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For the first time in almost 40 years, a NASA  human-rated launch  vehicle has completed its 

Critical Design Review (CDR). By reaching this milestone, NASA’s Space Launch System 

(SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. 

NASA is making investments to expand science and exploration capability of the SLS by 

developing the capability to deploy small satellites during the trans-lunar phase of the mission 

trajectory. Exploration Mission 1 (EM-1), currently planned for launch no earlier than July 

2018, will be the first mission to carry such payloads on the SLS. The EM-1 launch will include 

thirteen 6U Cubesat small satellites that will be deployed beyond low earth orbit. By providing 

an earth-escape trajectory, opportunities are created for advancement of small satellite 

subsystems, including deep space communications and in-space propulsion. This SLS 

capability also creates low-cost options for addressing existing Agency strategic knowledge 

gaps and affordable science missions. A new approach to payload integration and mission 

assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for 

the small payload developer teams. SLS EM-1 will provide the framework and serve as a test 

flight, not only for vehicle systems, but also payload accommodations, ground processing, and 

on-orbit operations. Through developing the requirements and integration processes for EM-

1, NASA is outlining the framework for the evolved configuration of secondary payloads on 

SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes 

and products developed for future block upgrades. In the heavy-lift configuration of SLS, 

payload accommodations will increase for secondary opportunities including small satellites 

larger than the traditional Cubesat class payload. The payload mission concept of operations, 

proposed payload capacity of SLS, and the payload requirements for launch and deployment 

will be described to provide potential payload users an understanding of this unique 

exploration capability. 

 

 

I. Introduction 

NASA has taken steps to increase the scientific and exploration capability of the Space Launch System by providing 

accommodations for cubesat class payloads on Exploration Mission (EM)-1. This first launch of the Space Launch 

System (SLS) and the Orion Spacecraft is planned to fly along a trans-lunar trajectory and test the performance of the 

SLS and Orion systems for future missions. 
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II.  Hardware/System Overview 

A. Space Launch System 

The SLS is the new heavy launch system for NASA. The SLS configuration for EM-1 is considered Block 1, the 

first configuration of the SLS evolution plan. The Shuttle-derived design takes advantage of resources established for 

the Space Shuttle, including the workforce, tooling, manufacturing processes, supply chain, transportation logistics, 

launch infrastructure, and LOX/LH2 propellant infrastructure. An overview of the initial SLS Block 1 configuration 

that will first fly with the Orion in 2018 is shown 

in Fig.1. The SLS enables many aspects of the 

NASA core capabilities in addition to human 

exploration initiatives. These include the 

reduction in mission duration, increased mass 

margins, reductions in total spacecraft 

complexity, and significant increases in payload 

volume.  

The secondary payload initiative for EM-1 

takes advantage of several of these capabilities 

and enables new opportunities for small 

spacecraft developers. By utilizing planned 

unoccupied volume within the upper stage 

adapter ring, the Orion Stage Adapter (OSA), 

increased mission science and technology 

missions can be accommodated. 

SLS Block 1 is capable of deploying 70 

metric tons of payload into low Earth orbit.. The 

characteristic energy (C3) curve for SLS is 

provided in Fig. 2, illustrating SLS’s evolved 

thrust capabilities. 

SLS will launch from Kennedy Space Center with main engine start, booster ignition, and primary ascent 

operations up to the point of upper stage separation. After upper stage separation and execution of the trans-lunar 

orbital injection burn, the Orion spacecraft will separate from the upper stage, and Orion will begin autonomous 

operations. The upper stage will then complete a mission disposal maneuver that will slow the upper stage and attached 

interfaces, including the OSA, and thus place the expired motor on a non-contact with Orion, trans-lunar heliocentric 

disposal trajectory. The upper stage system will remain on battery power for several hours after the completion of the 

Orion separation and disposal trajectory 

maneuvers. Deployments of the secondary 

payloads will commence after sufficient 

separation of the Orion spacecraft to the upper 

stage vehicle to minimize any possible contact of 

the deployed cubesats to Orion. Currently this is 

estimated to require approximately 4 hours. The 

allowed deployment window for the cubesats 

will be from the time the upper stage disposal 

maneuvers are complete to up to 10 days after 

launch. The upper stage will fly past the moon at 

a perigee of approximately 100km, and this 

closest approach will occur about 5 days after 

launch. The limiting factor for the latest 

deployment time is the available power in the 

sequencer system (described in subsequent 

section). 

B.  Payload Accomodations 

Secondary payloads on EM-1 will be 

launched in the Orion Stage Adapter (OSA). 

Payload dispensers will be mounted on specially 

 
Figure 2. SLS Net-Payload System Mass-Earth Escape.  

 
Figure 1. SLS Block 1 70t Initial Configuration.  
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designed brackets, each attached to the interior wall of the OSA as shown in Fig. 3. For the EM-1 mission, a total of 

fourteen brackets will be installed, allowing for thirteen payload locations. The final location will be used for mounting 

an avionics unit, which will include a battery and sequencer for executing the mission deployment sequence.  

Each bracket is designed to hold the volume equivalent of 6U and 12U dispensers. The current design baseline for 

EM-1 is for payloads to be compatible with 6U class dispensers. Payloads in 6U class will be limited to 14 kg 

maximum mass. Detailed physical 

accommodations are documented in Fig. 4 

and Table 1. 

The avionics unit will interface with each 

deployer through cables mounted in the OSA. 

Payloads will remain powered off until the 

sequencer transmits the deployment signal to 

each dispenser, and the payload is released. 

Payloads will exit the dispenser at an 

approximate rate of 1.2 m/sec, with 

deployments separated by a minimum of 5 

seconds. No other payload services are 

currently planned for EM-1. 

C. Ground Systems 

The Ground Systems Development and 

Operations (GSDO) program at the Kennedy 

Space Center (KSC) will perform SLS 

ground processing. Payloads will be fully 

integrated into their dispenser at the time of 

delivery to GSDO. Once delivered, integrated 

payloads will be installed into the OSA, prior 

to stacking operations with the Orion system. 

Prior to roll-out to the pad, battery charging 

for the avionics unit and each payload 

containing approved batteries will occur at 

the Vehicle Assembly Building (VAB). 

III. Manifest Process 

Several NASA Mission Directorates have 

developed programs for the competition, 

selection, and development of EM-1 

payloads that support Directorate priorities. 

Specific plans for payloads supported by 

these Directorates are explained in subsequent 

sections. There were several steps toward final 

determination of the planned manifest for the 

first mission. In the summer of 2015, each 

supporting mission directorate, the program 

directors for SLS, Orion, GSDO, and the 

Human Exploration and Operations senior 

leadership met to determine the number and 

allocation of payloads to be flown. Using this initial manifest, additional integrated safety hazard analysis and mass 

allocation reviews will be completed. Critical Design Review for the mission was completed in 2015, and a final mass 

allocation for the EM-1 secondary payload complement was determined. With these assessments and allocations 

made, a total manifest of 13 payloads was presented to the EM-1 Manifest Board for concurrence. The final manifest 

plan was presented to the Flight Planning Board in January of 2016 for baseline. 

 
Figure 3. Orion Stage Adapter with payload locations. 

 
Figure 4. Payload volume dimension. 

 

in. (mm) in. (mm) in. (mm) lbs (kg)

6U 9.4 (238) 14.4 (365) 4.4 (111) 30.3 (13.77)

12U 9.4 (238) 14.4 (365) 8.9 (226) 27.8 (12.64)

Deployer A B C Mass

Deployer 
A B C 

in. mm in. mm in. mm 

6U 9.43 239.4 14.4 366 4.6 116 

12U 9.43 239.4 14.4 366 9.0 229 

Table 1. Payload maximum dimensions. 
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IV. Mission Integration 

 The SLS Program will perform all mission and payload integration for the baseline vehicle manifest. The mission 

integration process defined in this section has been developed to ensure safety and mission success, while reducing 

the amount of data required from the payload developers.  

 The integration process is designed to support the payload requirements as well as the requirements of the launch 

vehicle and ground systems. The typical integration process encompasses the entire cycle of payload integration 

activities including analytical and physical integration. 

 The Secondary Payloads Mission Integration Team (SPMIT) will be responsible for serving as liaison to the 

secondary payload community and facilitating end-to-end payload mission planning, integration, and execution. The 

mission integration team, in conjunction with the engineering and launch facility integration teams, will support 

secondary payload manifest planning, coordination, and end-to-end payload integration.  

 Each payload, once identified, will be assigned a Secondary Payload Integration Manager (SPIM) to assist the 

payload through the entire integration process. The SPIM will serve as the single point interface to coordinate all 

mission-specific integration activities for the assigned payload. The SPIM will be responsible for developing a 

payload-unique integration schedule to define the documentation and analysis required from the payloads. The SPIM 

will also capture payload requirements, engineering interfaces, and required verification through the payload-specific 

Interface Control Document (ICD).  

 The SPIM will coordinate the payload’s requirements to all of the functional organizations involved in the mission. 

As the responsible point of contact, the SPIM will ensure that payload integration is accomplished by coordinating 

with these teams throughout the process.  

 Payload development schedules will vary based on many factors including hardware availability, complexity, 

resource profiles, etc. The payload life cycle is depicted in Fig. 5 and can be defined in four phases of integration: 

1. Strategic:Early payload development occurs in the strategic timeframe and includes payload design and schedule 

development to ensure that an SLS compatible payload is built. The payload questionnaire is also submitted to 

support the manifest process, as well as early compatibility assessments.  

2. Tactical: Focused mission integration is performed in the tactical phase of payload integration. During this phase, 

requirements, and interfaces are finalized, verification is mostly completed and the initial Certificate of Flight 

Readiness (CoFR) is developed.  

3. Physical: This phase begins with the payload’s on-dock arrival at the launch site and includes all ground 

processing, vehicle stacking, and integration. Final verifications are submitted, and the CoFR process is 

completed with closure of all remaining open work.  

4. Operations: This phase begins with launch, through the end of payload operations. Post flight reporting and 

anomaly assessments will be conducted, as required. 

The typical SLS mission integration process begins at L-24 months, but can be tailored to meet payload needs 

within the constraints of the overall mission planning. The SPMIT may engage during the strategic phase to ensure 

early design requirements reflect the expected interfaces and environments to be verified during the mission 

integration process. The process will begin once a potential payload is identified and a SPIM is assigned. The payload 

will be provided with the questionnaire to return to the SPIM, and normal and regular communication/coordination 

will commence. 

Throughout the mission integration phases, 

various reviews, and milestones will require 

payload developer participation and 

coordination with the mission integration team. 

The major milestones for each integration 

phase are outlined in Fig. 6. These include 

payload Preliminary Design Review (PDR), 

Critical Design Review (CDR), Safety 

Reviews, major documentation baseline, and 

physical integration. Detailed mission-specific 

milestones and reviews will be documented in 

the payload integration schedule once a flight 

manifest is baselined.  

 
Figure 5. Integration Phases  
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To facilitate early integration and communication, payloads identified for SLS missions will be provided a payload 

questionnaire to provide NASA with pertinent data. This data will be used to evaluate manifest opportunities for 

primary and secondary payloads. The questionnaire will also be used as a starting point for developing the payload-

unique ICD and other integration 

documentation. 

The Interface Control Document (ICD) 

defines the payload-to-vehicle and payload-to-

ground system interfaces. The ICD will be 

derived from the Interface Definition and 

Requirements Document (IDRD) and will 

identify the specific technical and functional 

requirements that apply to the payload design. 

Mission-specific or payload-specific 

requirements will also be captured in the ICD. 

The PIM is responsible for developing the 

payload-unique Interface Control Document 

(ICD) for each payload assigned to a mission.  

Based on the set of requirements defined in 

the ICD, the applicable verification data 

required will be documented to ensure payload 

compatibility. The IDRD will define the 

verification data sheets for each requirement, 

including required data, success parameters and deliverable schedule. Once the payload-specific requirements are 

baselined, the PIM will use the deliverables captured in the IDRD to document the plan for verification in the payload 

integration schedule. As the payload hardware development is completed, required verification data will be submitted 

to the mission integration and engineering integration teams for review and approval.  

For each mission, the Secondary Payload team will develop mission-specific analyses to verify compatibility with 

the launch vehicle, ground systems, data systems, and overall mission requirements. Required mission-specific 

analysis will be identified with the required interfaces, in the payload-unique applicability matrix listed in the 

payload’s Interface Control Document (ICD). Payload-unique mission analysis will also be documented in the ICD, 

with the appropriate analysis parameters captured in an appendix. It is expected that test data will only be required to 

satisfy vibration, shock, mass, center of gravity, and electro-magnetic interface requirements.  

As part of the overall vehicle flight readiness process, payloads will participate in the Certificate of Flight 

Readiness (CoFR) process. The CoFR process is established to ensure an integrated flight vehicle has met 

requirements at all levels and is safe to fly. The payload CoFR process certifies flight readiness of payloads by all 

organizations involved in payload development, integration, launch, and on-orbit operation. The payloads CoFR 

process is defined by the SLS office and will be documented in the Certificate of Flight Readiness Plan.  

The CoFR process starts approximately 9 months prior to launch. All organizations supporting the mission 

complete a CoFR endorsement checklist that identifies the open work remaining to complete the readiness process. 

Open work will be tracked until closure to ensure all requirements are met. Final CoFR approval occurs at the SLS 

Flight Readiness Review at L-2 weeks. 

V. Safety and Mission Assurance 

Payloads manifested on SLS will “do no harm” to the vehicle or crew and maintain the appropriate controls for 

critical or catastrophic hazards. Safety requirements will be documented in the SLSP EM-1 Payload Safety 

Requirements for Secondary Payload Hardware document for inclusion in payload designs. Payload developers will 

be required to submit safety data packages for each safety review identified in the SLSP EM-1 Secondary Payload 

Safety Review Process document. Typically, the Safety Technical Interchange Meeting (TIM) will outline the payload 

design and initial hazard identification. In the Phase I review, the preliminary payload design is reported. During the 

Phase II review, the final payload design is reported, including hazard controls. Ideally, all hazard reports are submitted 

for approval during this review. The Phase III review will evaluate the payload hazard verification and any final 

changes to the payload design and controls. All safety verification will require closure prior to the shipment of the 

payload to KSC for integration into the vehicle. 

 
Figure 6. Payload integration life cycle  
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VI. Ground Processing 

Payloads will be turned over to GSDO fully integrated in their deployer, ready for installation in the OSA at 

approximately L-6 months. GSDO will install the integrated deployers onto the OSA brackets and mate all required 

connections for deployment signals. Payloads will not be accessible once stacking operations begin. For EM-1, 

additional tests and pad stay time is required to fully check out the vehicle configuration. Due to this “first flight” test 

activity, the vehicle will remain at the launch pad for up to two months, which will increase payload exposure to 

documented natural environments. Payload should consider this additional time into their design requirements for 

materials selection and battery life.  

VII. Operations 

Secondary payloads on SLS will remain powered off during the ascent phase of the launch vehicle, through 

separation of the Orion spacecraft. Once separation is confirmed, the ICPS will send a discrete signal to the SPDS 

avionics to activate. The schedule for deployments will be loaded as a skit prior to vehicle stacking. No real-time 

commanding or telemetry is available; therefore 

payloads will be deployed automatically through the 

pre-determined mission timeline sequence. 

Payloads will have opportunity to deploy 

beginning after the ICPS disposal sequence is 

complete (approximately T+4 hours) up to 10 days 

from launch. All deployments will be completed 

before avionics batteries are expended. Fig. 7 

provides an overview of the mission profile. 

Once deployed, payloads will be required to wait 

15 seconds before deploying antennas, solar panels, 

sails, etc. to ensure adequate clearance from ICPS. 

Payload communications following deployment will 

be the responsibility of the payload project, with no 

resources being provided by SLS. 

VIII. Payload Users 

A. Human Exploration and Operations Mission Directorate Advanced Exploration Systems (AES) 

The Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) 

Division was allocated five payload opportunities on the EM-1 mission. AES selected the first three payloads to fly 

on EM-1 at the same time the capability for accommodating Secondary Payloads on the SLS was being developed.  

Near Earth Asteroid (NEA) Scout is a 6U cubesat designed to rendezvous and characterize a candidate NEA. A 

solar sail, another innovation to be demonstrated in the cubesat class, will provide propulsion.  

Lunar Flashlight is the second AES payload planned for manifest on EM-1. It will use a green propellant system 

and will search for potential ice deposits in the Moon’s permanently shadowed craters. Pulsed lasars will be used to 

illuminate the surface. Surface reflection will be measured by a spectrometer to distinguish water ices from regolith.  

The third payload being developed by AES is BioSentinel. The payload is a yeast radiation biosensor, planned to 

measure the effects of space radiation on Deoxyribonucleic acid (DNA). This will be accomplished by entering into a 

heliocentric orbit, outside of the Van Allen belts to expose the payload to a deep space radiation environment.  

Two additional payloads were selected for the EM-1 mission by AES from the Next Space Technologies for 

Exploration Partnerships (NextSTEP) Broad Agency Announcement (BAA). The payloads selected are Lunar 

Icecube, a collaboration with Moorehead State University, and Skyfire, a partnership with Lockheed Martin. 

Lunar Icecube will prospect for water in ice, liquid, and vapor forms as well as other lunar volatiles from a low-

perigee, highly inclined lunar orbit using a compact Infrared spectrometer. 

Skyfire is a technology demonstration mission that will perform a lunar flyby, collecting spectroscopy, and 

thermography data to address questions related to surface characterization, remote sensing, and site selection. 

  

 
Figure 7. Mission profile 
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B. Space Technology Mission Directorate (STMD) 

NASA's Space Technology Mission Directorate (STMD) was allocated three payload opportunities on the EM-1 

mission. NASA’s STMD is innovating, developing, testing, and flying hardware for use in NASA's future missions 

through the Centennial Challenges Program. The Centennial Challenges Program is NASA’s flagship program for 

technology prize competitions (www.nasa.gov/challenges). The program directly engages the public, academia, and 

industry in open prize competitions to stimulate innovation in technologies that have benefit to NASA and the nation. 

STMD has released the CubeSat Lunar Challenge to foster innovations in small spacecraft propulsion and 

communications. There are two concurrent In-Space Competitions, the Lunar Derby and the Deep Space Derby. In 

the lunar Derby, there are prizes awarded for successfully achieving lunar orbit, downlinking the largest volume of 

error-free data and surviving the longest. In the Deep Space Derby (> 4 million km), there are prizes awarded for 

farthest data transmission distance, largest volume of error-free data and longest duration of operability. 

Potential candidates for the three STMD opportunities on the EM-1 mission will compete in a series of four Ground 

Tournaments before final selection is made. Currently, two of the four Ground Tournaments have been completed. 

Final selection will be made in March of 2017. 

C. Science Mission Directorate (SMD) 

The NASA Science Mission Directorate (SMD) was allocated two payload opportunities on the EM-1 mission. 

The NASA SMD issued an amendment to its annual Announcement of Opportunity (AO) in the Research 

Opportunities in Space and Earth Sciences-2014 (ROSES-2014) Solicitation NNH14ZDA001N-HTIDS Heliophysics 

Technology and Instrument Development for Science. Within this Amendment was the request for Cubesat proposals 

specific to the Exploration Mission 1 launch opportunity focusing on the Heliophysics science enabled through the 

unique deployment location and trajectory afforded though the planned EM-1 mission. The Cubesat Mission to Study 

Solar Particles (CuSP) payload was selected under this AO. CuSP will study the sources and acceleration mechanisms 

of solar and IP particles in near-Earth orbit, support space weather research by determining proton radiation levels 

during Solar Energetic Particle (SEP) events and identifying suprathermal properties that could help predict 

geomagnetic storms. 

A Small Innovative Missions for Planetary Exploration (SIMPLEx) NASA Research Announcement (NRA) was 

also released as part of the ROSES-2014 AO. The LunaH-Map payload was selected from this NRA. The LunaH-Map 

objectives are to understand the quantity of H-bearing materials in lunar cold traps (~10 km), determine the 

concentration of H-bearing materials with 1m depth, and constrain the vertical distribution of H-bearing materials. 

D. International Partner Collaborations 

The final three payload opportunities for the EM-1 mission were allocated for NASA’s international space agency 

counterparts. The flight opportunities are intended to benefit the international space agency and NASA as well as 

further the collective space exploration goals. A joint process with NASA and the international partners was employed 

to review, evaluate, and recommend the payloads to fly on EM-1. From that joint process three payloads were chosen: 

SLS Launched Innovative Mission (SLSLIM), ArgoMoon, and EQUilibriUm Lunar-Earth point 6U Spacecraft 

(EQUULEUS). 

ArgoMoon is sponsored by ESA/ASI and will fly-along with the ICPS on it’s disposal trajectory. The primary 

objectives are to perform proximity operations with the ICPS post-disposal, take external imagery of engineering and 

historical significance, and perform an optical communications demonstration. 

The EQUULEUS spacecraft sponsored by JAXA will fly to a libration orbit around the Earth-Moon L2 point and 

demonstrate trajectory control techniques within the Sun-Earth-Moon region for the first time by a nano spacecraft. 

The mission will also contribute to the future human exploration scenario by understanding the radiation environment 

in geospace and deep space, characterizing the flux of impacting meteors on the far side of the moon, and 

demonstrating the future deep space exploration scenario using the “deep space port” at Lagrange points. 

SLSLIM mission sponsored by JAXA will land the smallest lunar lander to date on the lunar surface to demonstrate 

the feasibility of the hardware for distributed cooperative exploration system. Small landers will enable multi-point 

exploration, which is complimentary with large-scale human exploration. Once on the lunar surface, the SLSLIM 

spacecraft will observe the radiation and soil environments of the lunar surface by active radiation measurements and 

soil shear measurements.  

IX. Conclusion 

NASA’s Space Launch System (SLS) will provide unprecedented capability to further advances in science and 

exploration. The capability to deploy small satellites allows SLS to utilize excess capability on the planned exploration 

http://www.nasa.gov/smallsats
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missions. With the planned mission trajectories, small satellite payload developers will have an opportunity to operate 

in deep space, a capability not realized to this point.  As the SLS vehicle evolves its configuration and becomes more 

capable, the opportunities for Secondary Payloads of different types and sizes will increase. 
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