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Abstract— This work introduces a wearable system to provide
situational awareness for blind and visually impaired people.
The system includes a camera, an embedded computer and a
haptic device to provide feedback when an obstacle is detected.
The system uses techniques from computer vision and motion
planning to (1) identify walkable space; (2) plan step-by-step
a safe motion trajectory in the space, and (3) recognize and
locate certain types of objects, for example the location of an
empty chair. These descriptions are communicated to the person
wearing the device through vibrations. We present results from
user studies with low- and high-level tasks, including walking
through a maze without collisions, locating a chair, and walking
through a crowded environment while avoiding people.

I. INTRODUCTION

We wish to design a system that assists local navigation for
blind and visually impaired people by providing (1) generic
feedback on obstacles and (2) descriptions of identified
useful objects.

According to the World Health Organization, approxi-
mately 285 million people worldwide are blind or visually
impaired (BVI) [1], with one person losing their vision every
minute. Visual impairment poses a number of challenges
related to mobility: BVI people find it difficult to map
the environment and move collision-free within it, even
with the help of canes or guide dogs. BVI individuals are
thus significantly less willing to travel independently [2].
Independence in daily activities for BVI people requires tools
to enable safe navigation. Cane users naturally sample their
immediate environment with physical contact, but in some
situations it can be desirable to avoid contact if possible, e.g.
when navigating among pedestrians or in quiet environments.

Computer vision can be used to enable purposeful nav-
igation and object identification. Purposeful navigation can
be defined as guided motion through space toward a desired
target while avoiding obstacles. The challenge is to robustly
process the sensor feedback from a wearable system and
to intuitively map the feedback to directions and semantic
descriptions of the environment that meet the needs and goals
of a BVI person. A natural option would be to produce an
audio stream that describes the space. However, audio feed-
back becomes indistinguishable in noisy environments and
can interfere with the perception of auditory environmental
cues on which BVI people depend for situational awareness.
Previous work on blind navigation proposed systems that
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Fig. 1: The wearable system enables a blind user to navigate
through a maze while avoiding collisions. Top left: Depth
camera and embedded computer with battery. Top right: A
blind user navigates a maze using the haptic feedback from
vibration motors; the walking trajectory is recorded by a
motion capture system. Bottom left: on-board RGB image
with an obstacle on the right-hand side. Bottom right: the
five vibration motors are visualized as blue (vibration off)
and red (vibration on) dots.

used backpacks to carry the computing units and relied
primarily on audible feedback. BVI users considered the size
and design of these solutions as too bulky and obtrusive and
the audio feedback as undesirable and restrictive [3]–[5]. BVI
users have expressed a strong preference for a miniaturized
design packaged in an unobtrusive solution. This limits the
choices in sensing, computation, and feedback mechanisms.

In this paper we develop an end-to-end wearable solution
to enable purposeful navigation that uses a portable depth-
camera to extract information about the local state of the
world, such as the range and direction of obstacles, the
direction of free space, and the identity and location of
target objects within a space (Fig. 1). The object detection
and recognition algorithm of the system assists the user
in navigating to objects like an empty chair. The solution
provides navigational cues through haptic feedback from
vibration motors worn around the torso.

Specifically, this paper contributes:

1) A wearable and unobtrusive vision-based system pro-
viding haptic feedback to enable purposeful navigation
for BVI people;

2) A real-time algorithm for segmenting the free space
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and mapping it to free-space motion instructions;
3) User studies demonstrating the system’s capabilities

of providing guided navigation through free space,
obstacle avoidance, and guidance to specific types of
target objects such as empty chairs.

II. RELATED WORK

Several recent papers have applied robotic techniques to
assistive safe navigation for people. The systems typically
include sensors, computation, and feedback components, and
provide the functions of either global frame localization [6],
local frame obstacle detection/avoidance [7], or both [8]–
[10].

A cane-mounted prototype estimates the pose of a user
walking inside a building with a known map [6]. The sensing
package includes a 3-axis gyroscope, a 2D laser scanner, and
a foot-mounted pedometer. The sensing data is transferred
wirelessly to a portable laptop computer for processing.
Although the system provides no user feedback, it is a
step towards indoor global frame localization in combination
with local obstacle detection through a white cane. In a
different study, the data from a stationary laser scanner steers
a user through a room using vibration motors [7]. A planar
laser scanner is used to detect obstacles and trace moving
pedestrians in the environment. The data is processed on a
controller PC and mapped to eight vibration motors through
various actuation patterns. The system focuses on local
obstacle avoidance and takes moving objects into account.
Users in that study could respond to the vibrations within 1.9
s to avoid obstacles in the environment. Another system [8],
[11] considers both global frame localization and local frame
navigation and uses a tactile feedback vest to deliver navi-
gation cues. An RGB-D camera provides a 3D point cloud
and an IMU provides initial orientation. The point cloud is
downsampled into a representation of a 3D voxel grid map
and added to the global frame using the estimated visual
odometry algorithm [12]. An occupancy map is established,
and the D∗-Lite planning algorithm [13] is used to generate
four navigation cues, including “straight,” “stop and scan,”
“turn left,” and “turn right.” All computations were done
on a laptop computer carried in a backpack. In addition
to wearable systems, robotic walkers [9], [14] have been
developed to provide walking assistance to blind users. A
robotic walker [9] estimates egomotion and detects obstacles
such as curbs, staircases and holes by two planar laser
range finders, continuously tilted by a servo motor to obtain
the 3D point cloud for indoor and outdoor environments.
A controller module issues directions such as “straight”,
“left”, “right.” The human users’ reaction times to four
different vibration signals are 0.87 s on average. The authors
suggest that their solution requires less traveling time and
distance to reach the goal. The perception and computation
components for self-driving cars is also used to develop a
driver assistance system for blind people to independently
operate an automobile [10]. The system includes passive
and adaptive controlling software and non-visual vibrotactile
motors positioned in gloves, beneath the thighs, and on
the back of the driver. There have been other attempts of
helping BVI communities using RGB-D sensors [15]–[17].

We refer the reader to [4], [18], [19] for other aspects of safe
navigation.

Our system builds on the work of Stixel World [20]–
[23]. Stixel World represents the scene using a few upright
objects on the ground plane. The computation includes
dividing the input image into a set of vertical columns called
’sticks’, and searching for regions that can be immediately
reached without collision. There have been a few variations,
including allowing multiple segments along columns and
combining nearby segments for better and more meaningful
segmentation [22]. Recently [23] proposed a 4-layer compact
representation for street view, encoding semantic classes
including ground, pedestrians, vehicles, buildings, and sky.

In indoor environments, useful objects such as chairs and
tables can be detected by their 3D geometry. Under the
Manhattan world assumption [24], detection of the ground
plane from Stixel World allows the efficient localization of
knee-or waist-height objects, enabling real-time detection of
a certain category of objects on mobile platforms.

Our system builds on this prior work and contributes:
1) A miniaturized device that estimates the local state

of the world and divides point cloud data into free
space and obstacles. This enables a blind user to
walk through complex environments such as mazes
or hallways without collisions. To our knowledge, no
previously developed wearable system achieves this
functionality.

2) A system that uses depth information from a moving
camera to provide on-board object detection in real-
time. This can be used to localize a target object, for
example an empty chair. Prior work, such as Sliding
Shape [25], assumed datasets with static depth and
unconstrained computational resources.

3) Unobtrusive haptic feedback is given to the user
through a belt with vibration motors while not over-
loading the user’s sensory capabilities.

4) A user study showing BVI people able to complete
maze-navigation, chair-finding and path-following
tasks. Most experiments carried out in previous work
were only evaluated using blindfolded sighted users.

III. SYSTEM DESCRIPTION

The system is designed in a serial architecture consisting
of three stages: perception, planning, and human-robot in-
teraction (Fig. 2). In the following, we first introduce the
system, including the requirements and assumptions made.
Next, we detail each stage of the system architecture and its
subcomponents.

Fig. 2: System overview.
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A. System Requirements
The user requirements are:
1) A miniaturized and compact package that is portable

and wearable;
2) Socially unobtrusive form;
3) Low cost;
4) Long battery life through low power consumption;
5) Intuitive feedback to the user, requiring minimum

training time.
The functional requirements are
1) High frame rate, low latency, and high reliability;
2) Efficient feature and environment recognition;
3) On-board computation over video streams.

These functional requirements can be achieved with many
sensors and extensive computation. However, there are trade-
offs between sensing, computation, and system usability.
While users require compactness and acceptable battery life,
minimizing cost and power consumption at the cost of
increased latency and less sophisticated recognition schemes
is detrimental to a full-fledged user experience. Thus, in this
work, we propose a system that balances these requirements.

B. Assumptions
We assume an indoor environment, where the main scene

surfaces, i.e. the ground and the walls, follow the Manhattan
world assumption [24]. The objects of interest, such as
chairs, tables and other furniture, are adjacent to the ground
plane. We use pre-trained models for the objects we want
to recognize, based on their distinct geometry. The object
classes include “chair,” “table,” “stair up,” “stair down,” and
“wall”. We assume that the ground plane can initially be
observed and that the height and rotation of the sensor
remain constant when the ground plane cannot be seen. All
computation is performed on board with real-time detection
and feedback.

C. System Overview
The system architecture and key capabilities of the system

are shown in Fig. 2. Environment sensing is achieved through
a structured light camera, which provides a point cloud that
represents the measured depth of the field of view. This
technology works best indoors and on non-reflective, non-
absorptive surfaces, but it suffers from exposure to direct
sunlight when facing windows or other transparent structures.
This depth sensor technology is best suited for detecting
unstructured walls without textures. The depth-sensor and
the embedded computer are disguised as a fake SLR camera
within a leather case.

The hardware overview of all the system components
is given in Fig. 3. The components communicate using
the LCM (Lightweight Communications and Marshaling)
package [26]. The algorithms are implemented in C++ with
OpenCV and the Point Cloud Library (PCL).

D. Perception
Independent navigation for a BVI person requires the

indication of safe walking regions, drop-offs, ascents or
descents, trip hazards, obstacles, overhangs, or boundaries,
whereas semantic descriptions improve situational awareness

Fig. 3: Hardware overview.

of the surroundings for everyday activities. This perceptual
information is sufficient for basic planning such as avoiding
frontal collisions and providing simple motion trajectories.
Object recognition is needed for steering the user toward a
target object.

The perception capabilities of our system consist of two
components: (1) finding the free space, detecting obstacles
and corresponding distances, and (2) recognizing the type of
object.

The following describes our solutions to these two aspects
of perception:

1) Free Space Parsing:
a) Challenges: The inputs from depth sensors and

cameras are usually subject to pitch and roll in a walking
scenario. This is undesired for detecting the ground height
and walkable free space. The typical solution is to integrate
IMU observations along with vision inputs. This solution
fails to obtain correct ground height and ground-to-image
transformation when a user stands on a ramp, in front of a
staircase, or next to a drop-off.

b) Algorithm: We use a variant of the Stixel World [20]
to compute the free space. The parsing of the free space is
shown in Algorithm 1.

The surface normal step of Algorithm 1 is estimated using
the integral images implementation in the PCL. The system

Algorithm 1 Free Space Parsing

procedure FREESPACEPARSE(C)
Input: Point cloud C

Estimate surface normal N
Find ground plane G from the Stixel World, and

estimate normal vector ng of the ground plane
Rotate C based on ng , obtain ground height hg to

translate the point cloud C
Compute ground-to-image frame transformation Tg

Find the occupancy grid, and extract the free space and
distances do to objects/obstacles

Output: Free, walkable space
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can trace ground height changes when the user approaches
a stair or an object such as a desk. The point cloud C is
then transformed according to the estimated ground and an
occupancy map is obtained (see Fig. 4).

Fig. 4: Left: free space parsing. Right: detecting chairs.
For each sub-figure, we show the point cloud of ground
plane as green regions and each blue line representing
the free space in each direction. Top-left: RGB or depth
visualization, where pink rectangles are detected obstacles,
and blue rectangles are region proposals of objects. Top-right
shows the projected occupancy grid map.

c) Implementation: We choose to use a resolution of
320 × 240 at 10 frames per second for the point cloud C.
This resolution allows effective ranges of about 3 meters
when the camera is positioned on the user’s chest facing
forward and angled about 45◦ downward from the viewpoint
of the user. The obstacle directions and distances can be
used in full scale sliding window search to achieve efficient
computation for object recognition, which is described in the
next section.

2) Object Recognition:
a) Challenges: On the hardware side, the sensor resolu-

tion is limited by the requirement for on-board computation
on the wearable platform. Furthermore, the images observed
by the moving camera will generally be subject to motion or
out of focus blur, making it challenging for object recognition
from RGB imagery. It is also known that sliding window
classification is too computationally expensive for real-time
implementation due to the large search space.

b) Algorithm: We use a depth-based method that de-
tects the ground plane and accurately transforms the point
cloud. We search for the set of “known” objects that contain
horizontal surfaces. Algorithm 2 shows the object detection
algorithm.

Algorithm 2 Object Recognition using Depth

procedure OBJECTRECOGNITION(W, b)
Input: Outputs of Algorithm 1, weights matrix W , and bias

vector b
From Tg and do, generate region proposals R using

bounding cubes
for each region proposal ri in R do

Remove ground surfaces
Obtain and normalize feature vector xi

Compute score function by Wxi + b
Obtain the object class with the highest score

Output: Extract object class from all region proposals R

c) Implementation: An object region proposal is gener-
ated according to the ground-to-image frame transformation
Tg . For example, the region proposal for a chair is a bounding
cube of size 0.3 × 0.3 × 1.0m, see right image in Fig. 4.
The cropped depth map or RGB image patches are further
processed for object recognition. We use a feature vector
of 2 (vertical or horizontal) × 18 (height) and a linear
classifier for the object classes. The weights of matrix W
and bias vector b are pre-trained from training data, and the
dimensions are 36 × 5 and 1 × 5, respectively.

d) Object Scope: The target object classes include com-
mon objects that appear in engineered indoor environments
such as tables, chairs, lounges, and other types of furniture.
Although the current implementation does not recognize
smaller objects such as cups and pencils, adding them to the
system is a possible extension. For the purpose of navigation,
the key is to obtain from the point cloud data of a moving
camera the ground surfaces so that the physical heights
of vertical and horizontal surfaces result in reliable feature
vectors.

E. Planning
Purposeful navigation requires task-relevant feedback from

free-space parsing and object recognition processes. Planning
includes the following behaviors [27]: (1) front collision
checks, (2) a trajectory library for possible walkable paths,
and (3) steering toward a goal. Multiple behaviors are
activated simultaneously in various tasks: the task of finding
a chair applies to behaviors (1) and (3), and the task of
tracing a tiled path uses behaviors (1) and (2) for planning
free, walkable space momentarily while avoiding obstacles.
The execution of each behavior is specific to different
human-robot interfaces, which are described in detail in the
following.

F. Human Interaction
Human interaction with our system can either occur

through a haptic array that vibrates at a suitable position on
the user’s body or through a braille display that allows the
user to feel the occupancy grid or object description with his
or her fingers. The feedback should avoid overwhelming the
users’ sensory and cognitive capacities, but provide enough
information to steer the user around obstacles or to a goal.

The communication between the computing unit and the
receiving unit occurs via wireless transmission. We im-
plemented it using bluetooth communication. The signal
receiver uses a microcontroller to parse the information and
actuate the haptic motors or braille display. The audio output
is synthesized by a text-to-speech engine.

1) Haptic Array: The haptic array is an elastic belt that
can be worn around the abdomen. It consists of five linear
resonating motors mounted within clips attached to the
belt (see Fig 3). The motors deliver feedback to the user
through pulses of varying strength and frequency. The haptic
feedback is tuned to ensure that the user can feel it: the
motors are placed with wide spacing of more than 10cm at
sensitive positions around the abdomen and pulsed with high
strength and frequency. The design of the haptic feedback for
an intuitive user experience is not the focus of this paper, but
the subject of an unpublished study.
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For both experimental tasks (maze navigation and chair-
finding), three of the five motors (middle, left, and right)
were activated. Users were instructed to interpret a vibration
as the presence of a detected obstacle. In the maze-navigation
task, the motors signaled when an obstacle was detected
within 1m; the left, middle, and right motors corresponded
to obstacles positioned −30◦, 0◦, and 30◦ from the sagittal
plane of the user, respectively. A lack of vibration indicated
free space.

In the chair-finding task, the vibration of the front motor
indicated the proximity of the chair or another obstacle. The
left or right motors vibrated only when an empty chair was
detected. A vibration by the left motor indicates that the
chair is towards the left side of the user, and vice versa. The
maximum amount of information sent to a user was 15 bits
per second: three signaled directions triggered at a rate of
five frames per second.

2) Braille Display: The braille display by Metec AG is
a handheld module with a 10-cell braille display on the top
surface. Each cell contains 4 rows and 2 columns of single
pins. The arrangement of the cells leads to a total of 8 rows
and 10 columns of single pins (see Fig. 3).

In the mode of obstacle distance description, each of the
10 columns encodes a different direction away from the user
towards the obstacles. The rows of each column indicate how
far away an obstacle is along that particular direction. The
range distances are matched to the settings in the haptic belt.
For object recognition, we encode four different object types
using one braille symbol per object type: o for obstacle, c
for chair, t for table, and a space for free space. The first
row of cells encodes long distance (> 1m), and the second
row encodes short distance.

IV. USER STUDIES

Since a white cane is the most commonly used mobility
aid for obstacle detection and local navigation, it is important
to identify the practical relevance of the proposed system
when used instead of or in concert with a cane. To this end,
we surveyed respondents on the importance of some common
mobility tasks, and the utility of a cane in performing them.
All 15 respondents were blind (9 congenitally) and used a
cane as a daily mobility aid.

The survey results (Table I) indicate that a cane can serve
well in tracing along walls, curbs, tactile tiles, or passing
entrances. Nevertheless, canes were rated of less utility in
finding an empty chair or avoiding contact with pedestrians
in crowded sidewalks and corridors or in other crowded
environments. Some users also reported being less willing
to enter crowded environments or social events with a cane
alone. We further observed during experiments that sighted
people rather than the cane users avoid the contact during
encounters.

We measured the effectiveness of the system for (a)
purposeful navigation of simple and complex paths, and (b)
target object localization in a cluttered environment. We have
conducted a total of 100 hours of experiments with the sys-
tem and traversed in aggregation several kilometers of indoor
terrain using this system. In order to evaluate the utility of
the system in various scenarios for the BVI community, we

TABLE I: Survey of common mobility tasks based on two
ratings: Importance (Imp.) of task for daily life (5 = very
important, 1 = not important) and utility (Uti.) of a cane to
perform the task (5 = greatest utility, 1 = no utility). All
survey results are gathered from 15 respondents except task
5 (10 respondents).

Tasks Importance Utility
1. Tracing along walls, curbs, stairs, 4.67 4.87
and other clues indoors and outdoors
2. Being able to use tactile tiles 3.8 4.93
3. Passing entrance, door, or narrow gates 4.6 4.6
4. Finding empty chairs in a crowded 5 1.29
public area
5. Avoiding contacts with other pedestrians 4.9 2.8
in crowded sidewalks and corridors
6. Avoiding contacts with other pedestrians 4.8 2.53
in crowded environments

conducted a user study with 11 blind users who had no prior
exposure to the system. Each session lasted 2 hours, with
some users returning for multiple sessions. Each participant
was fitted with an adjustable “pendant” hung around the neck
to hold the depth sensor and embedded computer, and an
adjustable haptic array belt around a comfortable location on
the upper abdomen. Reflective markers mounted on a helmet
were tracked by a ceiling-mounted motion capture system
(Vicon) to monitor time to completion, average walking
speed, collisions, and any failures. We also assessed the
users’ subjective experience with a questionnaire.

The users’ first task was to detect an obstacle in their path
and to shoreline along a wall. This task served as the user
training. The second task was the navigation test, conducted
in a series of three challenging maze-like enclosures, con-
taining 8-11 turns, and suitable for tracking with a motion-
capture system. The users did not know the shape of the
maze and had to find their way through the environment
using the system or their white cane. In the third task, we
placed several chairs in an open space defined by the walls of
the enclosure. The space contained empty chairs, occupied
chairs, and recycling bins as clutter objects. The task was to
identify and navigate to an empty chair. Finally, we tested
system performance with blind users following a tiled path
in a crowded real-world environment.

A. Obstacle Detection and Shorelining

Users walked forward into an open space until the system
signaled an upcoming obstacle, then reached forward to
physically “calibrate” their sense of distance from the wall
to the output of the system before returning to their point
of origin, shown in Fig. 5a. Next, users shorelined along
the inner perimeter of the enclosure, maintaining constant
distance and orientation with respect to the wall, shown in
Fig. 5b. These two tasks required that the users utilize both
the range and azimuth information provided by the system.
No white cane was used. Both trajectory visualizations
show that the users completed the tasks successfully without
collisions.

B. Maze-Navigation Task

The practical relevance of the maze trials is to enable
independent navigation in crowded environments, where
cane contacts are undesired. Such environments include

6537



(a) Obstacle Detection (b) Shorelining

Fig. 5: Initial BVI user training tasks of (a) obstacle detection
and (b) shorelining. The walking trajectories are recorded by
a motion capture system and color-coded for each user.

restaurants and other social events, in which blind users
often rely on human assistance rather than using a cane
independently.

The maze environments were 5.2m × 5.2m in size, with
a wall height of 124 cm (see Fig. 1). The paths were designed
to test safe traversal of an unpredictable path and consisted
of 8 to 11 turns, depending on the maze configuration.
There were no configurations with T-junctions. Each of the
five users traversed three maze configurations with similar
topology during each session (Fig. 6). For each maze type,
we recorded a reference trajectory traversed by a sighted
user. In each session, users traversed each maze configuration
using a white cane and using our system. Users were asked
to traverse each maze path twice, once in each direction, not
repeating any path/direction combination. Since some users
were invited for multiple sessions, we conducted a total of
9 sessions. This amounted to a total of 32 maze traversals.
For each trial, we measured the time to completion and the
number of minor and major collisions. Table II shows the
results.

TABLE II: User performance in a maze navigation task. The
speed was calculated by the trajectory length divided by the
time to completion. For comparision, a sighted user walked
each maze at an average speed of 0.7m/s. Major collisions
were defined as wall collisions during forward movements
without the user responding to the vibration signals. Minor
collisions were defined as other contacts that did not affect
users’ forward movements, typically due to the limited field
of view of the depth camera. Both the speed and number of
collisions were averaged across trials.

User # B1 B2 B3 B4 B5
White Cane
No. of Trials 1 2 1 2 -
Speed (m/s) 0.23 0.30 0.34 0.26 -
System: 1st Session
No. of Trials 4 3 6 5 2
Speed (m/s) 0.15 0.09 0.23 0.13 0.10
Major Collision 0.50 0.33 0.33 0.40 0.00
Minor Collision 1.25 1.33 0.33 0.20 0.50
System: 2+ Sessions
No. of Trials 6 6 - - -
Speed (m/s) 0.17 0.12 - - -
Major Collision 0.17 0.00 - - -
Minor Collision 1.83 0.33 - - -

Users B1 and B2, who participated in multiple sessions,
showed an increase in average speed and decrease in major
collisions. The walking paths of the BVI users using the
system contained moderate serrations, because the users
stepped and turned to better understand the topology of
the space around them. Users walked faster when using a
cane than when using our system, due to the users’ greater
familiarity with the cane and the system’s requirement to turn
one’s body to assess a walkable free space. Nevertheless,
our system provides rich information enabling collision-free
navigation independently of a cane.

C. Chair-Finding Task

The chair-finding task was intended to measure the sys-
tem’s ability to help a user find a specific target in an
environment. In this case, the target was an empty chair,
with non-target distractors consisting of an occupied chair
or a tall recycling bin. The task serves as a representative
example of a general object detection task.

Users were instructed to locate the empty chair among
multiple distractors in an environment bounded by cardboard
partitions, as shown in Fig. 7. The task combined frontal
obstacle/free-space discrimination with lateral target object
identification. The left and right motor vibrations denoted
the direction of an empty chair. For example, a user could
start with a random walk until receiving a signal from either
the left or right motor. The user then turned towards the side
of that motor until it stopped vibrating. Turning too far in
a given direction would activate the opposite-side motor. In
this manner the user walked forward while adjusting his or
her walking direction using the left and right signals. The
front motor signaled the proximity of the chair or of another
obstacle.

We conducted with 4 users 20 chair-finding trials, of which
18 were successful. The average time to find the target chair
was 23.8 seconds. In each trial there was one empty as the
target, and 0 to 3 non-chair distractors. The supplemental
video demonstrates several chair-finding trials.

Furthermore, we conducted an extensive systematic test
with one blind user over 53 trials in multiple sessions. The
user performed the chair-finding task in the environment
shown in Fig. 7, with one target chair and two distractors.
At each trial, we randomly varied the method used to find
the target (cane only, system only, or cane and system
together). We also varied the position of the target, both
absolute and also relative to the distractors, at each trial.
Thus, performance differences between conditions should not
be due to learning an absolute or relative target position,
or practice effects over time. We measured the time to
completion and contacts, see Table III.

Overall times to completion were comparable across con-
ditions, but the user incurred significantly fewer non-target
contacts and accidental collisions when using the system,
either by itself or together with a cane, compared to using
the cane only. Comparing the use of a cane only with the
use of the system only suggests that even with relatively little
practice, the system is better at facilitating navigation to a
target among distractors while reducing contacts.
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(a) Maze 1: Sighted User (b) Maze 1: White Cane (c) Maze 1: System Only (d) Maze 2: System (e) Maze 3: System

Fig. 6: Maze environments overlaid with sample walking trajectories, recorded by a motion capture system. (a) Maze 1 with
11 turns, the purple trajectories of two sighted users are shown as reference. (b) Maze 1 with the trajectories of users B1,
B2, and B4 using a white cane. (c) Maze 1 with the trajectories of B1 to B5 using the proposed system. (d) Maze 2 with
11 turns, showing the trajectories of B1 to B5 using the proposed system. (e) Maze 3 with 8 turns, showing the trajectories
of B1 to B4 using the proposed system.

Fig. 7: Object localization and discrimination task. The target
was an empty chair, with non-target distractors consisting of
an occupied chair or a recycling bin.

TABLE III: User performance in the chair-finding task.
Non-target contacts are cane or body contacts with objects
other than the target. Accidential collisions are inadvertent
contacts, a subset of non-target contacts. The asterisks in-
dicate that average non-target contacts for the cane-only
condition were significantly greater than for either of the
two conditions using the system (rank sum tests, p<.01).

Task Cane System Cane+System
Total Trials 18 18 17
Avg. Time (s) 21.1 30.3 21.8
Avg. Non-Target Contacts 1.6* 0.3* 0.3*
Avg. Accidential Collisions 0.2 0.2 0.06

Fig. 8: Path-following experiment in a crowded environment.
Left: User following tactile paving with cane or cane plus
system. Right: User trajectory from a to B and back for a
total length of 90m.

D. Navigation through Realistic Environment

To test the system’s performance in a real-world environ-
ment, we asked three blind users to follow a path down the
center of a long hallway at Tamkang University, Taiwan. The

path was in the center of a crowded hallway and consisted of
tactile paving tiles (Fig. 8). In addition to other pedestrians, a
stationary experimenter occluded the path at three locations.
Thus, navigating the path required navigation in the presence
of both static and dynamic obstacles. Due to local restrictions
on human subject testing in real-world environments, we
were not allowed to test the proposed system without a cane.
We instructed users to avoid any contact with obstacles along
the path, including with their canes, and measured collisions
as the number of cane or body contacts. In a practice round
with cane and cane plus system, users contacted nearly every
static obstacle they encountered, but drastically reduced cane
contacts in a third round of cane plus system (Table IV). The
increased success in avoiding contacts indicates the efficacy
of the system. A ∼12% increase in walking time is due to
less familiarity and training with the system.

We further tested the real-world performance of the system
at the MIT laboratory. We asked one experienced user to
navigate the length of several indoor hallways without a
cane, thus using only the system to determine the presence
and direction of obstacles and navigable space. The user
was supervised by the experimenters throughout the trials.
The initial test lasted about 2 min.; the second test involved
several hallway turns and lasted about 5min. The user was
able to avoid walls, corners, shelves, a knee-height bench,
and a free-hanging sign with only one error in each of the
two trials (a shoulder contact and one misjudgment of a
doorway).

TABLE IV: User performance in tracing a tiled path. Users
utilize the system to avoid cane contacts with obstacles.

User # B6 B7 B8
Cane Only
No. of Trials 2 2 2
Average Time (s) 65 71 62
Collision / Obstacles 1 (6/6) 1 (6/6) 1 (4/4)
Cane + Sys: Practice
No. of Trials 2 2 2
Average Time (s) 65 68 62
Contacts 1 (6/6) 1 (6/6) 0.75 (3/4)
Cane + Sys: Testing
No. of Trials 4 4 2
Average Time (s) 73 80 65
Contacts 0.17 (2/12) 0.17 (2/12) 0 (0/4)

6539



V. CONCLUSION

We presented a real-time wearable system, which includes
a camera, an embedded computer and a belt with embedded
vibration motors that provides vibration feedback to signal
obstacles to its users. Using depth information from a
camera, the system distinguishes walkable free space from
obstacles and can identify a few important types of objects
such as the location of a chair. These descriptions of the
surroundings are communicated to the person wearing the
device and translated into safe navigation directions. We
conducted user studies with blind users who completed tasks
requiring shorelining; maze traversal without collisions or
the assistance of a cane; localizing an unoccupied chair;
and path tracing while avoiding obstacles within a crowded
environment. For every task, the use of the system decreased
the number of collisions compared to the use of a cane only.

Surveys administered on cane use indicated that some
important tasks, like finding a target object and avoiding
collisions in crowded areas, were difficult to perform with
a cane alone, revealing a functional gap that the proposed
system can fill. In post-testing questionnaires, users reported
rapid acclimation, readily interpretable signals, and moderate
comfort with the haptic belt interface.

Haptic devices provide a high frame rate and low-latency
feedback, which is desirable for navigation tasks, including
walking through a maze or finding an empty chair. Braille
displays offer richer high-level feedback in a discrete way,
but with longer reaction times due to sweeping of the fingers
on the braille cells. Audio feedback was deemed undesirable
given the low refresh rate and long latency, as well as
potential obstruction of other sounds, a major source of
environmental cues for blind people.

Future enhancements include outdoor capability using
a stereo vision camera, a larger library of useful object
recognition, and collaborative work [28] utilizing a low-
power energy-efficient implementation of the surface normal
estimation and dynamic frame skipping.
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and W. Burgard, “Navigating blind people with a smart walker,” in
Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems (IROS),
Hamburg, Germany, 2015.

[10] A. Culhane, J. Hurdus, D. Hong, and P. D’Angio, “Repurposing of
unmanned ground vehicle perception technologies to enable blind
drivers,” in Association for Unmanned Vehicle Systems International
(AUVSI) Unmanned System Magazine, 2011. IEEE, 2011.

[11] Y. H. Lee and G. Medioni, “A rgb-d camera based navigation for the
visually impaired,” in RSS 2011 RGBD: Advanced Reasoning with
Depth Camera Workshop, 2011.

[12] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy, “Visual odometry and mapping for autonomous flight
using an rgb-d camera,” in Int. Symposium on Robotics Research
(ISRR), Flagstaff, Arizona, USA, Aug. 2011.

[13] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” Robotics, IEEE Transactions on, vol. 21, no. 3,
pp. 354–363, 2005.

[14] J. Glover, S. Thrun, and J. T. Matthews, “Learning user models
of mobility-related activities through instrumented walking aids,” in
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE
International Conference on, vol. 4. IEEE, 2004, pp. 3306–3312.

[15] V. Filipe, F. Fernandes, H. Fernandes, A. Sousa, H. Paredes, and
J. Barroso, “Blind navigation support system based on microsoft
kinect,” Procedia Computer Science, vol. 14, pp. 94–101, 2012.

[16] Y. Tian, “Rgb-d sensor-based computer vision assistive technology for
visually impaired persons,” in Computer Vision and Machine Learning
with RGB-D Sensors. Springer, 2014, pp. 173–194.
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