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Abstract. To save costs in logistics, handling steps are going to be automated by robots
in the future. Due to the complex industrial conditions prevailing there, this is only possible
with a sufficient degree of intelligence in the respective systems. Despite advances in artificially
intelligent algorithms, the latest neural networks reveal significant weaknesses in performance
and transferability to other applications. In order to enable a holistic autonomous material flow,
the paper presents an infrastructure concept, which makes it possible to identify and train the
most suitable networks robot-selectively with very limited effort. Using two practical examples,
the functionality of the designed algorithms for the industrial implementation of a new use case
as well as the updating and improvement of an existing system is finally outlined. It will be
shown that with measures such as the automated collection of training data, the AI-supported
labeling process, the intuitive validation of the trained networks via a mobile application and
the automated retraining of robots already integrated, a further step can be taken towards
holistically automated logistics process chains.

1. Introduction
Due to the increasing complexity, caused for example by the advancing globalization as well as
the trend of the increasing product individualization, the production and logistics costs increased
disproportionately [1]. One way of countering this trend is to automate the entire logistics



material flow [2]. The main characteristics of logistics processes in highly variant assembly are
inherent adaptability and flexibility, which lead to a continuous and dynamic change in the
variety of objects [3]. Classic automation such as the systems found in car body construction
is therefore not possible. Much more, the robots must have a certain degree of intelligence
in order to recognize different containers in different positions. Despite the progress achieved
in the field of artificial intelligence, which makes the automation of such application appear
realistic in principle for the first time, such algorithms still pose fundamental problems [4] [5].
Thus it can be observed that the performance of the networks increases if they are designed
and trained for a single application. These two disadvantages make the holistic introduction of
intelligent systems in industrial applications considerably more difficult. This publication meets
this challenge. By embedding the robots in an infrastructural system, it will be possible to
provide the most suitable networks for each individual robot. This supports the introduction
of new systems and the necessary reactions to process changes, such as new types of logistics
containers.

2. Problem Description
In order to create a common understanding of the problem to be solved, the intralogistics
material flow of a highly variant assembly plant is first examined in detail in the following
chapter. Subsequently, the robot solutions used for the respective processes to be carried out
are presented and their current integration into the plant environment is described. Finally, an
outlook is given on the situation in the near future in order to illustrate the importance and
aggravation of the problem mentioned in the introduction.

2.1. Material Flow
In the intralogistical material flow, a distinction is made between production-synchronous and
production-asynchronous deliveries. While in particular large components such as car seats or
pre-assembled components such as the car instrument panel are delivered to the assembly line at
precisely the right time, the majority of the components continue to be provided asynchronously
over several process steps. This material flow is shown in Figure 1. The components are
transported in containers stacked on pallets from the suppliers to the incoming goods department
of the plant by truck. There the containers are separated and temporarily stored in automated
storage systems. From there, they are brought to the assembly line either directly or via
resequencing. As it is not possible to provide all components on the assembly line for a certain
period of time due to the high number of variants and the limited available space, the latter are
necessary in order to provide only the required components for the next vehicles. The containers
are then transported to the assembly line by tugger trains. Arrived at the assembly line, the
containers are removed from the tugger trailers and transferred to the staging racks. In return,
the empties are reloaded from the staging racks onto the route train and taken to the outgoing
goods department. There the containers are sorted, palletized and returned to the respective
suppliers. [3]

2.2. Robots
In order to achieve a holistic automation of the material flow as described in the previous
subchapter, it is necessary to automate both transport and handling steps. The statements in
this publication refer exclusively to the latter, i.e. the

• depalletizing of full containers,

• the sequencing of individual parts,

• the loading and unloading of shelves (placing),

• the palletizing of empties.



Figure 1. Logistics material flow in high variant assemblies and robot portfolio

Since these four handling steps differ significantly in terms of their requirements for the
algorithms and the hardware of the robots, four specialized systems were developed. These are
also shown in Figure 1.

2.3. Method Today
Due to the different general conditions for the use of robots described in the previous subchapter,
even robots with the same basic task (e.g. depalletizing) must be individually adapted to their
application. The main influencing factors here are various lighting situations (e.g. caused by
windows, gates or infrastructural reflections), varying objects as well as soiling caused by dust
or abrasion of the rubber wheels of forklifts. But the operating environment can also differ
considerably between different halls and, in particular, between different plants. A comparative
test has shown, for example, that when using a neural network for object detection, which was
trained with images from a German plant, the use of this network in the same application case,
but in an American plant, is expected to have a reduced performance by 20 % [6]. Various tests
have also shown that it is possible to operate robots in this challenging process with artificial
intelligence. However, the neural networks of these robots were specifically adapted to each
application.

Figure 2. Todays secnario and futre vision of robot usage in the plants



The described robots were all designed following the guideline to work through the required
processes as autonomously as possible. And can perform their tasks at the moment without any
connection to other systems or infrastructure.

2.4. Future Vision
The successful implementation of the first robots, based on artificial intelligence in the series
processes of logistics in the real plant environment, is advantageous, but involves today still a
very high manual effort. A complete rollout of a medium four-digit number of robots across
all plants is not possible with this approach. A compariosn between todays approach and the
future scenario is shown in Figure 2.

3. Approach
In order to be able to benefit from the savings of a holistically automated process chain despite
the challenges described above, an infrastructural framework is presented in the following. This
enables the robot-selective individualization of neural networks through partial automation
and intelligent algorithms. First, building on explanations to the current state of the art the
infrastructure and the overall interaction of the individual globally distributed robots will be
discussed. Subsequently, the workflow for the implementation of new applications as well as the
workflow for the update of already integrated attachments is explained.

3.1. Related Work
AI infrastructure for Machine Learning Operations (AIOps) represents a technology stack
required to get machine learning algorithms into production in a stable, scalable and reliable
way [14]. Similar to DevOps, AIOps is a set of concepts that serve for a smooth integration of
development and operations [15]. It comprises every stage of the machine-learning workflow -
starting from data science tools, libraries of machine learning algorithms down to the hardware
for processing and training, thus enabling data scientists, data engineers, software engineers
and robotics teams to access and manage the computing resources to test, train and deploy AI
algorithms.

The workflow consists of three stages:

• Stage 1: exploratory data analysis and data preparation

• Stage 2: training of machine learning algorithms on a cluster of distributed GPUs

• Stage 3: scalable deployment of trained models for inference

• Stage 4: Monitoring, management and updates

Following these steps an AI infrastructure maintains a continuous training loop based on the
feedback from the monitoring stage of the workflow.

Various modern frameworks allow both data preprocessing and training of models (Stages
1 and 2). Three most popular libraries for building and training deep learning algorithms are
TensorFlow, Keras and Caffe [16]. TensorFlow’s biggest advantage is its use of dataflow graphs
and their visualization through TensorBoard [17]. Moreover, trainings can be conducted on big
clusters of GPUs.

Scalability of both training and deployment tasks is crucial, since in order to achieve an
optimal result those tasks must be executed repeatedly and simultaneously. Containerization
proves to be a robust solution which allows multiple instances of the same application to be
run on the same machine [18]. Additionally, it resolves one of the most frequent issues that
developers face: incompatibility of development environments. Encapsulated into a container,
an application can easily be inserted and removed from the host system, keeping the environment
clean.



Finally, creating and running containers can be automated, memories and resources can be
allocated and tasks can be scheduled through orchestration systems such as Kubernetes. Its
main purpose is the management of complex container-oriented distributed systems [19].

Each of these open source technologies have reached the level of maturity, and currently,
are widely used as a stand-alone solution in the industry. However, there is no such system
which incorporates the benefits of all above listed software for continuous integration of machine
learning algorithms in the network of not only servers but also robots. Solving this deficit is the
target of the following subchapters.

3.2. Infrastructure
The performance of neuronal networks can be most strongly influenced by the following levers:
amount of training data, compilation of the training data, architecture of the neural network
used, hyper parameters of the network and hyper parameters for the training of networks [7].

The infrastructure to be designed should therefore offer possibilities to select these influencing
factors in such a way as to achieve the optimum performance for the respective robot. The final
result is shown in Figure 3

Figure 3. Suggested infrastructure for holistic robot usage in the plants

3.2.1. Training Data The manual recording of training data is associated with a high manual
effort [8]. Furthermore, the training data recorded in this way do not fully reflect the real process
conditions. The already integrated robots, on the other hand, make it possible to generate a large
amount of new training data without manual effort. However, this is only feasible if the images
can be stored centrally, enriched with metadata without long delays. The resulting pool of
training data can then be used in its entirety for pre-training convolutional layer, for example.
By enriching the continuously collected training images with metadata, it is also possible to
evaluate different training setups. Since the robot has already recognized the objects with its
existing network, the manual effort for labeling the data is no longer necessary. If, on the other
hand, the object was not correctly detected by the robot, the corresponding image has to be
labelled manually, but then offers large added value in order to make the network itself more
robust.



3.2.2. Training Configuration and Network Selection Due to the ever more complex network
architectures, a holistic optimization of the parameterization of the respective training iterations
is possible almost exclusively through continuous testing [9]. To do this, the new infrastructure
must be equipped with the appropriate graphics performance to be able to validate as many
configuration variants as possible in as short time as possible. In order to reduce the number of
necessary experiments, a database for the systematic documentation of the training history is to
be integrated. This allows patterns to be recognized and the hyper parameters for new training
sessions to be initialized with best practice values.

3.3. Implementation of New Use Cases
When implementing new applications, two cases can be distinguished: The implementation of a
process with completely independent objects, such as the sequencing of new components as well
as the integration of robots in plants with already seen objects, however, in slightly modified
variants or under different general conditions.

Figure 4. Methods to create and update neural networks

In a completely new application, it is first necessary to record a certain number of different
training images. This initial data set has to be labelled manually. A first net is then trained with
these rudimentary labelled data sets (approx. 50 images). This can then be used for labeling
support. As the responsible persons only has to improve the naturally not ideal net during this
procedure, the manual effort for the creation of the complete training set can be noticeably
reduced.

Once the critical amount of training data has been reached, the training order can be added
to the training pipeline. It trains different network architectures with different training data and
parameter sets. If the best performing training configuration reaches the critical limit value for
the application, the trained net can be made available in documented form. Since it would be
too risky to test the network directly on the robot in series production, this is initially done using
a specially designed mobile application. The trained networks can be visualized and evaluated
in real time. If the required performance is not met, the network must be improved by adding
new training data. By visualizing the results, the weak points and improvement potentials of
the trained network can also be intuitively identified. The newly recorded training data is then
uploaded and re-inserted into the training workflow.



3.4. Automated Retraining
The application case of automated retraining can occur if the process conditions of an already
productive robot have changed significantly. Such a drop in performance can be quickly
determined on the basis of the continuously monitored robot parameters. If this scenario occurs,
further training data is recorded from the failed object detection processes. Although this leads
to a temporary process-related deterioration, it allows the recording of relevant training data for
a new training of the network without manual intervention. The images of erroneous predictions
are, as already mentioned, specially marked and manually labelled. As soon as this is completed,
the network is re-trained with the new training data and the old training parameters and made
available for the robot.

Another chance is the non-error driven retraining. As the literature shows, more training data
can lead to better results [9] [10]. So it is also conceivable here to train each net anew as soon as
a critical amount of new training data has been collected. It should be noted, however, that the
classes to be recognized are not equally distributed. For example, there are strong differences
particularly in the containers with regard to their percentage frequencies in the material flow.
These inequalities would be exacerbated by a continuous increase in all training data. Therefore,
a further analysis is necessary in order to achieve an overall optimum across all classes either
through augmented training data or individually selected training data.

4. Results
This chapter shows the exact data of the workflows described in the previous section and validates
them using two implementation examples. For this purpose, the training of a new network for
the assembly line feeding robot for a certain assembly line section in the BMW plant in Leipzig
is first considered. A second example is the depalletizing robot. This was tested with an initially
manually trained network in series production. The potential improvements are explained in
the second part on the basis of the stored images and the experience gained from the initial
training.

Overall, it should be noted in this chapter that the infrastructure designed and explained has
not yet been fully implemented to this extent. One reason for this is, for example, the lack of
WLAN availability in some factories. The algorithms integrated in the pipeline were therefore
tested and validated in manually generated scenarios. If they function with manually provided
data, they can also be transferred to the automated workflow. The here presented results are
therefore completly adaptable to the serial solution.

4.1. New Training: PlaceBot New
Initially, 300 training pictures were taken to integrate the conveyor robot into the plant. We
took care that these pictures reflect the pictures to be expected later as good as possible. Of the
300 training images, 50 were initially labelled manually. These 50 raw images were then used
to train a first neural network for object detection, which could then be used for ai-supported
labelling. Yolo was used for this, as this was shown in the tests to be best suited for low training
data [11]. Thanks to data augmentation, the performance of the network is sufficiently high
to significantly reduce manual effort by improving predictions instead of drawing in all class
objects. It is not suitable for productive use. After all training pictures were labelled, further
neuronal nets were trained. Both Faster RCNNs [12] and SSDs [13] were trained with different
parameterizations (training parameters, network parameters) and a maximum mAP of 59 %
was achieved. During the analysis of the network with the mobile application in the real process
environment, a certain container class was identified as a weak point. With the training data
extended by 100 pictures of this class, the already mentioned training rounds were repeated.
By this an mAP of 73 % was achieved. This accuracy could be increased to 89 % by applying
the maximum possible data augmentation. Through the use of cropping, spelling, noise, varying



brightness and varying saturation, the neural networks could be re-trained with 300,000 training
images. The 89 % achieved are sufficiently accurate, since the object detection in the robot is
supplemented by a validation module which, by using environmental knowledge, prevents false
detections and, in turn, can deduce unrecognized objects.

4.2. Retraining: SplitBot with New Boxes
A generic network was initially used for the first attempted application of the depalletizing
robot. This means that the training data did not completely reflect the later process conditions,
but contained general use cases from logistics. A net trained in this way achieved an accuracy
of 64 % during the first factory tests in Leipzig. Based on this experience, the training data
were reassembled and the network was trained with a data set consisting of 50 generic and 250
application-specific images, also using the maximum data augmentation already discussed. This
specialisation enabled the mAP to be increased to 86 % at the Leipzig plant. After the tests in
Leipzig, this robot was transported to the Dingolfing plant for further tests. In addition to the
changed environmental conditions, a new container type was used there. After the first detected
errors, the training data was expanded accordingly and a new training session was initiated.
This means that the mAP was again raised to 91 %. The robot could thus continue to be
used under the intended process conditions without the great expense of a completely re-trained
network architecture.

5. Conclusion
This paper presents an infrastructure concept that partially automates the individual training
of neural networks and increases the overall robot-selective performance. Furthermore, the
functionality of the designed algorithms was tested and confirmed by means of two real examples.
With measures such as the automated collection of training data, the ai-supported labeling
process, the intuitive validation of the trained networks via a mobile application and the
automated retraining of already integrated robots, a further step can be taken in the direction
of holistically automated logistics process chains, as shown by the example of two applications
for depalletizing and assembly line provision.
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