensile ^a	≤ 30			$\begin{cases} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{cases}$
		longitudinal	transverse	e 1
	> 30			
Impact ^b	> 10	longitudinal	transverse	> 10 > 2°

In cases of doubt or dispute the gauge length shall be L_o = 5,65 $\sqrt{S_o}$ for test pieces from products $t \ge 3$ mm For products $t \le 3$ mm thickness, non proportional test pieces with a gauge length of 80 mm and a width of 20 mm shall be used, but test pieces with a gauge length of 50 mm and a width of 12,5 mm may also be applied For products with a thickness 3 mm < $t \le 10$ mm, flat proportional test pieces with two rolled surfaces and a maximum width of 30 mm shall be used. For products with a thickness $t \ge 10$ mm, one of the following proportional test pieces shall be used

either a flat test piece with a maximum thickness of 30 mm; the thickness may be reduced to 10 mm by machining, but one rolled surface must be preserved

or a round test piece with a diameter of \geq 5 mm the axis of which shall be located as close as possible to a plane in the outer sixth of the product thickness t.


Longitudinal axis of the notch shall always be perpendicular to the rolled surface of the product

In the case of product thickness greater than 30 mm, the impact test piece may be taken at quarter of the product thickness

Key

1 Rolled surface

Figure 1 — Position of test pieces for flat products

Key

Rolling direction

Figure 2 — Direction of bending the test piece in relation to the rolling direction in the resistance to intergranular corrosion test

Table 1 — Chemical composition (cast analysis)^a of ferritic corrosion resisting steels

Steel designation													
Name		С	Si	Mn	P	S	N	Cr	Mo	Nb	Ni	Ti	Others
		max.	max.	max	max.	max.	max				_		
								Standard grad	des				
X2CrNi12	1.4003	0,030	1,00	1,50	0,040	0,015	0,030	10,5 to12,5			0,30 to 1,00		
X2CrTi12	1.4512	0,030	1,00	1,00	0,040	0,015		10,5 to 12,5				[6x (C+N)] to 0,65	
X6CrNiTi12	1.4516	0,08	0,70	1,50	0,040	0,015		10,5 to 12,5			0,50 to 1,50	0,05 to 0,35	
X6Cr13	1.4000	0,08	1,00	1,00	0,040	0,015 ^b		12,0 to 14,0					
X6CrAI13	1.4002	0,08	1,00	1,00	0,040	0,015 ^b		12,0 to 14,0				_	Al: 0,10 to 0,30
X6Cr17	1.4016	0,08	1,00	1,00	0,040	0,015 ^b		16,0 to 18,0					
X3CrTi17	1.4510	0,05	1,00	1,00	0,040	0,015 ^b		16,0 to 18,0				[4x(C+N) + 0,15]	
												to 0,80°	
X3CrNb17	1.4511	0,05	1,00	1,00	0,040	0,015		16,0 to 18,0		12 x C to 1,00			
X6CrMo17-1	1.4113	0,08	1,00	1,00	0,040	0,015 ^b		16,0 to 18,0	0,90 to 1,40				
X2CrMoTi18-2	1.4521	0,025	1,00	1,00	0,040	0,015	0,030	17,0 to 20,0	1,80 to 2,50			[4x(C+N) + 0,15]	
												to 0,80°	
								Special grad	es			_	
X2CrTi17	1.4520	0,025	0,50	0,50	0,040	0,015	0,015	16,0 to 18,0				0,30 to 0,60	
X1CrNb15	1.4595	0,020	1,00	1,00	0,025	0,015	0,020	14,0 to 16,0		C,20 to 0,60			
X2CrMo Ti17-1	1.4513	0,025	1,00	1,00	0,040	0,015	0,020	16,0 to 18,0	0,80 to 1,40			0,30 to 0,60	
X6CrNi17-1	1.4017	0,08	1,00	1,00	0,040	0,015		16,0 to 18,0			1,20 to 1,60	_	
X5CrNiMoTi15-2	1.4589	0,08	1,00	1,00	0,040	0,015		13,5 to 15,5	0,20 to 1,20		1,00 to 2,50	0,30 to 0,50	
X6CrMo Nb17 1	1.4526	0,08	1,00	1,00	0,040	0,015	0,040	16,0 to 18,0	0,80 to 1,40	[7x(C+V)+0,10] to 1,00			
X2CrNbZr17	1.4590	0,030	1,00	1,00	0,040	0,015		16,0 to 17,5		0,35 to 0,55			Zr ≥ 7x (C+N) +0,15
X2CrTiNb18	1.4509	0,030	1,00	1,00	0,040	0,015		17,5 to 18,5		[3xC+0,30] to 1,00		0,10 to 0,60	
X2CrMoTi29-4	1.4592	0,025	1,00	1,00	0,030	0,010	0,045	28,0 to 30,0	3,5 to 4,5		•	$[4x(C+N) + 0,15]$ to $0,80^{c}$	•

Elements not listed in this table shall not be intentionally added to the steel without the agreement of the purchaser except for finishing the cast. All precautions are to be taken to avoid the addition of such elements from scrap and other materials used in production which would impair mechanical properties and the suitability of the steel

Particular ranges of sulphur content may provide improvement of particular properties. For machinability a controlled sulphur content of 0,015 % to 0,030 % is recommended and permitted. For weldability, a controlled sulphur content of 0,008 % to 0,030 % is recommended and permitted. For polishability, a controlled sulphur content of 0,015 % max. is recommended

Stabilisation may be by use of titanium or niobium or zirconium. According to the atomic mass of these elements and the content of carbon and nitrogen, the equivalence shall be the following Nb (% by mass) = Zr (% by mass) = 7/4 Ti (% by mass)

Table 2 — Chemical composition (cast analysis)^a of martensitic and precipitation hardening corrosion resisting steels

						% by mass					
	С		Mn	Р	S	Cr	Cu	Mo	Nb	Ni	Others
			max	max.	max.						
				Standard grad	des (martensitic	steels) ^c				_	
1.4006	0,08 to 0,15	1,00	1,50	0,040	0,015 ^b	11,5 to 13,5				≤ 0,75	
1.4024	0,12 to 0,17	1,00	1,00	0,040	0,015 ^b	12,0 to 14,0					
1.4021	0,16 to 0,25	1,00	1,50	0,040	0,015 ^b	12,0 to 14,0					
1.4028	0,26 to 0,35	1,00	1,50	0,040	0,015 ^b	12,0 to 14,0				_	
1.4031	0,36 to 0,42	1,00	1,00	0,040	0,015 ^b	12,5 to 14,5				_	
1.4034	0,43 to 0,50	1,00	1,00	0,040	0,015 ^b	12,5 to 14,5				_	
1.4419	0,36 to 0,42	1,00	1,00	0,040	0,015	13,0 to 14,5		0,60 to 1,00		_	
1.4110	0,48 to 0,60	1,00	1,00	0,040	0,015 ^b	13,0 to 15, 0		0,50 to 0,80		_	V: ≤ 0,15
1.4116	0,45 to 0,55	1,00	1,00	0,040	0,015 ^b	14,0 to 15,0		0,50 to 0,80		_	V: 0,10 to 0,20
1.4122	0,33 to 0,45	1,00	1,50	0,040	0,015 ^b	15,5 to 17,5		0,80 to 1,30		≤ 1,00	
1.4313	≤ 0,05	0,70	1,50	0,040	0,015	12,0 to 14,0		0,30 to 0,70		3,5 to 4,5	N: ≥ 0,020
1.4418	≤ 0,06	0,70	1,50	0,040	0,015 ^b	15,0 to 17,0		0,80 to 1,50		4,0 to 6,0	N: ≥ 0,020
	•			Special grad	les (martensitic :	steels)					
1.4422	≤ 0,020	0,50	≤ 2,00	0,040	≤ 0,003	11,0 to 13,0	0,20 to 0,80	1,30 to 1,80		4,0 to 5,0	N: ≤ 0,020
1.4423	≤ 0,020	0,50	≤ 2,00	0,040	≤ 0,003	11,0 to 13,0	0,20 to 0,80	2,30 to 2,80		6,0 to 7,0	N: ≤ 0,020
•	•		Spe	ecial grades (pr	ecipitation harde	ening steels)					
1.4542	≤ 0,07	0,70	1,50	0,040	0,015 ^b	15,0 to 17,0	3,0 to 5,0	≤ 0,60	5 x C to 0,45	3,0 to 5,0	
1.4568	≤ 0,09	0,70	1,00	0,040	0,015	16,0 to 18,0				6,5 to 7,8 ^d	AI: 0,70 to 1,50
	1.4024 1.4021 1.4028 1.4031 1.4034 1.4419 1.4110 1.4116 1.4122 1.4313 1.4418	1.4006 0,08 to 0,15 1.4024 0,12 to 0,17 1.4021 0,16 to 0,25 1.4028 0,26 to 0,35 1.4031 0,36 to 0,42 1.4034 0,43 to 0,50 1.4419 0,36 to 0,42 1.4110 0,48 to 0,60 1.4116 0,45 to 0,55 1.4122 0,33 to 0,45 1.4313 \leq 0,05 1.4418 \leq 0,06 1.4423 \leq 0,020 1.4542 \leq 0,07	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	max 1.4006 0.08 to 0.15 1.00 1.50 1.4024 0.12 to 0.17 1.00 1.00 1.4021 0.16 to 0.25 1.00 1.50 1.4028 0.26 to 0.35 1.00 1.50 1.4031 0.36 to 0.42 1.00 1.00 1.4034 0.43 to 0.50 1.00 1.00 1.4419 0.36 to 0.42 1.00 1.00 1.4110 0.48 to 0.60 1.00 1.00 1.4116 0.45 to 0.55 1.00 1.00 1.4313 ≤ 0.05 0.70 1.50 1.4418 ≤ 0.06 0.70 1.50 1.4422 ≤ 0.020 0.50 ≤ 2.00 1.4423 ≤ 0.020 0.50 ≤ 2.00 Sp. 1.4542 ≤ 0.07 0.70 1.50	max max. Standard grad 1.4006 0,08 to 0,15 1,00 1,50 0,040 1.4024 0,12 to 0,17 1,00 1,50 0,040 1.4021 0,16 to 0,25 1,00 1,50 0,040 1.4028 0,26 to 0,35 1,00 1,50 0,040 1.4031 0,36 to 0,42 1,00 1,00 0,040 1.4034 0,43 to 0,50 1,00 1,00 0,040 1.4419 0,36 to 0,42 1,00 1,00 0,040 1.4110 0,48 to 0,60 1,00 1,00 0,040 1.4116 0,45 to 0,55 1,00 1,00 0,040 1.4313 ≤ 0,05 0,70 1,50 0,040 1.4418 ≤ 0,06 0,70 1,50 0,040 1.4423 ≤ 0,020 0,50 ≤ 2,00 0,040 Special grades (pr 1.4542 ≤ 0,07 0,70 1,50 0,040	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	max max. max. max. 1.4006 0,08 to 0,15 1,00 1,50 0,040 0,015 ^b 11,5 to 13,5 1.4024 0,12 to 0,17 1,00 1,00 0,040 0,015 ^b 12,0 to 14,0 1.4021 0,16 to 0,25 1,00 1,50 0,040 0,015 ^b 12,0 to 14,0 1.4028 0,26 to 0,35 1,00 1,50 0,040 0,015 ^b 12,0 to 14,0 1.4031 0,36 to 0,42 1,00 1,00 0,040 0,015 ^b 12,5 to 14,5 1.4034 0,43 to 0,50 1,00 1,00 0,040 0,015 ^b 12,5 to 14,5 1.4419 0,36 to 0,42 1,00 1,00 0,040 0,015 ^b 12,5 to 14,5 1.4419 0,36 to 0,42 1,00 1,00 0,040 0,015 ^b 13,0 to 15,0 1.4110 0,48 to 0,60 1,00 1,00 0,040 0,015 ^b 13,0 to 15,0 1.4116 0,45 to 0,55 1,00 1,00 0,040 0,015 ^b 15,5	C Mn max P max S max. Cr Cu Standard grades (martensitic steels) ^c 1.4006 0.08 to 0.15 1.00 1.50 0.040 0.015 ^b 11,5 to 13,5 1.4024 0.12 to 0.17 1.00 1.00 0.040 0.015 ^b 12,0 to 14,0 1.4021 0.16 to 0.25 1.00 1,50 0.040 0.015 ^b 12,0 to 14,0 1.4028 0.26 to 0.35 1.00 1,50 0.040 0.015 ^b 12,0 to 14,0 1.4031 0.36 to 0.42 1,00 1,00 0.040 0.015 ^b 12,5 to 14,5 1.4419 0.36 to 0.42 1,00 1,00 0,040 0.015 ^b 12,5 to 14,5 1.4110 0.48 to 0.60 1.00 1,00 0,040 0.015 ^b 13,0 to 15,0 1.4116 0.45 to 0.55 1.00 1,00 0,040 0.015 ^b 13,0 to 15,0 1.4313 ≤ 0.05 0.70 1,50 0,040 0.015 ^b 15,5 to 17,5 1.4313 ≤ 0	C Mn P S Cr Cu Mo Mo max. max.	C	C Mn max P max S max Cr Cu Mo Mo Mo Mb Mo Mb Mo Mb Mo Mb Mo Max Ni Max Islandard grades (martensitic steels)* 1.4006 0.08 to 0.15 1.00 1.50 0.040 0.015b Mo 11,5 to 13,5 1.50 to 14,0 ≤ 0.75 1.4024 0.12 to 0.17 1.00 1.00 0.040 0.015b Mo 12,0 to 14,0 1.00 1.00 1.00 0.040 0.015b Mo 12,0 to 14,0 1.00 1.00 1.00 1.00 0.040 0.015b Mo 12,0 to 14,0 1.00 1.00 1.00 0.040 0.015b Mo 12,0 to 14,0 1.00 1.00 1.00 0.040 0.015b Mo 12,0 to 14,0 1.00 1.00 1.00 1.00 0.040 0.015b Mo 12,5 to 14,5 1.00 1.00 1.00 0.040 0.015b Mo 12,5 to 14,5 1.00 1.00 1.00 0.040 0.015b Mo 12,5 to 14,5 1.00 1.00 0.040 0.015b Mo 12,5 to 14,5 1.00 0.60 to 1.00 1.00 1.00 1.00 0.040 0.015b Mo 13,0 to 15,0 0.60 to 1.00 0.60 to 1.00 1.00 1.00

Elements not quoted in this table shall not be intentionally added to the steel w thout the agreement of the purchaser except for finishing the cast. All precautions are to be taken to avoid the addition of such elements from scrap and other materials used in production which would impair mechanical properties and the suitability of the steel

Particular ranges of sulphur content may provide improvement of particular properties. For machinability a controlled sulphur content of 0,015 % to 0,030 % is recommended and permitted. For weldability, a controlled sulphur content of 0,015 % max. is recommended

^c Tighter carbon ranges may be agreed at the time of enquiry and order

For better cold deformability, the upper limit may be increased to 8,3 %

Table 3 — Chemical composition (cast analysis)^a of austenitic corrosion resisting steels

Steel designation								% by mass	6				
Name		С	Si	Mn	P max	S	N	Cr	Cu	Мо	Nb	Ni	Others
					1	S	tandard grades						
X10CrNi18-8	1.4310	0,05 to 0,15	<u>≤2,00</u>	≤ 2,00	0,045	≤ 0,015	≤ 0,11	16.0 to 19,0		≤ 0,80		6,0 to 9,5	
X2CrNiN18-7	1.4318	≤ 0,030	≤1,00	≤ 2,00	0,045	≤ 0,015	0,10 to 0,20	16.5 to 18,5		,00		6,0 to 8,0	
X2CrNi18-9	1,4307	≤ 0,030	≤ 1,00	≤ 2,00	0.045	≤ 0,015 ^b	≤ 0,11	17.5 to 19,5				8,0 to 10,5	
X2CrNi19-11	1.4306	≤ 0,030	≤1,00	≤ 2.00	0.045	≤ 0,015 ^b	≤ 0,11	18.0 to 20.0				10.0 to 12.0	
X2CrNiN18-10	1.4311	≤ 0,030	≤ 1,00	≤ 2,00	0,045	≤ 0,015 ^b	0,12 to 0,22	17.5 to 19,5				8,5 to 11,5	
X5CrNi18-10	1.4301	≤ 0,07	≤ 1,00	≤ 2,00	0,045	≤ 0,015 ^b	≤ 0,11	17.5 to 19,5				8,0 to 10,5	
X8CrNiS18-9	1.4305	≤ 0,10	≤ 1,00	≤ 2,00	0.045	0,15 to 0,35	≤ 0,11	17.0 to 19.0	≤ 1.00			8,0 to 10,0	
X6CrNiTi18-10	1.4541	≤ 0,08	≤ 1,00	≤ 2,00	0,045	≤ 0,015 ^b		17.0 to 19,0	,			9,0 to 12,0	Ti: 5 x C to 0,70
4CrNi18-12	1.4303	≤ 0,06	≤ 1,00	≤ 2,00	0,045	≤ 0,015 ^b	≤ 0,11	17.0 to 19,0				11,0 to 13,0	
2CrNiMo17-12-2	1.4404	< 0.030	< 1.00	< 2,00	0.045	≤ 0,015°	≤ 0,11	16.5 to 18,5		2,00 to 2,50		10,0 to 13,0	
2CrNiMoN17-11-2	1.4406	≤ 0.030	≤ 1,00	≤ 2.00	0.045	≤ 0,015 ^b	0.12 to 0.22	16.5 to 18,5		2.00 to 2.50		10.0 to 12.5	
CrNiMo17-12-2	1.4401	≤0,07	≤ 1,00	≤ 2,00	0,045	≤ 0,015 ^b	≤ 0,11	16.5 to 18,5		2,00 to 2,50		10,0 to 13,0	
CrNiMoTi17-12-2	1.4571	≤0,08	≤ 1,00	≤ 2,00	0.045	≤ 0,015 ^b		16.5 to 18,5		2,00 to 2,50		10,5 to 13,5	Ti: 5 x C to 0,7
CrNiMo17-12-3	1.4432	≤ 0,030	≤ 1.00	≤ 2,00	0.045	≤ 0,015 ^b	≤ 0.11	16.5 to 18,5		2,50 to 3,00		10,5 to 13,0	
CrNiMo18-14-3	1.4435	≤ 0,030	≤ 1,00	≤ 2,00	0,045	≤ 0,015 ^b	< 0.11	17.0 to 19,0		2,50 to 3,00		12,5 to15,0	
2CrNiMoN17-13-5	1.4439	≤ 0,030	≤ 1,00	≤ 2,00	0,045	≤ 0,015°	0,12 to 0,22	16,5 to 18,5		4,0 to 5,0		12,5 to 14,5	
1NiCrMoCu25-20-5	1.4539	< 0,020	≤ 0,70	≤ 2,00	0,030	< 0.010	< 0,15	19.0 to 21,0	1,20 to 2,00	4,0 to 5,0		24,0 to 26,0	
		0,020	= -,, -	_ = 1,00	0,000		Special grades	10.0 to 2 1,0	1,20 to 2,00	1,0 10 0,0		2 1,0 10 20,0	
5CrNi17-7	1.4319	< 0,07	< 1,00	< 2,00	0,045	< 0,030	_ ≤ 0,11	16.0 to 18,0				6,0 to 8,0	
5CrNiN19-9	1.4315	≤ 0,06	≤ 1,00	≤ 2,00	0,045	≤ 0,015	0,12 to 0,22	18.0 to 20,0				8,0 to 11,0	
1CrNi25-21	1.4335	< 0,020	< 0,25	< 2,00	0,025	< 0,010	< 0,11	24.0 to 26,0		< 0,20		20,0 to 22,0	
6CrNiNb18-10	1.4550	≤ 0,08	≤ 1,00	≤ 2,00	0,045	≤ 0,015		17.0 to 19,0			10 x C to 1,00	9,0 to 12,0	
1CrNiMoN25-22-2	1.4466	≤ 0,020	≤ 0,70	≤ 2,00	0,025	< 0,010	0,10 to 0,16	24.0 to 26,0		2,00 to 2,50		21,0 to 23,0	
6CrNiMoNb17-12-2	1.4580	≤0,08	≤ 1,00	≤ 2,00	0,045	≤ 0,015		16.5 to 18,5		2,00 to 2,50	10 x C to 1,00	10,5 to 13,5	
2CrNiMoN17-13-3	1.4429	≤ 0,030	≤ 1,00	≤ 2,00	0,045	≤ 0,015	0,12 to 0,22	16.5 to 18,5		2,50 to 3,00		11,0 to 14,0	
X3CrNiMo17-13-3	1.4436	≤ 0,05	≤ 1,00	≤ 2,00	0,045	≤ 0,015 ^b	≤ 0,11	16.5 to 18,5		2,50 to 3,00		10,5 to 13,0	
X2CrNiMoN18-12-4	1.4434	≤ 0,030	≤ 1,00	≤ 2,00	0,045	≤ 0,015	0,10 to 0,20	16.5 to 19,5		3,0 to 4,0		10,5 to 14,0	
X2CrNiMo18-15-4	1.4438	≤ 0,030	≤ 1,00	≤ 2,00	0,045	≤ 0,015 ^b	≤ 0,11	17.5 to 19,5		3,0 to 4,0		13,0 to 16,0	
X1CrNiMoCuN24-22-8*)	1.4652*)	≤ 0,020	≤ 0,50	2,00 to 4,0	0,030	≤ 0,005	0,45 to 0,55	23 0 to 25,0	0,30 to 0,60	7,0 to 8,0	_	21,0 to 23,0	
X1CrNiSi18-15-4	1.4361	≤ 0.015	3,7 to 4,5	≤ 2,00	0,025	≤ 0,010	≤ 0,11	16.5 to 18,5		≤ 0,20		14,0 to 16,0	
X11CrNiMnN19-8-6	1.4369	0,07 to 0,15	0,50 to 1,00	5,0 to 7,5	0,030	≤ 0,015	0,20 to 0,30	17.5 to 19,5			_	6,5 to 8,5	
X12CrMnNiN17-7-5	1.4372	≤ 0,15	≤ 1,00	5,5 to 7,5	0,045	≤ 0,015	0,05 to 0,25	16.0 to 18,0				3,5 to 5,5	
X2CrMnNiN17-7-5	1.4371	≤ 0,030	≤ 1,00	6,0 to 8,0	0,045	≤ 0,015	0,15 to 0,20	16.0 to 17,0				3,5 to 5,5	
X12CrMnNiN18-9-5	1.4373	≤ 0,15	≤ 1,00	7,5 to 10,5	0,045	≤ 0,015	0,05 to 0,25	17.0 to 19,0				4,0 to 6,0	
X8CrMnCuNB17-8-3	1.4597	≤ 0,10	≤ 2,00	6,5 to £,5	0,040	≤ 0,030	0,15 to 0,30	16.0 to 18,0	2 00 to 3,5	≤ 1,00		≤ 2,00	B: 0,0005 to 0,00
X1NiCrMoCu31-27-4	1.4563	≤ 0,020	≤ 0,70	≤ 2,00	0,030	≤ 0,010	≤ 0,11	26.0 to 28,0	0,70 to 1,50	3,0 to 4,0		30,0 to 32,0	
X1CrNiMoCuN25-25-5	1.4537	≤ 0,020	≤ 0,70	≤ 2,00	0,030	≤ 0,010	0,17 to 0,25	24.0 to 26,0	1,00 to 2,00	4,7 to 5,7		24,0 to 27,0	

Table 3 (continued)

Steel Name	designation e	Number	С	Si	Mn	P max	S	N	% by mass Cr	Cu	Мо	Nb	Ni	Others
X1CrN	NiMoCuN20-18-7	1.4547	≤ 0,020	≤ 0,70	≤ 1,00	0,030	≤ 0,010	0,18 to 0,25	19.5 to 20,5	0,50 to 1,00	3,0 to 7,0		17,5 to 18,5	
X1CrN	NiMoCuNW24-22-6	1.4659	≤ 0,020	≤ 0,70	2,00 to 4,0	0,030	≤ 0,010	0,35 to 0,50	23.0 to 25,0	1,00 to 2,00	5,5 to 6,5		21,0 to 23,0	W: 1,50 to 2,50
X1NiC	CrMoCuN25-20-7	1.4529	≤ 0,020	≤ 0,50	≤ 1,00	0,030	≤ 0,010	0,15 to 0,25	19.0 to 21,0	0,50 to 1,50	6,0 to 7,0		24,0 to 26,0	
X2CrN	NiMnMoN25-18-6-5	1.4565	≤ 0,030	≤ 1,00	5,0 to 7,0	0,030	≤ 0,015	0,30 to 0,60	24.0 to 26,0		4,0 to 5,0	≤ 0,15	16,0 to 19,0	

Elements not listed in this table shall not be intentionally added to the steel without the agreement of the purchaser except for finishing the cast. All appropriate precautions are to be taken to avoid the addition of such elements from scrap and other materials used in production which would impair mechanical properties and the su tability of the steel

Patented steel grade

Particular ranges of sulphur content may provide improvement of particular properties. For machinability a controlled sulphur content of 0,015 % to 0,030 % is recommended and permitted. For weldability, a controlled sulphur content of 0,008 % to 0,030 % is recommended and permitted. For polishability, a controlled sulphur content of 0,015 % max. is recommended

Table 4 — Chemical composition (cast analysis)^a of austenitic-ferritic corrosion resisting steels

S	Steel designation							% by	mass				
N	lame	Number	С	Si	Mn	Р	S	N	Cr	Cu	Мо	Ni	w
			max			max	max						
							Standard gra	des					
×	(2CrNiN23-4*)	1.4362*)	0,030	≤ 1,00	≤ 2,00	0,035	0,015	0,05 to 0,20	22,0 to 24,0	0,10 to 0,60	0,10 to 0,60	3,5 to 5,5	
×	(2CrNiMoN22-5-3 ^b	1.4462 ^b	0,030	≤ 1,00	≤ 2,00	0,035	0,015	0,10 to 0,22	21,0 to 23,0		2,50 to 3,5	4,5 to 6,5	
							Special grad	es					
7. ×	(2CrNiCuN23-4	1.4655	0,030	≤ 1,00	≤ 2,00	0,035	0,015	0,05 to 0,20	22,0 to 24,0	1,00 to 3,00	0,10 to 0,60	3,5 to 5,5	
r_x G	(2CrNiMoN29-7-2	1.4477)	0,030	≤ 0,50	0,80 to 1,50	0,030	0,015	0,30 to 0,40	28,0 to 30,0	≤ 0,80	1,50 to 2,60	5,8 to 7,5	
4,	(2CrNiMoCuN25-6-3	1.4507	0,030	≤ 0,70	≤ 2,00	0,035	0,015	0,20 to 0,30	24,0 to 26,0	1,00 to 2,50	3,0 to 4,0	6,0 to 8,0	
d x	2CrNiMoN25-7-4*)	1.4410*)	0,030	≤ 1,00	≤ 2,00	0,035	0,015	0,24 to 0,35	24,0 to 26,0		3,0 to 4,5	6,0 to 8,0	
Ľ X	2CrNiMoCuWN25-7-4	1.4501	0,030	≤ 1,00	≤ 1,00	0,035	0,015	0,20 to 0,30	24,0 to 26,0	0,50 to 1,00	3,0 to 4,0	6,0 to 8,0	0,50 to 1,00
مالم ام	2CrNiMoSi18-5-3	1.4424	0,030	1,40 to 2,00	1,20 to 2,00	0,035	0,015	0,05 to 0,10	18,0 to 19,0		2,50 to 3,0	4,5 to 5,2	

Elements not listed in this table shall not be intentionally added to the steel without the agreement of the purchaser except for finishing the cast. All appropriate precautions are to be taken to avoid the addition of such elements from scrap and other materials used in production which would impair mechanical properties and the suitability of the steel

By agreement, this grade can be delivered with a Pitting Resistance Equivalent Number (PRE = Cr + 3,3 Mo + 16 N, compare Table C.1 of EN 10088-1) greater than 34

^{*)} Patented steel grade

Table 5 — Permissible product analysis tolerances on the limiting values given in Tables 1 to 4 for the cast analysis

Element	Specified lim	its, cast analysis	Permissible tolerance ^a
	% b	by mass	% by mass
		≤ 0,030	+ 0,005
	> 0,030	≤ 0,20	± 0,01
Carbon	> 0,20	≤ 0,50	± 0,02
	> 0,50	≤ 0,60	± 0,03
		≤ 1,00	+ 0,05
Silicon	> 1,00	≤ 4,5	± 0,10
		≤ 1,00	+ 0,03
Manganese	> 1,00	≤ 2,00	± 0,04
	> 2,00	≤ 10,5	± 0,10
Phosphorus		≤ 0,045	+0,005
		≤ 0,015	+0,003
Sulphur	> 0,015	≤ 0,030	±0,005
	≥ 0 15	≤ 0 35	± 0 02
Nitrogen		≤ 0 11	± 0,01
	≥ 0 11	≤ 0,50	± 0,02
	≥ 10,5	≤ 15,0	± 0,15
Chromium	> 15,0	≤ 20,0	± 0,20
	> 20,0	≤ 30,0	± 0,25
Copper		≤ 1,00	± 0,07
	> 1,00	≤ 5,0	± 0,10
		≤ 0,60	± 0,03
Molybdenum	> 0,60	≤ 1,75	± 0,05
	> 1,75	≤ 8,0	± 0,10
Niobium		≤ 1,00	± 0,05
Nickel		≤ 1,00	± 0,03
	> 1,00	≤ 5,0	± 0,07
	> 5,0	≤ 10,0	± 0 10
	> 10,0	≤ 20,0	± 0,15
	> 20,0	≤ 32,0	± 0,20
Aluminium	≥ 0,10	≤ 0,30	± 0,05
	> 0 30	≤ 1,50	± 0,10
Boron		≤ 0,0050	± 0,0005
Titanium		≤ 0,80	± 0,05
Tungsten		≤ 2,50	± 0,05
Vanadium		≤ 0,20	± 0,03

If several product analysis are carried out on one cast, and the contents of an individual element determined lies outside the permissible range of the chemical composition specified for the cast analysis, then it is only allowed to exceed the permissible maximum value or to fall short of the permissible minimum value, but not both at the same time

Table 6 — Type of process route and surface finish of sheet, plate and strip^a

	Symbol ^b	Type of process route	Surface finish	Notes
Hot rolled	1U	Hot rolled, not heat treated, not descaled	Covered with rolling scale	Suitable for products which are to be further worked e.g. strip for rerolling
	1C	Hot rolled, heat treated, not descaled	Covered with rolling scale	Suitable for parts which will be descaled or machined in subsequent production or for certain heat-resisting applications
	1E	Hot rolled, heat treated, mechanically descaled	Free of scale	The type of mechanical descaling, e.g coarse grinding or shot blasting, depends on the steel grade and the product, and is left to the manufacturer s discretion, unless otherwise agreed
	1D	Hot rolled, heat treated, pickled	Free of scale	Usually standard for most steel types to ensure good corrosion resistance; also common finish for further processing. It is permissible for grinding marks to be present. Not as smooth as 2D or 2B
Cold rolled	2H	Work hardened	Bright	Cold worked to obtain higher strength level
	2C	Cold rolled, heat treated, not descaled	Smooth with scale from heat treatment	Suitable for parts which will be descaled or machined in subsequent production or for certain heat-resisting applications
	2E	Cold rolled, heat treated, mechanically descaled	Rough and dull	Usually applied to steels with a scale which is very resistant to pickling solutions. May be followed by pickling
	2D	Cold rolled, heat treated, pickled	Smooth	Finish for good ductility, but not as smooth as 2B or 2R
	2B	Cold rolled, heat treated, pickled, skin passed	Smoother than 2D	Most common finish for most steel types to ensure good corrosion resistance, smoothness and flatness. Also common finish for further processing. Skin passing may be by tension levelling
	2R	Cold rolled, bright annealed ^c	Smooth, bright, reflective	Smoother and brighter than 2B. Also common finish for further processing
	2Q	Cold rolled, hardened and tempered, scale free	Free of scale	Either hardened and tempered in a protective atmosphere or descaled after heat treatment
Special finishes	1G or 2G	Ground ^d	See footnote e	Grade of grit or surface roughness can be specified. Unidirectional texture, not very reflective
	1J or 2J	Brushed ^d or dull polished ^d	Smoother than ground See footnote e	Grade of brush or polishing belt or surface roughness can be specified. Unidirectional texture, not very reflective
	1K or 2K	Satin polish ^d	See footnote e	Additional specific requirements to a "J" type finish, in order to achieve adequate corrosion resistance for marine and external architectural applications Transverse R _a < 0,5 µm with clean cut surface finish
	1P or 2P	Bright polished ^d	See footnote e	Mechanical polishing. Process or surface roughness can be specified. Non-directional finish, reflective with high degree of image clarity
	2F	Cold rolled heat treated skin passed on roughened rolls	Uniform non- reflective matt surface	Heat treatment by bright annealing or by annealing and pickling
	1M	Patterned	Design to be	Chequer plates used for floors
	2M		agreed; 2 nd surface flat	A fine texture finish mainly used for architectural applications
	2W	Corrugated	Design to be agreed	Used to increase strength and/or for cosmetic effect
	2L	Coloured ^d	Colour to be agreed	
	1S or	Surface coated ^d		Coated with e.g. tin, aluminium

^a Not all process routes and surface finishes are available for all steels

b First digit: 1 = hot rolled, 2 = cold rolled

^c May be skin passed

One surface only, unless specifically agreed at the time of enquiry and order

Within each finish description the surface characteristics can vary, and more specific requirements may need to be agreed between manufacturer and purchaser (e.g. grade of grit or surface roughness)

Table 7 — Mechanical properties at room temperature of ferritic steels in the annealed condition (see Table A.1) and resistance to intergranular corrosion

Steel designation		Product form	Thickness		proof ngth	Tensile strength	Elongation a	after fracture	Resista intergranula	
Name	Number	a		$R_{p0,2}$	R _{p0,2}	R _m	A _{80 mm} ^b < 3 mm thick	A ^c ≥ 3 mm thick	In the delivery	in the
			mm	MPa)	MPa ^{*)}	MPa)	%	%	condition	conditio
			max	min	min		min	min		
				(long)	(tr.)		(long. + tr.)	(long + tr.)		
		!			Standard	grades				
X2CrNi12	1.4003	С	8	280	320		2	0		
		Н	13,5	•		450 to 650			no	no
		P	25°	250	280		1	8	1	
X2CrTi12	1.4512	С	8	210	220	380 to 560	-	.5		
		Н	13,5	-					no	no
X6CrNiTi12	1.4516	С	8	280	320					
		Н	13,5			450 to 650	2	3	no	no
		P	25°	250	280			0		
X6Cr13	1.4000	С	8	240	250					
		Н	13,5	220	230	400 to 600	1	9	no	no
		P	25°	220	230					
X6CrAl13	1.4002	С	8	230	250					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Н	13,5	210	230	400 to 600	1	7	n●	n●
		P	25°	210	230					
X6Cr17	1.4016	С	8	260	280		2	10		
		Н	13,5	240	260	450 to 600	1	8	yes	no
		P	25°	240	260	430 to 630	2	0		
X3CrTi17	1.4510	С	8	230	240	420 to 600	2	3	yes	yes
		Н	13,5							
X3CrNb17	1.4511	С	8	230	240	420 to 600	2	3	yes	yes
X6CrMo17-1	1 4113	С	8	260	280	450 to 630		8	yes	no
		Н	13,5							
X2CrMoTi18 2	1.4521	С	8	300	320	420 to 640				
		Н	13,5	280	300	400 to 600	2	0	yes	yes
		P	12	280	300	420 to 620				
		!			Special (ı			
X2CrTi17	1.4520	С	8	180	200	380 to 530	2	4	yes	yes
X1CrNb15	1.4595	С	8	210	220	380 to 560	2	:5	yes	yes
X2CrMoTi17 1	1.4513	С	8	200	220	400 to 550	2	3	yes	yes
X6CrNi17 1	1.4017	С	8	330	350	500 to 750	1	2	yes	no
X5CrNiMoTi15-2	1.4589	С	8	400	420	550 to 750	 	6	yes	yes
		Н	13,5	360	380	1	1	4	yes	yes
X6CrMoNb17-1	1.4526	С	8	280	300	480 to 560		5	yes	yes
X2CrNbZr17	1.4590	С	8	230	250	400 to 550		3	yes	yes
X2CrTiNb18	1.4509	С	8	230	250	430 to 630		8	yes	yes
X2CrMoTi29-4	1.4592	С	- 8	430	450	550 to 700	 	0	yes	yes

C = cold rolled strip; H = hot rolled strip; P = hot rolled plate

Values apply for test pieces with a gauge length of 80 mm and a width of 20 mm. Test pieces with a gauge length of 50 mm and width of 12,5 mm can also be used

When tested according to EN ISO 3651-2

For thicknesses above 25 mm the mechanical properties can be agreed

 $^{^{\}circ}$ $\,$ Values apply for test pieces with a gauge length of 5,65 $\, \text{VS}_{\circ}$

 $^{1 \}text{ MPa} = 1 \text{ N/mm}^2$

Table 8 — Mechanical properties at room temperature of martensitic steels in the heat-treated condition (see Table A.2)

Steel designation		Product form ^a	Thick- ness	Heat- treat-	Har	dness ^c	0,2 %- proof	Tensile strength	Elongation a	after fracture	Impact energy (ISO-V)	Ha	irdness
Name	Number			ment- condi- tion ^b		HV	strength R _{p0.2}	R _m	A _{80 mm} ^d < 3 mm thick	A e ≥ 3 mm thick	KV > 10 mm thick	HRC	HV
			mm max.		n	nax	MPa ^{*)} min	MPa ⁾	% min	% min	J min		
									(long. + tr.)	(long.+tr.)			
	1	_					Standar	d grades					
X12Cr13	1.4006	С	8	+A	90	200		max. 600	2	20			
		H	13,5							_			
		P .9	75	+QT550			400	550 to 750		5	by agreement		
V450 40	4 400 4			+QT650		020	450	650 to 850		2			
X15Cr13	1.4024	С	8	+A	90	200		max. 650		20			
		<u>Н</u> Р	13,5	+A	90	200		max. 650	-	20	h	_	
		P P	75 75	+A +QT550			400	550 to 750	1	5	by agreement	_	
		P P	75 75	+QT650 +QT650			400 450			2			
X20Cr13	1.4021	C	3	+QT			450	650 to 850	 	2		44 to 50	440 to 530
A20CI 13	1.4021		8	+Q1	95	225		max. 700	+	15		44 10 50	440 (0 550
		Н	13,5	**	33	223		max. 700	'	3			
		P · 9	75	+QT650			450	650 to 850	+	2	by agreement	_	
		r	75	+QT750			550	750 to 950		0	by agreement		
X30Cr13	1.4028	С	3	+QT			330	750 10 950		0		45 to 51	450 to 550
7,000110	1.4020	C	8	+A	97	235		max. 740	1	15		43 (0 3)	400 10 000
		H	13,5	- '''	01	250		max. 7 to					
		P 9	75	+QT800			600	800 to 1000	1 1	0			
X39Cr13	1.4031	C	3	+QT				000 10 1000				47 to 53	480 to 580
		C	8	+A	98	240		max. 760	1	2			
		Н	13,5	_									
X46Cr13	1.4034	С	8	+A	99	245		max. 780	1	12			
		Н	13,5	_									
X38CrMo14	1.4419	С	3	+QT								46 to 52	450 to 560
		С	4	+A	97	235		max. 760	1	5			
		Н	6,5										
X55CrMo14	1.4110	С	8	+A	100	230		max. 850	1	2			
		Н	13,5										
		Р	75										
X50CrMoV15	1.4116	C	8	_ +A	100	230		max. 850	1	2			
	┙	Н	13,5										
X39CrMo17-1	1.4122	C	3	+QT					1			47 to 53	480 to 580
		С	8	+A	100	230		max. 900		2 —			
		Н	13,5										
X3CrNiMo13 4	1.4313	P ⁹	75	+QT780		-	630	780 to 980		5	70		
				+QT900			800	900 to 1100		1			
X4CrNiMo16-5-1	1.4418	P ₈	75	+QT840			660	840 to 1100	1	4	55		

Table 8 (continued)

Steel designat on		Product form ^a	Thick ness	Heat treat- ment-	Hardı	ness ^c	0,2 % proof strength	Tensile strength	Elongation a	after fracture	Impact energy (ISO-V)	Н	ardness
Name	Number		mm max.	condi- tion ^b	ma	эх	$R_{p0.2}$ MPa $^{*)}$ min	R _m MPa ^{*)}	A _{80 mm} d < 3 mm thick % min (long. + tr.)	A ^e ≥ 3 mm thick % min (long.+tr.)	KV > 10 mm thick J min	HRC	HV
							Special	grades	-				
X1CrNiMoCu12-5-2	1.4422	Н	13,5	+A	100	300	550	750 to 950		15	100		
		Р	75	+QT650			550	750 to 950		15	100		max. 300
X1CrNiMoCu12 7 3	1.4423	Н	13,5	+A	100	300	550	750 to 950		15	100		
		Р	75	+QT650			550	750 to 950		15	100		max. 300

a C = cold rolled strip; H = hot rolled strip; P = hot rolled plate

⁺A = annealed, +QT = quenched and tempered

Brinell or Vickers or Rockwell hardness is normally determined for product forms C and H in heat treatment condition A. The tensile test shall be carried out in referee testing

d Values apply for test pieces with a gauge length of 80 mm and a width of 20 mm; test pieces with a gauge length of 50 mm and a width of 12,5 mm may also be used

e Values apply for test pieces with a gauge length of 5,65 √S₀

f Plates may also be delivered in the annealed condition; in such cases the mechanical properties are to be agreed at the time of enquiry and order

⁹ For thicknesses above 75 mm, the mechanical properties can be agreed

 $^{1 \}text{ MPa} = 1 \text{ N/mm}^2$

Table 9 — Mechanical properties at room temperature of precipitation hardening steels in the heat treated condition (see Table A.3)

Steel designation		Product form ^a	Thick- ness	Heat- treatment condition ^b	0,2 %-proof strength	Tensile strength	Elongation a	after fracture
Name	Number				$R_{p0,2}$	R _m	A _{80 mm} ^c	\mathcal{A}^{d}
							< 3 mm thick	≥ 3 mm thick
			mm		MPa ^{*)}	MPa ^{*)}	%	%
			max		min		min	min
							(long. + tr.)	(long. + tr.)
				Spe	cial grade			
X5CrNiCuNb16-4	1.4542	С	8	+AT ^e		≤ 1275	5	5
				+P1300 ^f	1150	≥ 1300	3	3
				+P900 ^f	700	≥ 900	6	3
		Р	50	+P1070 ^g	1000	1070 to 1270	8	10
				+P950 ⁹	800	950 to 1150	10	12
				+P850 ⁹	600	850 to 1050	12	14
				+SR630 ^h		≤ 1050		
X7CrNiAI17-7	1.4568	С	8	+AT ^{e,i}		≤ 1030	1	9
				+P1450 ^f	1310	≥ 1450	2	2

a C = cold rolled strip; P = hot rolled plate

For spring-hard rolled condition see EN 10151

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

⁺AT = solution annealed; +P = precipitation hardened; +SR = strength relieved

Values apply for test pieces with a gauge length of 80 mm and a width of 20 mm; test pieces with a gauge length of 50 mm and a width of 12,5 mm can also be used

 $^{^{}m d}$ Values apply for test pieces with a gauge length of 5,65 $\sqrt{{
m S}_{o}}$

e Delivery condition

f Condition of application; other precipitation hardening temperatures may be agreed

g If ordered in the finally treated condition

h Delivery condition for further processing; final treatment according to Table A.3

Table 10 — Mechanical properties at room temperature of austenitic steels in the solution annealed condition (see Table A.4) and resistance to intergranular corrosion

Steel designation		Product form ^b	Thick- ness	0,2 %- proof strength	1 % - proof- strength	Tensile strength	Elongati fract		Impact (ISO			tance to ar corrosion ^h
Name	Number			R _{p0,2}	$R_{\rm p1,0}^{\rm c}$	R _m	A ₈₀ d, f	A ^{d, g}	K	/	in the	in the
				7 °p0,2	, ,b1'n	, Am	< 3 mm thick	≥ 3 mm thick	> 10 mr		delivery condition	sensitized condition
			mm	M	Pa ^{')}	MPa*)	%	%	J	J		
			max		nin	IVII a)	min	min	min	min		
			"""									
				(ti	r.) ^{d,e}		(tr.)	(tr.)	(long.)	(tr.)		
					Stan	dard grades						
X10CrNi18 8	1.4310	С	8	250	280	600 to 950	40	40			no	no
X2CrNiN18 7	1.4318	С	8	350	380	650 to 850	35	40				
		Н	13 5	330	370				90	60	yes	yes
		Pi	75	330	370	630 to 830	45	45				
X2CrNi18-9	1.4307	С	8	220	250	520 to 700						
		Н	13,5	200	240		45	45	100	60	yes	yes
		P ^j	7 5	200	240	500 to 700						
X2CrNi19-11	1.4306	С	8	220	250	520 to 700						
		Н	13 5	200	240		45	45	100	60	yes	yes
		P ₁	75	200	240	500 to 700						
X2CrNiN18 10	1.4311	С	8	290	320	_						
		Н	13,5	270	310	550 to 750	40	40	100	60	yes	yes
		Pi	75	270	310							
X5CrNi18-10	1.4301	С	8	230	260	540 to 750	45 ^k	45 ^k			_	
		Н	13,5	210	250	520 to 720			100	60	yes	no¹
		P ₁	7 5	210	250		45	45				
X8CrNiS18-9	1.4305	Pı	75	190	230	500 to 700	35	35			no	no
X6CrNiTi18 10	1.4541	С	8	220	250	520 to 720					_	
		Н	13 5	200	240		40	40	100	60	yes	yes
		P ₁	75	200	240	500 to 700						
X4CrNi18 12	1.4303	С	8	220	250	500 to 650	45	45			yes	no
X2CrNiMo17-12-2	1.4404	С	8	240	270	530 to 680	40	40			1	
		Н	13 5	220	260				100	60	yes	yes
		P ₁	75	220	260	520 to 670	45	45				
X2CrNiMoN17-11-2	1.4406	С	8	300	330						_	
		Н	13,5	280	320	580 to 7 80	40	40	100	60	yes	yes
		Pı	75	280	320							
X5CrNiMo17 12 2	1.4401	С	8	240	270	530 to 680	40	40				
		H	13,5	220	260				100	60	yes	no¹
VOC 1511 THE 10 0		Pi	75	220	260	520 to 670	45	45			1	
X6CrNiMoTi17-12-2	1.4571	С	8	240	270	540 to 690	40	40			_	
		H	13 5	220	260	500 . 070	40	40	100	60	yes	yes
		Pi	75	220	260	520 to 670	10	10				
X2CrNiMo17 12 3	1.4432	С	8	240	270	550 to 700	40	40	100	60		1100
		H	13,5	220	260	F00 4 070	45	45	100	60	yes	yes
V00-NENA-40-44-0	4.4405	P ₁	75	220	260	520 to 670	45	45			+	
X2CrNiMo18-14-3	1.4435	С	12.5	240	270	550 to 700	40	40	100	60	- 400	1100
		H	13 5	220	260	E20 +- 070	45	45	100	60	yes	yes
V00-bibM-bi47-49-5	1.4400	Pı	75	220	260	520 to 670	45	45				
X2CrNiMoN17 13 5	1.4439	С	8 -	290	320	500 to 700	35	35	100			1.00
		H	13,5	270	310	580 to 780	40	40	100	60	yes	yes
VANCO-MA-C OF OC 5	4.4500	Pi	75	270	310	F20 4 700	40	40			+	
X1NiCrMoCu25-20-5	1.4539	С	8	240	270	530 to 730	25	25	400	00		,
		H	13 5	220	260	500 /	35	35	100	60	yes	yes
	1	Pi	75			520 to 720						

Table 10 (continued)

Steel designation		Product form ^b	Thickness	proof-	1 % proof- strength	Tensile strength	Elongation a	after fracture	Impact (ISO			tance to ar corrosion ^h
Name	Number			R _{p0,2}	R _{p1.0} ^c	R _m	A ₈₀ d, f < 3 mm thick	A ^{d, g} ≥ 3 mm thick	K \ > 10 mr		in the delivery condition	in the sensitized conditi on
			mm	M	Pa*)	MPa*)	%	%	J	J		
			max		nin		min	min	min	min		
				(tr	.) ^{d,e}		(tr.)	(tr.)	(long)	(tr.)		
						ecial grades						
X5CrNi17-7	1.4319	С	3	230	260	550 to 750	45				yes	no ^l
		Н	6	230	260	550 to 750	45	45				
X5CrNiN19-9	1.4315	С	8	290	320							
		H	13 5	270	310	500 to 750	40	40	100	60	yes	no
	-	Pi	/5	270	310							
X1CrNi25 21	1.4335	Р	75	200	240	470 to 670	40	40	100	60	yes	yes
X6CrNiNb18-10	1.4550	C	8	220	250	520 to 720	4.5	4.5	46-		-	
		Н	13,5	200	240		40	40	100	60	yes	yes
		P ₁	75	200	240	500 to 700						
X1CrNiMoN25-22-2	1.4466	P ⁱ	75	250	290	540 to 740	40	40	100	60	yes	yes
X6CrNiMoNb17-12-2	1.4580	Pi	75	220	260	520 to 720	40	40	100	60	yes	yes
X2CrNiMoN17-13 3	1.4429	С	8	300	330		35	35			_	
		H	13,5	280	320	580 to 780			100	60	yes	yes
		P ⁱ	75	280	320		40	40				
X3CrNiMo17-13-3	1.4436	С	8	_ 240	270	550 to 700	40	40				
		H	13 5	220	260				100	60	yes	no
		Pı	75	220	260	530 to 730	40	40				
X2CrNiMoN18 12 4	1.4434	С	8	290	320	570 to 770	35	35			_	
		Н	13,5	270	310				100	60	yes	yes
		P,	75	270	310	540 to 740	40	40				
X2CrNiMo18-15-4	1.4438	С	8	240	270	550 to 700	35	35			_	
		Н	13,5	220	260				100	60	yes	yes
		Pı	75	220	260	520 to 720	40	40				
X1CrNiMoCuN24-22-8	1.4652	С	8	430	470	750 to 1000					_	
		Н	13 5	430	470	750 to 1000	40	40	100	60	yes	yes
		Р	15	430	470	750 to 1000						
X1CrNiSi18 15-4	1.4361	P ₁	75	220	260	530 to 730	40	40	100	60	yes	yes
X11CrNiMnN19 8-6	1.4369	С	4	340	370	750 to 950	35	35			yes	no
X12CrMnNiN17-7-5	1.4372	С	8	350	380		45	45			_	
		H	13,5	330	370	750 to 950			100	60	yes	no
	ļ	P _j	75	330	370		40	40				
X2CrMnNiN17-7-5	1.4371	С	8	300	330	650 to 850	45	45			-	
		H	13,5	280	320				100	60	yes	yes
	4 4070	P	75	280	320	630 to 830	35	35				
X12CrMnNiN18-9-5	1.4373	C	8	340	370	680 to 880	45	45	400		-	
		H	13 5	320	360	000 / 005	0.5	0.5	100	60 I	yes	no
h/00 h/ 0 h/2/7 0 5	4 4507	P ⁱ	75	320	360	600 to 800	35	35		<u> </u>		
X8CrMnCuNB17-8-3	1.4597	С	8	300	330	580 to 780	40	40	460		yes_	no
h		H	13,5	300	330	F00 /		4-	100	60	-	
X1NiCrMoCu31 27 4	1.4563	P ⁱ	75	220	260	500 to 700	40	40	100	60	yes	yes
X1CrNiMoCuN25-25-5	1.4537	P ⁱ	75	290	330	600 to 800	40	40	100	60	yes	yes
X1CrNiMoCuN20 18 7	1.4547	С	8	320	350	0504 050	35	35	400		4	
		H	13 5	300	340	650 to 850			100	60	yes	yes
		Pı	75	300	340		40	40				

Table 10 (continued)

Steel designation		Product form ^b	Thickness	0 2 % proof strength	1 % proof strength	Tensile strength	Elongation a	after fracture	Impact (ISO		Intergr	ance to ranular sion ^h
Name	Number			R _{p0,2}	R _{p1,0} ^c	R _m	A ₈₀ d, f < 3 mm thick	A ^{d, g} ≥ 3 mm thick	K \ > 10 mr		in the delivery condition	in the sensitized condition
			mm max	MF mi (tr.	in	MPa ¹	% min (tr.)	% min (tr.)	J min (long.)	J min (tr.)		
					Spe	ecial grades						
X1CrNiMoCuNW24 22 6	1.4659	P'	7 5	420	460	800 to 1000		40	100	60	yes	yes
X1NiCrMoCuN25-20-7	1.4529	P ₁	75	300	340	650 to 850	40	40	100	60	yes	yes
X2CrNiMnMoN25-18-6-5	1.4565	С	6									
		Н	10	420	460	800 to 950	30	30	120	90	yes	yes
		Р	40									

- Solution treatment may be omitted if the conditions for hot working and subsequent cooling are such that the requirements for the mechanical properties of the product and the resistance to intergranular corrosion as defined in EN ISO 3651 2 are obtained
- C = cold rolled strip; H = hot rolled strip; P = hot rolled plate
- ^c Only for guidance
- lf, in the case of strip in rolling widths < 300 mm, longitudinal test pieces are taken, the minimum values are reduced as follows proof strength minus 15 MPa, elongation for constant gauge length minus 5 %; elongation for proportional gauge length minus 2 %
- For continuously hot rolled products, 20 MPa higher minimum values of $R_{p0,2}$ and 10 MPa higher minimum values of $R_{p1,0}$ may be agreed at the time of enquiry and order
- Values apply for test pieces with a gauge length of 80 mm and a width of 20 mm; test pieces with a gauge length of 50 mm and a width of 12 5 mm can also be used
- $^{\mathrm{g}}$ Values apply for test pieces with a gauge length of 5,65 $\sqrt{\mathit{S}_{\mathrm{0}}}$
- h When tested according to EN ISO 3651-2

See NOTE 2 to 6.4

For thicknesses above 75 mm, the mechanical properties can be agreed

- For stretcher levelled material, the minimum value is 5 % lower.
 - Sensitization treatment of 15 min at 700 °C followed by cooling in air
-) 1 MPa = 1N/mm²

Table 11 — Mechanical properties at room temperature of austenitic-ferritic steels in the solution annealed condition (see Table A.5) and resistance to intergranular corrosion

Steel designation		Product form ^a	Thickness	0,2 %- proof strength	Tensile strength	Elongation a	after fracture	Impact e	-,		ance to ar corrosion ^f
Name	Number			R _{p0,2}	R_{m}	A_{80}	Α	KI	/		
						< 3 mm thick ^d	≥ 3 mm thick ^e	> 10 mn	n thick	in the delivery	in the sensitized
			mm	MPa ¹	MPa ^{*)}	%	%	J		condition	conditiong
			max	min		min	min				
				(tr.) ^{b,c}		(long.+ tr.)	(long.+tr.)	(long.)	(tr.)		
				Star	ndard grades						
X2CrNiN23-4	1.4362	С	8	450	650 to 850	20	20			yes	yes
		Н	13 5	400				100	60		
		P _p	75	400	630 to 800	25	25				
X2CrNiMoN22-5-3	1.4462	С	8	500	700 to 950	20	20			yes	yes
		Н	13,5	460		25	25	100	60]	
		P _µ	75	460	640 to 840	25	25	-			
	•			Spo	ecial grades		•			•	
X2CrNiCuN23 4	1.4655	С	8	420	600 to	20	20				
		Н	13 5	400	850			100	60	yes	yes
		P _µ	75	400	630 to 800	25	25	•			
X2CrNiMoN29-7-2	1.4477	С	8	650	800 to 1050	20	20			yes	yes
		Н	13,5	550	750 to 1000	20	20	100	60	, , ,	,
		Ph	75	550	ĺ						
X2CrNiMoCuN25-6-3	1.4507	С	8	550	750 ເບ 1000	20	20			yes	yes
		Н	13,5	530	1			100	60	1	
		P ^h	75	530	730 to 930	25	25	-			
X2CrNiMoN25-7-4	1.4410	С	8	550	750 to 1000	20	20			yes	yes
		Н	13,5	530				100	60		
		Ph	75	530	730 to 930	20	20				
X2CrNiMoCuWN25-7-4	1.4501	Ph	75	530	730 to 930	25	25	100	60	yes	yes
X2CrNiMoSi18-5-3	1.4424	С	8	450	700 to	25	25	100	60	yes	yes
		Н	13,5	•	900						-
		Ph	75	400	680 to 900						

a C = cold rolled strip; H = hot rolled strip; P = hot rolled plate

1 MPa = 1 N/mm²

b If, in the case of strip in rolling widths < 300 mm, longitudinal test pieces are taken, the minimum proof strength values are reduced by

^c For continuously hot rolled products, 20 MPa higher minimum values of R_{p0.2} may be agreed at the time of enquiry and order.

^d Values apply for test pieces with a gauge length of 80 mm and a width of 20 mm; test pieces with a gauge length of 50 mm and a width of 12 5 mm can also be used

^e Values apply for test pieces with a gauge length of 5,65 νS_o

f When tested according to EN ISO 3651-2

g See NOTE 2 to 6.4

 $^{^{\}rm h}$ $\,$ For thicknesses above 75 mm, the mechanical properties can be agreed

Table 12 — Minimum values for the 0,2 % proof strength of ferritic steels at elevated temperatures

Steel designation		Heat treatment condition		Mi	nimum 0,2	% proof s	trength, M	Pa ^{*)}	
Name	Number	а			at a ten	perature ((in °C) of		
			100	150	200	250	300	350	400
		Standa	rd grades						
X2CrNi12	1.4003	+A	240	235	230	220	215		
X2CrTi12	1.4512	+A	200	195	190	185	180	160	
X6CrNiTi12	1.4516	+A	300	270	250	245	225	215	
X6Cr13	1.4000	+A	220	215	210	205	200	195	190
X6CrAl13	1.4002	+A	220	215	210	205	200	195	190
X6Cr17	1.4016	+A	220	215	210	205	200	195	190
X3CrTi17	1.4510	+A	195	190	185	175	165	155	
X3CrNb17	1.4511	+A	230	220	205	190	180	165	
X6CrMo17-1	1.4113	+A	250	240	230	220	210	205	200
X2CrMoTi18-2	1.4521	+A	250	240	230	220	210	205	200
	•	Specia	l grades		•		•		
X2CrTi17	1.4520	١A	195	180	170	160	155		
X1CrNb15	1.4595	+A	200	195	190	185	180	160	
X6CrMoNb17-1	1.4526	+A	270	265	250	235	215	205	
X2CrNbZr17	1.4590	+A	230	220	210	205	200	180	
X2CrTiNb18	1.4509	+A	230	220	210	205	200	180	
X2CrMoTi29-4	1.4592	+A	395	370	350	335	325	310	

⁺A = annealed

¹ MPa = 1 N/mm²

Table 13 — Minimum values for the 0,2 % proof strength of martensitic steels at elevated temperatures

Steel designation		Heat		Mini	mum 0,2 %	%-proof str	ength, MF	Pa)	
		treatment condition a			at a temp	erature (ir	n °C) of		
Name	Number				200	250	300	350	400
		Star	ndard grad	es					
X12Cr13	1.4006	+QT650	420	410	400	385	365	335	305
X15Cr13	1.4024	+QT650	420	410	400	385	365	335	305
X20Cr13	1.4021	+QT650	420	410	400	385	365	335	305
X3CrNiMo13-4	1.4313	+QT780	590	575	560	545	530	515	
		+QT900	720	690	665	640	620		
X4CrNiMo16-5-1	1.4418	+QT840	660	640	620	600	580		

a +QT = quenched and tempered

Table 14 — Minimum values for the 0,2 % proof strength of precipitation hardening steels at elevated temperatures

Steel designation		Heat treatment condition	Mi		•	strength, Ne (in °C) of	ИРа ⁾
Name	Number		100	150	200	250	300
		Special grade					
		+P1070	880	830	800	770	750
X5CrNiCuNb16-4	1.4542	+P950	730	710	690	670	650
		+P850	680	660	640	620	600

¹ MPa = 1 N/mm²

Table 15 — Minimum values for the 0,2 %-and 1 %-proof strength of austenitic steels at elevated temperatures

Steel designation		Heat			M	nimum	0,2 %-ړ	proof st	rength,	MPa ⁵					Mir	nimum 1	%-pro	of stren	gth, MF	a ⁵		
Name	Number	treatment										a temper	ature (in	°C) of							_	
		conditiona	100	150	200	250	300	350	400	450	500	550	100	150	200	250	300	350	400	450	500	550
									indard c	rades												
X10CrNi18-8	1.4310	+AT	210	200	190	185	180	180					230	215	205	200	195	195				
X2CrNiN18-7	1.4318	+AT	265	200	185	180	170	165			_		300	235	215	210	200	195				
X2CrNi18-9	1.4307	+AT	147	132	118	108	100	94	89	85	81	80	181	162	147	137	127	121	116	112	109	108
X2CrNi19 11	1.4306	+AT	147	132	118	108	100	94	89	85	81	80	181	162	147	137	127	121	116	112	109	108
X2CrNiN18 10	1.4311	+AT	205	175	157	145	136	130	125	121	119	118	240	210	187	175	167	161	156	152	149	147
X5CrNi18-10	1.4301	+AT	157	142	127	118	110	104	98	95	92	90	191	172	157	145	135	129	125	122	120	120
X6CrNiTi18-10	1.4541	+AT	176	167	157	147	136	130	125	121	119	118	208	196	186	177	167	161	156	152	149	147
X4CrNi18-12	1.4303	+AT	155	142	127	118	110	104	98	95	92	90	188	172	157	145	135	129	125	122	120	120
X2CrNiMo17-12 2	1.4404	+AT	166	152	137	127	118	113	108	103	100	98	199	181	167	157	145	139	135	130	128	127
X2CrNiMoN17-11-2	1.4406	+AT	211	185	167	155	145	140	135	131	128	127	246	218	198	183	175	169	164	160	158	157
X5CrNiMo17 12 2	1.4401	+AT	177	162	147	137	127	120	115	112	110	108	211	191	177	167	156	150	144	141	139	137
X6CrNiMoTi17-12-2	1.4571	+AT	185	177	167	157	145	140	135	131	129	127	218	206	196	186	175	169	164	160	158	157
X2CrNiMo17-12-3	1.4432	+AT	166	152	137	127	118	113	108	103	100	98	199	181	167	157	145	139	135	130	128	127
X2CrNiMo18-14-3	1.4435	+AT	165	150	137	127	119	113	108	103	100	98	200	180	165	153	145	139	135	130	128	127
X2CrNiMoN17-13-5	1.4439	+AT	225	200	185	175	165	155	150				255	230	210	200	190	180	175			
X1NiCrMoCu25 20 5	1.4539	+AT	205	190	175	160	145	135	125	115	110	105	235	220	205	190	175	165	155	145	140	135
								Sp	ecial gr	ades												
X5CrNi17-7	1.4319	+AT	157	142	127	118	110	104	98	95	92	90	191	172	157	145	135	129	125	122	120	120
X5CrNiN19-9	1.4315	+AT	205	175	157	145	136	130	125	121	119	118	240	210	187	175	167	161	156	152	149	147
X1CrNi25-21	1.4335	+AT	150	140	130	120	115	110	105				180	170	160	150	140	135	130			
X6CrNiNb18-10	1.4550	+AT	177	167	157	147	136	130	125	121	119	118	211	196	186	177	167	161	156	152	149	147
X1CrNiMoN25-22-2	1.4466	+AT	195	170	160	150	140	135					225	205	190	180	170	165				
X6CrNiMoNb17 12 2	1.4580	+AT	186	177	167	157	145	140	135	131	129	127	221	206	196	186	175	169	164	160	158	157
X2CrNiMoN17-13-3	1.4429	+AT	211	185	167	155	145	140	135	131	129	127	246	218	198	183	175	169	164	160	158	157
X3CrNiMo17-13-3	1.4436	+AT	177	162	147	137	127	120	115	112	110	108	211	191	177	167	156	150	144	141	139	137
X2CrNiMoN18-12-4	1.4434	+AT	211	185	167	155	145	140	135	131	129	127	-	218	198	183	175	169	164	160	158	157
X2CrNiMo18-15-4	1.4438	+AT	172	157	147	137	127	120	115	112	110	108	206	188	177	167	156	148	144	140	138	136

Table 15 (continued)

						_			_		_		_			_						
X1CrNiMoCuN24-22-8	1.4652	+AT	350	320	315	310	300	295	295	285	280	275	390	370	355	345	335	330	330	320	310	305
X1CrNiSi18-15-4	1.4361	+AT	185	160	145	135	125	120	115				210	190	175	165	155	150				
X11CrNiMnN19-8-6	1.4369	+AT	295	260	230	220	205	185					325	295	265	250	230	205				
X12CrMnNiN17 7 5	1.4372	+AT	295	260	230	220	205	185					325	295	265	250	230	205				
X2CrMnNiN17-7-5	1.4371	+AT	275	235	190	180	165	145					305	265	220	205	180	165				
X12CrMnNiN18-9-5	1.4373	+AT	295	260	230	220	205	185					325	295	265	250	230	205				
X8CrMnCuNB17-8-3	1.4597	+AT	225	205	190	177	165	152	145	140	137	135	260	235	218	204	190	180	175	168	165	165
X1NiCrMoCu31-27-4	1.4563	+AT	190	175	160	155	150	145	135	125	120	115	220	205	190	185	180	175	165	155	150	145
X1CrNiMoCuN25-25-5	1.4537	+AT	240	220	200	190	180	175	170				270	250	230	220	210	205	200			
X1CrNiMoCuN20-18-7	1.4547	+AT	230	205	190	180	170	165	160	153	148		270	245	225	212	200	195	190	184	180	
X1CrNiMoCuNW24-22-6	1.4659	+AT	350	330	315	307	300	298	295	288	280	270	390	365	350	342	335	328	325	318	310	300
X1CrNiMoCuN25-20 7	1.4529	+AT	230	210	190	180	170	165	160				270	245	225	215	205	195	190			
X2CrNiMnMoN25-18-6-5	1.4565	+AT	350	310	270	255	240	225	210	210	210	200	400	355	310	290	270	255	240	240	240	230

⁺AT = solution annealed

^{) 1} MPa = 1 N/mm²

Table 16 — Minimum values for the 0,2 %-proof strength of austenitic-ferritic steels at elevated temperatures

Steel designation		Heat treatment	Minimu	m 0,2 % pro	oof strength	n, MPa ⁾ ,
Name	Number	condition ^a	a	t a tempera	ture (in °C)	of
				150	200	250
		Standard grades				
X2CrNiN23-4	1.4362	+AT	330	300	280	265
X2CrNiMoN22-5-3	1.4462	+AT	360	335	315	300
		Special grades		•		
X2CrNiCuN23-4	1.4655	+AT	330	300	280	265
X2CrNiMoN29-7-2	1.4477	+AT	500	460	430	400
X2CrNiMoCuN25-6-3	1.4507	+AT	450	420	400	380
X2CrNiMoN25- 7 -4	1.4410	+AT	450	420	400	380
X2CrNiMoCuWN25-7-4	1.4501	+AT	450	420	400	380
X2CrNiMoSi18-5-3	1.4424	+AT (t ≤ 20)	370	350	330	325
		+AT (20< t ≤ 75)	320	305	290	285
a +AT = solution annealed		1		•		

Table 17 — Tensile strength levels in the cold worked condition (process route 2H)

Symbol	Tensile strength ^{a,b}
	MPa ⁾
+C700	700 to 850
+C850	850 to 1000
+C1000	1000 to 1150
+C1150	1150 to 1300
+C1300	1300 to 1500

Intermediate tensile strength values may be agreed. Alternatively, the steels may be specified in terms of minimum 0,2 %-proof strength (see Tables 18 and 20) or hardness, but only one parameter can be specified in

¹ MPa = 1 N/mm²

Maximum product thickness for each tensile strength level decreases with the tensile strength. The maximum product thickness and remaining elongation are also dependent on the work hardening behaviour of the steel and the cold working conditions. Consequently, more exact information may be requested from the manufacturer

 $^{1 \}text{ MPa} = 1 \text{ N/mm}^2$

Table 18 — 0,2 %-proof strength levels in the cold worked condition (process route 2H)

Symbol	0,2 %-proof strength ^{a,b}					
	MPa					
+CP350	350 to 500					
+CP500	500 to 700					
+CP700	700 to 900					
+CP900	900 to 1100					
+CP1100	1100 to 1300					
a Intermediate proof strength values may be agreed						

Maximum product thickness for each proof strength level decreases with the strength

Table 19 — Available tensile strength levels of steel grades in the cold worked condition (process route 2H)

Steel designation		Availab	able tensile strength level			
Name	Number	+C700	+C850	+C1000	+C1150	+C1300
X6Cr17	1.4016	X	X			
X10CrNi18-8	1.4310	X	X	X	X	Xª
X2CrNiN18-7	1.4318		X	X		
X5CrNi18-10	1.4301	Х	Х	Х	Х	Х
X6CrNiTi18-10	1.4541	X	X			
X5CrNiMo17-12-2	1.4401	Х	Xª			
X6CrNiMoTi17-12-2	1.4571	Х	Χ			
		Special	grades			
X6CrNiNb18-10	1.4550	Х	X			
X12CrMnNiN17-7-5	1.4372		Х	Х	Х	Xp
X2CrMnNiN17-7-5	1.4371	Х	Х			
X12CrMnNiN18-9-5	1.4373	Х	Х			
X11CrNiMnN19-8-6	1.4369		Х	Х		
X8CrMnCuNB17-8-3	1.4597	Х	Х	Х		

For higher R_m-values see EN 10151

Higher values up to tensile strength level +C1500 may be agreed

¹⁾ 1 MPa = 1 N/mm²

Table 20 — Available 0,2 %-proof strength levels of steel grades in the cold worked condition (process route 2H)

Steel designation			Available 0,2 %-proof strength level								
Name	Number	P350	+CP500	+CP700	+CP900	+CP1 0					
Standard grades											
X6Cr17	1.4016	Х	Х								
X10CrNi18-8	1.4310		Х	Х	Х	Xª					
X2CrNiN18-7	1.4318		Х	Х							
X5CrNi18-10	1.4301	Х	Х	Х	Х	Х					
X6CrNiTi18-10	1.4541	Х	Х								
X5CrNiMo17-12-2	1.4401	Х	Xª								
X6CrNiMoTi17-12-2	1.4571	Х	Х								
		Specia	al grades								
X6CrNiNb18-10	1.4550	X	Χ								
X12CrMnNiN17-7-5	1.4372		X	×	X	X_p					
X2CrMnNiN17-7-5	1.4371		Х	Х							
X12CrMnNiN18-9-5	1.4373		Х	Х							
X11CrNiMn19-8-6	1.4369		Х	Х	Х	Х					
X8CrMnCuNB17-8-3	1.4597	Х	Х	×							

For higher $R_{\rm p0,2}$ values see EN 10151

^b Higher values up to proof strength level +CP1300 may be agreed

Table 21 — Tests to be carried out, test units and extent of testing in specific testing

Test	а	Test unit	Product form				
			Strip and sheet cut from strip (C, H) in rolling width Rolled plate (P) < 600 mm ≥ 600 mm	pieces per test sample			
Chemical analysis	m	Cast	The cast analysis is given by the manufacturer. ^b				
Tensile test at room temperature	m°	Same cast, same nominal thickness ± 10 %, same final treatment condition (i.e same heat treatment and/or same degree of cold deformation)	The extent of testing shall be agreed at the time of ordering 1 test sample from each coil a) Plates processed under identical conditions may be collected into a batch with a maximum total weight of 30000 kg comprising no more than 40 plates. One test sample per batch shall be taken from heat treated plates up to 15 m in length. One test sample shall be taken from each end of the longest plate in the batch where heat treated plates are longer than 15 m b) If the plate cannot be tested in batches, one test sample shall be taken from one end from heat treated plates up to 15 m long and one test sample shall be taken from each end of heat treated plates longer than 15 m	1			
Hardness test on martensitic steels ^d	m ^{e,f}		To be agreed at the time of ordering (see Table 8)				
Tensile test at elevated temperature	0	_	To be agreed at the time of ordering (see Tables 12 to 16)				
Impact test at room temperature	o ^g	-	To be agreed at the time of ordering (see Tables 8, 10 and 11)				
Resistance to intergranular	o ^h	_	To be agreed at the time of ordering if intergranular corrosion is a hazard				
corrosion			(see Tables 7, 10 and 11)				

Tests marked with a "m" (mandatory) shall be carried out as specific tests in all cases. Those marked with an "o" (optional) shall be carried out as specific tests only if agreed at the time of enquiry and order

b Product analysis may be agreed at the time of enquiry and order; the extent of testing shall be specified at the same time

Except for martensitic steels in heat treatment condition +A (see, however, footnote e)

Hardness test on annealed martensitic steels is to be performed on the product surface

Mandatory for heat treatment condition +A. However, in cases of dispute or at the manufacturer's discretion, the tensile test may be carried out.

f Mandatory for product form C in heat treatment condition +QT

For austenitic steels, the impact test is normally not carried out (see NOTE in 6. 5.1)

Test for resistance to intergranular corrosion is normally not carried out

Table 22 — Marking of the products

Marking of:	Products					
	with specific testing ^a	without specific testing ^a				
Manufacturer's name, trade mark or logo	+	+				
The number of this document	(+)	(+)				
Steel number or name	+	+				
Type of finish	(+)	(+)				
Cast number	+	+				
Identification number ^b	+	(+)				
Direction of rolling ^c	(+)	(+)				
Nominal thickness	(+)	(+)				
Nominal dimensions other than thickness	(+)	(+)				
Inspector's mark	(+)					
Customer's order No	(+)	(+)				

a Symbols in the table mean

- = the marking shall be applied;
- (+) = the marking shall be applied if so agreed, or at the manufacturer's discretion
 - = no marking necessary

^b If specific tests are to be carried out, the numbers or letters used for identification shall allow the product(s) to be related to the relevant inspection certificate

^c Direction of rolling is normally obvious from the shape of the product and the position of the marking. Marking may either be longitudinally applied by roller stamping or it may be near to one end of the piece and transverse to the rolling direction. A specific separate indication of the principal rolling direction will not normally be required, but may be requested by the customer

Annex A (informative)

Guidelines for further treatment (including heat treatment) in fabrication

- A.1 The guidelines given in Tables A.1 to A.5 are intended for hot forming and heat treatment
- A.2 Flame cutting may adversely affect edge areas; where necessary, they should be machined
- **A.3** As the corrosion resistance of stainless steels is only ensured with a metallically clean surface, layers of scale and annealing colours produced during hot forming, heat treatment or welding should be removed as far as possible before use. Finished parts made of steels with approximately 13 % Cr also require the best surface condition (e.g. polished) in order to achieve maximum resistance to corrosion

Table A.1 — Guidelines on the temperatures for hot forming and heat treatment ^a of ferritic corrosion resisting steels

Steel designation		Hot fo	rming	Heat treatment symbol	Anne	aling
Name		Temperature	Type of co		Temperature ^b	Type of co
		°C			°C	
			Standard grad	es		
X2CrNi12	1.4003			=	700 to 760	
X2CrTi12	1.4512				770 to 830	-
X6CrNiTi12	1.4516				790 to 850	-
X6Cr13	1.4000				750 to 810	-
X6CrAl13	1.4002	1100	air	+A	750 to 810	air, water
X6Cr17	1.4016	to			770 to 830	_
X3CrTi17	1.4510	800			770 to 830	
X3CrNb17	1.4511				790 to 850	_
X6CrMo17-1	1.4113				790 to 850	_
X2CrMoTi18-2	1.4521				820 to 880	
			Special grade	es		
X2CrTi17	1.4520			_	820 to 880	
X1CrNb15	1.4595				770 to 830	
X2CrMoTi17-1	1.4513				820 to 880	•
X6CrNi17-1	1.4017	1100	air	+A	750 to 810	air, water
X5CrNiMoTi15-2	1.4589	to			750 to 800	_
X6CrMoNb17-1	1.4526	800			800 to 860	_
X2CrNbZr17	1.4590				870 to 930	_
X2CrTiNb18	1.4509				870 to 930	_
X2CrMoTi29-4	1.4592				900 to 1000	_

^a Temperature of annealing shall be agreed for simulated heat-treated test-pieces

b If heat-treatment is carried out in a continuous furnace, the upper part of the range specified is usually preferred, or even exceeded

Table A.2 — Guidelines on the temperatures for hot forming and heat treatment ^a of martensitic corrosion resisting steels

Steel designation		Hot forming		Heat	Annealir	Annealing		Quenching	
Name	Number	Temperature °C	Type of cooling	treatment symbol	Temperature ^b	Type of cooling	Temperature ^b	Type of	Temperature °C
V420-42	4 4000	10	-			-	-0	cooling	C
X12Cr13	1.4006			+A	750 to 810				
			air	+QT550			950 to 1010	oil, air	700 to 780
		1		+QT650					620 to 700
X15Cr13	1.4024			+A	750 to 810				
				+QT550			950 to 1050	oil, air	700 to 780
				+QT650					660 to 700
X20Cr13	1.4021			+A	730 to 790				
				+QT			950 to 1050		200 to 350
				+QT650				oil, air	700 to 780
				+QT750			950 to 1010		620 to 700
X30Cr13	1.4028	1100		+A	730 to 790				
		to		+QT			950 to 1050	oil, air	200 to 350
		800		+QT800			950 to 1010		650 to 730
X39Cr13	1.4031	1	slow	+A	730 to 790				
			cooling	+QT			1000 to 1100	oil, air	200 to 350
X46Cr13	1.4034	1		+A	730 to 790				
X38CrMo14	1.4419			+A	750 to 830				
				+QT			1000 to 1100	oil, air	200 to 350
X55CrMo14	1.4110			+A	750 to 830				
				+QT			1000 to 1100	oil, air	200 to 350
X50CrMoV15	1.4116			+A	770 to 830				
X39CrMo17-1	1.4122	1		+A	770 to 830				
				+QT			1000 to 1100	oil, air	200 to 350
X1CrNiMoCu12-5-2	1.4422			+A	900 to 1000				
		1150		+QT800			900 to 1050	oil, air	600 to 640
X1CrNiMoCu12-7-3	1.4423	to	air	+A	900 to 1000				
		900		+QT800			900 to 1050	oil, air	600 to 640
X3CrNiMo13-4	1.4313	1		+QT780					560 to 640
				+QT900			950 to 1050	oil, air,	510 to 590
X4CrNiMo16-5-1	1.4418	1		+QT840			900 to 1000	water	570 to 650

Temperatures of annealing, quenching and tempering shall be agreed for simulated heat-treated test pieces

If heat treatment is carried out in a continuous furnace, the upper part of the range specified is usually preferred, or even exceeded

Table A.3 — Guidelines on the temperatures for hot forming and heat treatment ^a of precipitation hardening corrosion resisting steels

Steel designation		Hot forming		Heat treatment	Stress reli	Stress relieving		Solution annealing		
Name	Number	Temperature °C	Type of cooling	symbol	Temperature °C	Type of cooling	Temperature ^b °C	Type of cooling	Temperature °C	
				Spe	cial grades					
				+AT			1025 to 1055	air		
				+P850					4 h (610 to 630)	
X5CrNiCuNb16-4	1.4542	1150		+P900					1 h (590 to 610)	
		to	Air	+P950			1025 to 1055	air	1 h (580 to 600)	
		900		+P1070					1 h (540 to 560)	
			•	+P1300			-	,	1 h (470 to 490)	
				+SR630	≥ 4 h (600 to 660) ^c					
		-		ıAT			1030 to 1050	aır		
X7CrNiAl17-7	1.4568			+P1450			10 min		1 h (500 to	
							945 to 965	d	520)	

^a Temperatures of solution annealing shall be agreed for simulated heat-treated test pieces

If heat treatment is carried out in a continuous furnace, the upper part of the range specified is usually preferred, or even exceeded

^c After martensitic transformation. Solution annealing at 1025°C to 1055°C will be necessary before precipitation hardening

Quick cooling to ≤ 20 °C; cooling within 1 h to -70 °C; holding time 8 h; reheating in air to +20 °C

Table A.4 — Guidelines on the temperatures for hot forming and heat treatment ^a of austenitic corrosion resisting steels

Steel designation		Hot formi	ng	Heat treatment	Solut on annealing		
Name		Temperature °C	Type of cooling	symbol	Temperature ^{b,c,d} °C	Type of cooling	
		Stan	dard grades			_	
X10CrNi18-8	1.4310				1010 to 1090		
X2CrNiN18 7	1.4318	-		·	1020 to 1100	_	
X2CrNi18-9	1.4307	_		·	1000 to 1100	_	
X2CrNi19 11	1.4306	-		·	1000 to 1100	_	
X2CrNiN18-10	1.4311	_		·	1000 to 1100	_	
X5CrNi18 10	1.4301	4450			1000 to 1100		
X8CrNiS18-9	1.4305	- 1150		·	1000 to 1100	water, air ^e	
X6CrNiTi18 10	1.4541	- to	air	+AT	1000 to 1100	_	
X4CrNi18 12	1.4303	lo	air	TAI	1000 to 1100		
X2CrNiMo17 12 2	1.4404	850			1030 to 1110		
X2CrNiMoN17 11 2	1.4406				1030 to 1110	_	
X5CrNiMo17 12 2	1.4401				1030 to 1110		
X6CrNiMoTi17 12-2	1.4571	_		·	1030 to 1110		
X2CrNiMo17-12-3	1.4432	_			1030 to 1110	_	
X2CrNiMo18-14-3	1.4435	_			1030 to 1110		
X2CrNiMoN17-13-5	1.4439	_			1060 to 1140		
X1NiCrMoCu25-20-5	1.4539	_		·	1060 to 1140		
		Spe	cial grades				
X5CrNiN17 7	1.4319				1000 to 1100		
X5CrNiN19 9	1.4315				1000 to 1100		
X1CrNi25-21	1.4335				1030 to 1110		
X6CrNiNb18-10	1.4550				1020 to 1120		
X1CrNiMoN25-22-2	1.4466	44504-050			1070 to 1150		
X6CrNiMoNb17-12-2	1.4580	1150 to 850			1030 to 1110		
X2CrNiMoN17 13 3	1.4429				1030 to 1110		
X3CrNiMo17 13 3	1.4436				1030 to 1110		
X2CrNiMoN18 12 4	1.4434				1070 to 1150		
X2CrNiMo18-15-4	1.4438				1070 to 1150		
X1CrNiMoCuN24-22-8	1 4652	1200 to 1000			1150 to 1200	water, air °	
X1CrNiSi18-15-4	1.4361	_			1100 to 1160		
X11CrNiMnN19-8-6	1.4369	_			1000 to 1100		
X12CrMnNiN17-7-5	1.4372		air	+AT	1000 to 1100		
X2CrMnNiN17 7 5	1.4371	_			1000 to 1100		
X12CrMnNiN18 9 5	1.4373	1150 to 850			1000 to 1100		
X8CrMnCuNB17-8-3	1.4597				1000 to 1100		
X1NiCrMoCu31-27-4	1.4563	_			1070 to 1150	_	
X1CrNiMoCuN25-25-5	1.4537				1120 to 1180		
X1CrNiMoCuN20 18 7	1.4547	1200 to 1000			1150 to 1200		
X1CrNiMoCuNW24-22-6	1.4659				1140 to 1200		
X1NiCrMoCuN25 20 7	1.4529	1150 to 850		E	1120 to 1180		
X2CrNiMnMoN25-18-6-5	1.4565	1200 to 950			1120 to 1170		

^a Temperatures of solution annealing shall be agreed for simulated heat-treated test pieces

b Solution annealing may be omitted if the conditions for hot working and subsequent cooling are such that the requirements for the mechanical properties of the product and the resistance to intergranular corrosion as defined in EN ISO 3651-2 are obtained

c If heat treatment is carried out in a continuous furnace, the upper part of the range specified is usually preferred, or even exceeded

Lower end of the range specified for solution annealing should be aimed at the heat treatment as part of further processing, because otherwise the mechanical properties might be affected. If the temperature of hot forming does not drop below the lower temperature for solution annealing, a temperature of 980°C is adequate as a lower limit for Mo-free steels, a temperature of 1000°C for steels with Mo contents up to 3 % and a temperature of 1020°C for steels with Mo contents exceeding 3 %

Cooling sufficiently rapidly in order to avoid the occurrence of intergranular corrosion as defined in EN ISO 3651-2

Table A.5 — Guidelines on the temperatures for hot forming and heat treatment ^a of austenitic-ferritic corrosion resisting steels

Steel designation		Hot for	rming	Heat treatment	Solution annealing	
Name	Number	Temperature	Type of cooling	symbol	Temperature ^b	Type of cooling
		°C			°C	
			Standard grades			
X2CrNiN23-4	1.4362	1150 to 950	air	+AT	950 to 1050	water, air ^c
X2CrNiMoN22-5-3	1.4462			-	1020 to 1100	
	•		Special grades			
X2CrNiCuN23-4	1.4655				950 to 1050	
X2CrNiMoN29-7-2	1.4477	1150		-		
X2CrNiMoCuN25-6-3	1.4507	to	air	÷AT	1040 to 1120	water, air ^c
X2CrNiMoN25-7-4	1.4410	1000				
X2CrNiMoCuWN25-7-4	1.4501					
X2CrNiMoSi18-5-3	1.4424			-	1000 to 1100	

^a Temperatures of solution annealing shall be agreed for simulated heat-treated test pieces

^b If heat treatment is carried out in a continuous furnace, the upper part of the range specified is usually preferred or even exceeded

^c Cooling sufficiently rapidly in order to avoid precipitation

Annex B (informative)

Applicable dimensional standards

EN 10029, Hot rolled steel plates 3 mm thick or above - Tolerances on dimensions, shape and mass

EN 10048, Hot rolled narrow steel strip - Tolerances on dimensions and shape

EN 10051, Continuously hot rolled uncoated plate, sheet and strip of non alloy and alloy steels – Tolerances on dimensions and shape (includes amendment A1:1997)

EN 10258, Cold-rolled stainless steel narrow strip and cut lengths - Tolerances on dimensions and shape

EN 10259, Cold-rolled stainless steel wide strip and plate/sheet - Tolerances on dimensions and shape

Bibliography

- [1] EN 10028-7, Flat products made of steels for pressure purposes Part 7: Stainless steels
- [2] EN 10095, Heat resisting steels and nickel alloys
- [3] EN 10151, Stainless steel strip for springs Technical delivery conditions
- [4] EN 10163-1, Delivery requirements for surface condition of hot rolled steel plates, wide flats and sections Part 1: General requirements
- [5] EN 10302, Creep resisting steels, nickel and cobalt alloys
- [6] CR 10261, ECISS Information Circular 11 Iron and steel Review of available methods of chemical analysis

BS EN 10088-2:2005

BSI — British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions

It is the constant aim of BSI to improve the quality of our products and services We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also available from the BSI website at http://www.bsi-global.com

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration.

Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001.

Email: membership@bsi-global.com.

Information regarding online access to British Standards via British Standards Online can be found at http://www.bsi-global.com/bsonline.

Further information about BSI is available on the BSI website at http://www.bsi-global.com.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means—electronic, photocopying, recording or otherwise—without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained

Details and advice can be obtained from the Copyright & Licensing Manager. Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553. Email: copyright@bsi-global.com.

389 Chiswick High Road London

W4 4AL