Supporting Information for
 Enantioselective γ-Alkylation of α, β-Unsaturated Malonates and Ketoesters by a Sequential Ir-Catalyzed Asymmetric Allylic Alkylation/Cope
 Rearrangement.

Wen-Bo Liu ${ }^{\dagger}$, Noriko Okamoto ${ }^{\dagger}$, Eric J. Alexy, Allen Y. Hong, Kristy Tran, and Brian M. Stoltz*
Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology,
Pasadena, California 91125
stoltz@caltech.edu

Table of Contents:

Materials and Methods SI 2
List of Abbreviations SI 3
Table S1. Optimization of Reaction Parameters SI 4
General Procedure of Optimization Reactions (Table S1) SI 5
General Procedure for the Ir-Catalyzed Asymmetric Allylic Alkylation/Cope Rearrangement Reactions of Cyclic Alkylidene Malonates SI 6
General Procedure for the Synthesis of Cyclic Alkylidene Malonates SI 21
Determination of the Absolute Configuration of 5aa SI 23
General Procedure for the Ir-Catalyzed Asymmetric Allylic Alkylation of Endocyclic α, β-Unsaturated β-Ketoesters SI 24
Determination of the Absolute Configuration of 7ca SI 34
General Procedure for the Cope Rearrangment of β-Ketoesters SI 35
Synthesis of Endocyclic α, β-Unsaturated Ketoesters SI 36
Table S2. Determination of Enantiomeric Excess SI 39
Crystal Structure Analysis of Alkylation Product 3aa (smaple No.: p15559) SI 44
Crystal Structure Analysis of Diol S5aa (smaple No.: p15573) SI 54
References SI 66
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra SI 67

Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon. ${ }^{1}$ Reaction progress was monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS. TLC was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, p-anisaldehyde, or KMnO_{4} staining. Silicycle SiliaFlash ${ }^{\circledR}$ P60 Academic Silica gel (particle size $40-63 \mathrm{~nm}$) was used for flash chromatography. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian Inova 500 MHz and Bruker 400 MHz spectrometers and are reported relative to residual $\mathrm{CHCl}_{3}(\delta 7.26 \mathrm{ppm}) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Inova 500 MHz spectrometer (125 MHz) and Bruker 400 MHz spectrometers $(100 \mathrm{MHz})$ and are reported relative to $\mathrm{CHCl}_{3}(\delta 77.16$ ppm). Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift ($\delta \mathrm{ppm}$) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: $\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, sept $=$ septuplet, $\mathrm{m}=$ multiplet, $\mathrm{br} \mathrm{s}=$ broad singlet, $\operatorname{br} \mathrm{d}=$ broad doublet, app = apparent. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shifts ($\delta \mathrm{ppm}$). IR spectra were obtained by use of a Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell and are reported as: $[\alpha]_{\mathrm{D}}{ }^{\mathrm{T}}$ (concentration in $10 \mathrm{mg} / 1 \mathrm{~mL}$, solvent). Analytical SFC was performed with a Mettler SFC supercritical CO_{2} analytical chromatography system utilizing Chiralpak (AD-H, AS-H or IC) or Chiralcel (OD-H, OJH , or $\mathrm{OB}-\mathrm{H}$) columns ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$) obtained from Daicel Chemical Industries, Ltd. High resolution mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI +), or mixed ionization mode (MM: ESI-APCI+), or obtained from Caltech mass spectrometry laboratory.

Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa Aesar and used as received unless otherwise stated. Ligands L1, L4-L6, ${ }^{2}$ and allyl carbonates, ${ }^{3}$ were prepared by known methods.

List of Abbreviations:

ee - enantiomeric excess, dr - diastereomeric ratio, SFC - supercritical fluid chromatography, TLC - thin-layer chromatography, THF - tetrahydrofuran, IPA isopropanol, TBD - 1,5,7-triazabicyclo[4.4.0]dec-5-ene, cod - cis,cis-1,5-cyclooctadiene.

Table S1. Optimization of Reaction Parameters.

MeO			mol \%) \%) (uiv) 12-24 h $\mathrm{OCO}_{2} \mathrm{Me}$			 $4 a a$		
entry ${ }^{\text {a }}$	ligand	solvent	base (x equiv)	equiv of $1 a$	equiv of $2 a$	conv (\%) ${ }^{\text {b,c }}$	3aa:4aa ${ }^{\text {b }}$	$\begin{gathered} \text { ee of } \\ 3 a a(\%)^{d} \end{gathered}$
1	L1	THF	LiOt-Bu (1)	2	1	>95 (28)	1:1	95
2	L1	THF	NaOt -Bu (2)	2	1	>95 (47)	3:1	94
3	L1	THF	NaH (2)	2	1	<5	-	-
4	L1	THF	KOt-Bu (2)	2	1	>95 (43)	3:1	97
5	L1	THF	KOt-Bu (1)	2	1	>95 (57)	3:1	>99
6	L1	THF	KOt-Bu (1)	1.2	1	89	3:1	>99
7	L1	THF	$\mathrm{KOt}-\mathrm{Bu}(0.3)$	1.2	1	32	3:1	-
8	L1	THF	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(1)$	1.2	1	14	1:1	-
9	L1	THF	$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1)$	1.2	1	74	3:1	-
10	L1	dioxane	KOt-Bu (1)	2	1	>95 (54)	3:1	>99
11	L1	$\mathrm{Et}_{2} \mathrm{O}$	KOt-Bu (1)	2	1	90	2:1	>99
12	L1	MTBE	KOt-Bu (1)	2	1	86	2:1	95
13	L1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	KOt-Bu (1)	2	1	>95	2:1	97
14	L1	DCE	KOt-Bu (1)	2	1	59	2:1	98
15	L1	toluene	KOt-Bu (1)	2	1	94	2:1	97
16	L1	cyclohexane	KOt-Bu (1)	2	1	94	2:1	97
17	L1	MeCN	KOt-Bu (1)	2	1	>95	1:1	94
18	L1	DMF	KOt-Bu (1)	2	1	>95	1:1	99
19	L2	THF	KOt-Bu (1)	2	1	$<10^{e}$	-	-
20	L3	THF	KOt-Bu (1)	2	1	>95 ${ }^{\text {e }}$	>20:1	>99
21	(\pm-L4	THF	KOt-Bu (1)	2	1	>95	1:1	-
22	L5	THF	KOt-Bu (1)	2	1	52	2:1	40
23	L6	THF	KOt-Bu (1)	2	1	>95 (69)	>20:1	>99
24	L6	THF	KOt-Bu (1)	1	1.5	89 (84)	>20:1	>99
25	L6	THF	LiOt-Bu (1.2)	1	1.5	92 (90)	>20:1	>99
26	L6	THF	LiOt-Bu (1.2)	1	2	>95 (93)	>20:1	>99

${ }^{a}$ Reactions performed at 0.1 mmol scale in THF (1 mL) at $20{ }^{\circ} \mathrm{C}$ for $12-24 \mathrm{~h} .{ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. ${ }^{c}$ Yield of isolated product $\mathbf{3 a a}$ given in parenthesis. ${ }^{d}$ Determined by SFC analysis (Chiralpak AD-H). ${ }^{e}$ Complex mixture.

General Procedure for Optimization Reactions (Table S1):

All experiments were performed in a nitrogen-filled glove box.
To a 2 dram vial (vial A) equipped with a magnetic stirring bar was added $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(1.4 \mathrm{mg}, 0.002 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $\mathbf{L}(0.004 \mathrm{mmol}, 4 \mathrm{~mol} \%), \mathrm{TBD}(1.4$ $\mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and 0.5 mL of THF. Vial A was stirred at $20^{\circ} \mathrm{C}(\sim 10 \mathrm{~min})$ while another 2 dram vial (vial B) was charged with base, 0.5 mL of THF, alkylidene malonate 1a, and carbonate 2a. The pre-formed catalyst solution (vial A) was then transferred to vial B. The vial was sealed, stirred at $20^{\circ} \mathrm{C}$ and monitored by TLC or UHPLC-MS. Upon completion of the reaction, the vial was removed from the glovebox and the THF removed under reduced pressure. The resulting residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a silica pad, rinsing with $\mathrm{Et}_{2} \mathrm{O}$. The regioselectivity (branched to linear) was determined by ${ }^{1} \mathrm{H}$ NMR analysis of this crude mixture. The residue was purified by silica gel flash chromatography (gradient elution, $0 \rightarrow 5 \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to afford the desired product.

Dimethyl (R)-2-(cyclohept-1-en-1-yl)-2-(1-phenylallyl)malonate (3aa)

White solid, $>99 \%$ ee, $[\alpha]_{\mathrm{D}}{ }^{25}-72.1$ (c $\left.0.76, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.3\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20-$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 6.36(\mathrm{ddd}, J=17.0,10.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{ddd}, J$ $=10.2,1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{ddd}, J=17.1,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 1 \mathrm{H})$, $1.64-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.31-1.20(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,170.3,140.5,139.2,138.6,132.2,130.2,127.9,126.8,116.9,70.1,53.9,52.3$, 52.2, 32.7, 32.4, 28.7, 26.3, 26.2; IR (Neat Film, NaCl) 2925, 1737, 1728, 1451, 1433, 1241, $1050 \mathrm{~cm}^{-1}$; HRMS (ESI-APCI +) m / z calc'd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 343.1904$, found 343.1905 ; SFC conditions: 2% IPA, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak AD-H column, $\lambda=210 \mathrm{~nm}$, $t_{R}(\min):$ minor $=7.34$, major $=8.12$.

General Procedure for the Ir-Catalyzed Asymmetric Allylic Alkylation/Cope Rearrangement Reactions of Cyclic Alkylidene Malonates.

Please note that the absolute configuration was determined only for compound 5a via X ray analysis of its derivative (vide infra). The absolute configuration for all other products 5 has been inferred by analogy. For respective SFC conditions, please refer to Table S2.

2

column separation (General Procedure B)
toluene, $100^{\circ} \mathrm{C}, 5 \mathrm{~h}$

5

General Procedure A (One-pot): In a nitrogen-filled glove box, $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.7$ $\mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%$), ligand $\mathbf{L 6}(4.9 \mathrm{mg}, 0.008 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, and TBD (2.8 mg , $0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ were added to a 2 dram vial equipped with a magnetic stirring bar. The vial was then charged with THF (1 mL) and stirred at $20^{\circ} \mathrm{C}$ for 10 min , generating a brown solution. To another 2 dram vial was added $\mathrm{LiOt} t-\mathrm{Bu}(19.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), alkylidene malonates 1 ($0.2 \mathrm{mmol}, 1$ equiv), allylic carbonates $2(0.3-0.4 \mathrm{mmol}$, $1.5-2$ equiv), and 1 mL of THF. Then, the above pre-formed catalyst solution was transferred to this vial by syringe. The vial was capped and stirred at $20^{\circ} \mathrm{C}$ until the alkylidene malonate was fully consumed, as indicated by TLC or UHPLC-MS analysis. Upon completion of the reaction, the vial was removed from the glovebox and the THF removed under reduced pressure. The regioselectivity (branched to linear, $\mathrm{b}: 1>20: 1$ for all cases) was determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture. The crude sample was recovered from the NMR tube and concentrated. The resulting residue was dissolved in 2 mL of toluene, placed in a sealed vial, and stirred at $100^{\circ} \mathrm{C}$ for 5 h . After removal of the solvent, the residue was purified by silica gel flash chromatography to afford the desired product.

General Procedure B (Column Separation): In a nitrogen-filled glove box, $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}(4.9 \mathrm{mg}, 0.008 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, and TBD ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were added to a 2 dram vial equipped with a
magnetic stirring bar. The vial was then charged with THF (1 mL) and stirred at $20^{\circ} \mathrm{C}$ for 10 min , generating a brown solution. To another 2 dram vial was added $\mathrm{LiO} t-\mathrm{Bu}(19.2$ $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), alkylidene malonates $1(0.2 \mathrm{mmol}, 1$ equiv), allylic carbonates 2 ($0.3-0.4 \mathrm{mmol}, 1.5-2$ equiv), and 1 mL of THF. Then the above pre-formed catalyst solution was transferred to this vial by syringe. The vial was capped and stirred at $20^{\circ} \mathrm{C}$ until the alkylidene malonate was fully consumed, as indicated by TLC or UHPLC-MS analysis. Upon completion of the reaction, the vial was removed from the glovebox and the THF removed under reduced pressure. The regioselectivity (branched to linear: $\mathrm{b}: 1>20: 1$ for all cases) was determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture. The residue was then purified by silica gel flash chromatography to afford the desired allylation product, which was then dissolved in 2 mL of toluene, sealed and stirred for 5 h at $100^{\circ} \mathrm{C}$. After removal of the solvent, the residue was purified by silica gel flash chromatography to afford the desired product.

Dimethyl (S)-2-(2-cinnamylcyclohexylidene)malonate 5aa: The General Procedure A was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}(4.9 \mathrm{mg}, 0.008 \mathrm{mmol}, 4$ $\mathrm{mol} \%$), and TBD ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The vial was then charged with THF $(1 \mathrm{~mL})$ and stirred at $20^{\circ} \mathrm{C}$ for 10 min , generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with $\mathrm{LiOt} t \mathrm{Bu}$ $(19.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), dimethyl 2-cyclohexylidenemalonate $\mathbf{1 a}$ ($45.2 \mathrm{mg}, 0.2$ mmol, 1 equiv), and cinnamyl carbonate $\mathbf{2 a}$ ($76.8 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at $20^{\circ} \mathrm{C}$ for 12 h , until 2-cyclohexylidenemalonate 1a was fully consumed, as indicated by TLC or UHPLC-MS analysis. Upon completion of the reaction the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. $\mathrm{Et}_{2} \mathrm{O}$ was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate was
concentrated under reduced pressure. The regioselectivity (branched product to linear product: $\mathrm{b}: 1$) was determined by ${ }^{1} \mathrm{H}$ NMR of this crude mixture as $>20: 1$. This crude oil was then dissolved in 2 mL of toluene and stirred at $100^{\circ} \mathrm{C}$ for 5 h . After the evaporation of toluene under reduced pressure, the desired product $\mathbf{5 a a}(62.4 \mathrm{mg}, 91 \%$ yield) was obtained as a colorless oil after purification by silica gel flash chromatography (gradient elution, $10 \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes). $96 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{25}-111.1\left(c 0.72, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.2$ ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27$ (m, 2H), $7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{ddd}, J=15.5,8.1,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{ddt}, J=11.0,8.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.90(\mathrm{~m}, 1 \mathrm{H})$, $2.45-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.51$ $-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.3,166.5,165.8,137.7,131.8,128.6,127.9,127.1,126.2,124.6,52.2,52.1,44.4$, 39.9, 31.7, 30.9, 29.8, 29.6, 25.9; IR (Neat Film, NaCl) 2924, 1723, 1618, 1433, 1231, 1192, $1068 \mathrm{~cm}^{-1}$; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 343.1909$, found 343.1919; SFC conditions: 10% IPA, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak AD-H column, $\lambda=254 \mathrm{~nm}$, $\mathrm{t}_{\mathrm{R}}(\mathrm{min}):$ major $=4.55$, minor $=4.88$.

Dimethyl (S,E)-2-(2-(3-(p-tolyl)allyl)cycloheptylidene)malonate 5ab: The General Procedure B was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[\operatorname{Ir}(\mathrm{cod}) \mathrm{Cl}]_{2}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}(4.9 \mathrm{mg}$, $0.008 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, and TBD ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The vial was then charged with THF (1 mL) and stirred at $20^{\circ} \mathrm{C}$ for 10 min , generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with $\mathrm{LiO} t-\mathrm{Bu}(19.2 \mathrm{mg}, \quad 0.24 \mathrm{mmol}, 1.2$ equiv), dimethyl 2cycloheptylidenemalonate 1a ($45.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv), and p-methylcinnamyl carbonate $\mathbf{2 b}$ ($82.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at $20^{\circ} \mathrm{C}$ for 12 h , the vial was removed from the glovebox, uncapped, and THF was evaporated under
reduced pressure. $\mathrm{Et}_{2} \mathrm{O}$ was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ${ }^{1} \mathrm{H}$ NMR of this crude mixture as $>20: 1$. The residue was purified by silica gel flash chromatography (gradient elution, $10 \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to afford a colorless oil. This oil was then dissolved in 2 mL of toluene and stirred at $100^{\circ} \mathrm{C}$ for 5 h . After the evaporation of toluene under reduced pressure, the desired product 5ab (56.5 $\mathrm{mg}, 79 \%$ yield) was obtained as a colorless oil after purification by silica gel flash chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes). 96% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-107.2\left(c 1.67, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.2$ ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.06$ $(\mathrm{m}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{ddd}, J=15.4,8.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, $2.28-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.36$ $-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.03(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,166.5,165.7$, $136.8,134.9$, 131.6, 129.3, 126.7, 126.0, 124.5, 52.1, 52.0, 44.5, 39.9, 31.6, 30.8, 29.7, 29.6, 25.9, 21.3. IR (Neat Film, NaCl) 3022, 2924, 2855, 1727, 1615, 1513, 1434, 1294, 1276, 1231, 1192, 1070, 1045, 1028, 967, $790 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) calc'd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 357.2060$, found 357.2059 . SFC conditions: 5% IPA, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min}):$ major $=7.54, \operatorname{minor}=10.52$.

Dimethyl (S)-2-(2-(3-(4-methoxyphenyl)allyl)cycloheptylidene)malonate 5ac: The General Procedure B was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}$ $(4.9 \mathrm{mg}, 0.008 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, and TBD ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The vial was then charged with THF $(1 \mathrm{~mL})$ and stirred at $20^{\circ} \mathrm{C}$ for 10 min , generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with $\mathrm{LiO} t-\mathrm{Bu}(19.2 \mathrm{mg}, \quad 0.24 \mathrm{mmol}, 1.2$ equiv), dimethyl $2-$ cycloheptylidenemalonate $1 \mathbf{1 a}(45.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv), and p-methoxylcinnamyl
carbonate $\mathbf{2 c}(88.8 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at $20^{\circ} \mathrm{C}$ for 12 h . Then the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. $\mathrm{Et}_{2} \mathrm{O}$ was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: $\mathrm{b}: 1$ l) was determined by ${ }^{1} \mathrm{H}$ NMR of this crude mixture as $>20: 1$. The residue was purified by silica gel flash chromatography (gradient elution, $10 \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to afford a colorless oil. This oil was then dissolved in 2 mL of toluene and stirred at $100{ }^{\circ} \mathrm{C}$ for 5 h . After the evaporation of toluene under reduced pressure, the desired product 5ac ($53.6 \mathrm{mg}, 72 \%$ yield) was obtained as a colorless oil after purification by silica gel flash chromatography (gradient elution, $10 \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes). 96% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-72.7$ (c $\left.1.42, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.4\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexanes); ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.24(\mathrm{dt}, J=15.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (ddd, $J=15.6,8.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.06-3.00(\mathrm{~m}$, $1 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.30(\mathrm{dddd}, J=13.5,6.8,5.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dtd}, J=$ $13.5,8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 1 \mathrm{H})$, $1.29-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.05-0.98(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,166.5$, 165.7, 158.9, 131.1, 130.5, 127.3, 125.6, 124.5, 114.0, 55.4, 52.2, 52.1, 44.5, 39.9, 31.6, 30.8, 29.7, 29.6, 25.9. IR (Neat Film, NaCl) 2928, 2854, 1725, 1608, 1577, 1511, 1434, 1292, 1276, 1233, 1192, 1174, 1139, 1070, 1034, $967 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) calc'd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 373.2010$, found 373.2016. SFC conditions: 10% IPA, 2.5 $\mathrm{mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: major $=7.39$, minor $=9.02$.

Dimethyl (S,E)-2-(2-(3-(3-methoxyphenyl)allyl)cycloheptylidene)malonate 5ad: The General Procedure A was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $\left[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}_{2}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)\right.$, ligand $\mathbf{L 6}$ ($4.9 \mathrm{mg}, 0.008 \mathrm{mmol}, 4 \mathrm{~mol} \%$), and TBD ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The vial was
then charged with THF (1 mL) and stirred at $20^{\circ} \mathrm{C}$ for 10 min , generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with $\mathrm{LiO} t-\mathrm{Bu}(19.2 \mathrm{mg}, \quad 0.24 \mathrm{mmol}, 1.2$ equiv), dimethyl 2cycloheptylidenemalonate $1 \mathbf{1 a}$ ($45.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv), and m-methoxycinnamyl carbonate $\mathbf{2 d}$ ($88.8 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at $20^{\circ} \mathrm{C}$ for 16 h , the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. $\mathrm{Et}_{2} \mathrm{O}$ was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ${ }^{1} \mathrm{H}$ NMR of this crude mixture as $>20: 1$. The mixture was recovered from NMR tube, concentrated, and dried under vacuum. Then this crude mixture was dissolved in 2 mL of toluene and stirred at $100^{\circ} \mathrm{C}$ for 5 h . After the evaporation of toluene under reduced pressure, the desired product $\mathbf{5 a d}$ ($67.3 \mathrm{mg}, 90 \%$ yield) was obtained as a colorless oil after purification by silica gel flash chromatography (gradient elution, $10 \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes). 97% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-98.0\left(c 1.35, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.1(10 \%$ $\mathrm{Et}_{2} \mathrm{O}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (dt, $J=$ $7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (dd, $J=2.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (ddd, $J=8.2,2.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35$ (dt, $J=15.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{ddd}, J=15.7,8.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.18$ $(\mathrm{m}, 1 \mathrm{H}), 2.12-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.19(\mathrm{~m}$, $2 \mathrm{H}), 1.16-1.03(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2,166.4,165.7,159.9$, 139.1, 131.7, 129.5, 128.2, 124.5, 118.9, 112.8, 111.5, 55.3, 52.2, 52.1, 44.3, 39.8, 31.6, 30.8, 29.8, 29.6, 25.9. IR (Neat Film, NaCl) 2997, 2945, 2927, 2854, 1725, 1598, 1579, $1488,1434,1289,1231,1192,1165,1155,1070,1044,968,940,775 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI +) calc'd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 373.2010$, found 373.2001. SFC conditions: $5 \% \mathrm{MeOH}, 2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: major $=$ 9.50, minor $=10.16$.

Dimethyl (S,E)-2-(2-(3-(3-chlorophenyl)allyl)cycloheptylidene)malonate 5ae: The General Procedure A was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}$ $(4.9 \mathrm{mg}, 0.008 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, and TBD ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The vial was then charged with THF $(1 \mathrm{~mL})$ and stirred at $20^{\circ} \mathrm{C}$ for 10 min , generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with $\mathrm{LiO} t-\mathrm{Bu}(19.2 \mathrm{mg}, \quad 0.24 \mathrm{mmol}, 1.2$ equiv), dimethyl 2cycloheptylidenemalonate $1 \mathbf{1 a}(45.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv), and m-chlorocinnamyl carbonate $\mathbf{2 e}$ ($90.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at $20^{\circ} \mathrm{C}$ for 12 h , the vial was removed from the glovebox, uncapped, and THF evaporated under reduced pressure. $\mathrm{Et}_{2} \mathrm{O}$ was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ${ }^{1} \mathrm{H}$ NMR of this crude mixture as $>20: 1$. The mixture was recovered from NMR tube, concentrated, and dried under vacuum. Then this crude mixture was dissolved in 2 mL of toluene and stirred at $100^{\circ} \mathrm{C}$ for 5 h . After the evaporation of toluene under reduced pressure, the desired product 5ae ($73.3 \mathrm{mg}, 97 \%$ yield) was obtained as a colorless oil after purification by silica gel flash chromatography (10% $\mathrm{Et}_{2} \mathrm{O}$ in hexanes). 96% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-88.1\left(c 1.27, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.3\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}$, $1 \mathrm{H}), 6.31$ (dt, $J=15.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{ddd}, J=15.7,8.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 3.73 (s, 3H), 3.15 (ddt, $J=11.3,8.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.41$ (dddd, $J=$ $13.5,6.8,5.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dtd}, J=13.5,8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.85$ $-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.03(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,166.4,165.8,139.6,134.5,130.5,129.8,129.6,127.1,126.1$, 124.7, 124.4, 52.2, 52.1, 44.1, 39.8, 31.7, 30.8, 29.8, 29.6, 25.9. IR (Neat Film, NaCl) 2927, 2854, 1726, 1619, 1615, 1593, 1434, 1294, 1276, 1231, 1192, 1140, 1070, 1045,

1028, 964, $776 \mathrm{~cm}^{-1}$; HRMS ($\mathrm{FAB}+$) m / z calc'd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 377.1520$, found 377.1503. SFC conditions: 3% IPA, $4 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=254 \mathrm{~nm}$, $\mathrm{t}_{\mathrm{R}}(\mathrm{min}):$ major $=12.00$, minor $=17.72$.

Dimethyl (S,E)-2-(2-(3-(4-bromophenyl)allyl)cycloheptylidene)malonate 5af: The General Procedure A was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}$ $(4.9 \mathrm{mg}, 0.008 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, and TBD ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The vial was then charged with THF $(1 \mathrm{~mL})$ and stirred at $20^{\circ} \mathrm{C}$ for 10 min , generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with $\mathrm{LiO} t-\mathrm{Bu}(19.2 \mathrm{mg}, \quad 0.24 \mathrm{mmol}, 1.2$ equiv), dimethyl 2cycloheptylidenemalonate $1 \mathbf{1 a}(45.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv), and p-bromocinnamyl carbonate $\mathbf{2 f}(81.0 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at $20^{\circ} \mathrm{C}$ for 12 h , the vial was removed from the glovebox, uncapped, and THF evaporated under reduced pressure. $\mathrm{Et}_{2} \mathrm{O}$ was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ${ }^{1} \mathrm{H}$ NMR of this crude mixture as $>20: 1$. The residue was purified by silica gel flash chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to afford a colorless oil. This oil was then dissolved in 2 mL of toluene and stirred at $100^{\circ} \mathrm{C}$ for 5 h . After the evaporation of toluene under reduced pressure, the desired product 5af ($80.2 \mathrm{mg}, 95 \%$ yield) was obtained as a colorless oil after purification by silica gel flash chromatography (10% $\mathrm{Et}_{2} \mathrm{O}$ in hexanes). 97% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-69.9$ (c 1.66, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.3\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.30(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.15(\mathrm{ddd}, J=15.6,8.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.11(\mathrm{~m}$, $1 \mathrm{H}), 2.96-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.94(\mathrm{~m}, 3 \mathrm{H})$, $1.85-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (125 MHz, CDCl_{3}) $\delta 167.9,166.4,165.8,136.6,131.7,130.6,128.8,127.7,124.7$, $120.8,52.2,52.1,44.2,39.8,31.8,30.8,29.7,29.6,25.9$. IR (Neat Film, NaCl) 2927, $2855,1726,1619,1615,1593,1567,1434,1294,1276,1231,1193,1140,1070,1028$, 964, $777 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI +) calc'd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Br}\left[\mathrm{M}-\mathrm{H}_{2}+\mathrm{H}\right]^{+}: 419.0852$, found 419.0847. SFC conditions: $9 \% \mathrm{MeOH}, 2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=254$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}(\min):$ major $=5.33$, minor $=5.85$.

Dimethyl (S,E)-2-(2-(3-(thiophen-2-yl)allyl)cycloheptylidene)malonate 5ag: The General Procedure A was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}$ $(4.9 \mathrm{mg}, 0.008 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, and TBD ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The vial was then charged with THF $(1 \mathrm{~mL})$ and stirred at $20^{\circ} \mathrm{C}$ for 10 min , generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with $\mathrm{LiO} t-\mathrm{Bu}(19.2 \mathrm{mg}, \quad 0.24 \mathrm{mmol}, 1.2$ equiv), dimethyl 2cycloheptylidenemalonate $1 \mathbf{a}(45.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv), and (E)-methyl (3-(thiophen-2-yl)allyl) carbonate $\mathbf{2 g}(79.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at $20^{\circ} \mathrm{C}$ for 16 h . then the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. $\mathrm{Et}_{2} \mathrm{O}$ was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ${ }^{1} \mathrm{H}$ NMR of this crude mixture as $>20: 1$. The residue was recovered from the NMR tube, solvents were removed, and dried under high vacuum to form a yellow oil. This oil was then dissolved in 2 mL of toluene and stirred at $100^{\circ} \mathrm{C}$ for 5 h . After the evaporation of toluene under reduced pressure, the desired product 5 ag was obtained after purification by silica gel flash chromatography $\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexanes) as a inseparable mixture with $\mathbf{1 a}$ (65.7 mg of mixture, contains 64.0 mg of $\mathbf{5 a g}$ based on ${ }^{1} \mathrm{H}$ NMR, 92% yield). The analytic pure product was obtained
by preparative HPLC (ACE 5 C18, $250 \times 212 \mathrm{~mm}$ id column; gradient, $15-100 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ in 2 min , then $100 \% \mathrm{MeCN}$; flow rate $=10 \mathrm{~mL} / \mathrm{min} ; \lambda=254 \mathrm{~nm}$) as a colorless oil. 96% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-97.3$ (c 1.82, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.2\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09(\mathrm{dt}, J=5.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{ddd}, J=15.3,8.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ $(\mathrm{s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.28$ - $2.10(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.34-$ $1.23(\mathrm{~m}, 2 \mathrm{H}), 1.17-0.94(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,166.4,165.7$, $142.8,127.7,127.3,125.0,124.7,124.6,123.5,52.2,52.1,44.3,39.7,31.6,30.8,29.8$, 29.6, 25.9. IR (Neat Film, NaCl) 2927, 2855, 1726, 1619, 1615, 1593, 1567, 1434, 1294, 1276, 1231, 1193, 1140, 1070, 1028, 964, $777 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) calc'd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 349.1468$, found 349.1469 . SFC conditions: $3 \% \mathrm{MeOH}, 2.5$ $\mathrm{mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: major $=11.55$, minor $=12.69$.

Dimethyl (S)-2-(2-cinnamylcyclohexylidene)malonate 5ba: The General Procedure B was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}(4.9 \mathrm{mg}, 0.008 \mathrm{mmol}, 4$ $\mathrm{mol} \%$), and TBD ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The vial was then charged with THF $(1 \mathrm{~mL})$ and stirred at $20^{\circ} \mathrm{C}$ for 10 min , generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with $\mathrm{LiOt} t-\mathrm{Bu}$ $(19.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), dimethyl 2-cyclohexylidenemalonate $\mathbf{1 b}$ ($42.4 \mathrm{mg}, 0.2$ mmol, 1 equiv), and cinnamyl carbonate $\mathbf{2 a}$ ($76.8 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at $20^{\circ} \mathrm{C}$ for 12 h , the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. $\mathrm{Et}_{2} \mathrm{O}$ was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ${ }^{1} \mathrm{H}$ NMR of this crude mixture as
$>20: 1$. The residue was purified by silica gel flash chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to afford a colorless oil. This oil was then dissolved in 2 mL of toluene and stirred at $100{ }^{\circ} \mathrm{C}$ for 5 h . After the evaporation of toluene under reduced pressure, the desired product 5 ba ($54.3 \mathrm{mg}, 83 \%$ yield) was obtained as a colorless oil after purification by silica gel flash chromatography (gradient elution, $10 \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes). 91% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-36.3$ (c $0.73, \mathrm{CHCl}_{3}$); $\mathrm{R}_{f}=0.2$ ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39$ - 7.32 (m, 2H), 7.32 - 7.27 (m, 2H), 7.23 - 7.16 (m, $1 \mathrm{H}), 6.40(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{ddd}, J=15.6,7.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{td}, J=13.9,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.39(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.3,166.2,164.4,137.7,131.7,128.6,128.2$, 127.2, 126.2, 122.2, 52.24, 52.18, 39.7, 35.6, 30.5, 27.9, 27.8, 20.3. IR (Neat Film, $\mathrm{NaCl}) 2933,2858,1727,1626,1599,1495,1449,1434,1365,1336,1296,1271,1251$, 1216, 1143, 1103, 1085, 1058, 1016, 966, $743 \mathrm{~cm}^{-1}$; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 329.1753$, found 329.1750 ; SFC conditions: $15 \% \mathrm{IPA}, 2.5 \mathrm{~mL} / \mathrm{min}$, Chiralcel OJ-H column, $\lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min}):$ minor $=2.87$, major $=4.16$.

Dimethyl (S)-2-(2-cinnamylcyclopentylidene)malonate 5ca: The General Procedure B was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[\operatorname{Ir}(\mathrm{cod}) \mathrm{Cl}]_{2}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}(4.9 \mathrm{mg}, 0.008 \mathrm{mmol}, 4$ $\mathrm{mol} \%$), and TBD ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The vial was then charged with THF $(1 \mathrm{~mL})$ and stirred at $20^{\circ} \mathrm{C}$ for 10 min , generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with $\mathrm{LiOt} t \mathrm{Bu}$ $(19.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), dimethyl 2-cyclopentylidenemalonate $\mathbf{1 c}(40.1 \mathrm{mg}, 0.2$ mmol, 1 equiv), and cinnamyl carbonate $\mathbf{2 a}$ ($76.8 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at $20^{\circ} \mathrm{C}$ for 12 h . Then the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. $\mathrm{Et}_{2} \mathrm{O}$ was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with $\mathrm{Et}_{2} \mathrm{O}$
and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ${ }^{1} \mathrm{H}$ NMR of this crude mixture as $>20: 1$. The residue was purified by silica gel flash chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to afford a colorless oil. This oil was then dissolved in 2 mL of toluene and stirred at $100{ }^{\circ} \mathrm{C}$ for 5 h . After the evaporation of toluene under reduced pressure, the desired product 5ca ($47.2 \mathrm{mg}, 75 \%$ yield) was obtained as a colorless oil after purification by silica gel flash chromatography (gradient elution, $10 \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes). 90% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-49.9$ (c 1.13, CHCl_{3}); $\mathrm{R}_{f}=0.2$ ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H})$, $6.38(\mathrm{dt}, J=15.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{ddd}, J=15.7,8.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.36-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.40(\mathrm{~m}, 1 \mathrm{H})$, $2.18-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.68(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,165.9$, $137.5,131.9,131.9,128.6,128.2,127.2,126.2,120.6,52.2,52.1,44.6,36.9,33.5,30.3$, 22.8. IR (Neat Film, NaCl) 2951, 2877, 1725, 1634, 1598, 1494, 1435, 1317, 1274, 1232, 1194, 1173, 1061, 1013, 968, $743 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) calc'd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 315.1591$, found 315.1600 . SFC conditions: $10 \% \mathrm{IPA}, 2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak AD-H column, $\lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min}):$ minor $=4.41$, major $=4.79$.

Dimethyl (S)-2-(3-cinnamyltetrahydro-4H-pyran-4-ylidene)malonate 5da: The General Procedure B was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}$ ($4.9 \mathrm{mg}, 0.008 \mathrm{mmol}, 4 \mathrm{~mol} \%$), and TBD ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The vial was then charged with THF (1 mL) and stirred at $20^{\circ} \mathrm{C}$ for 10 min , generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with LiOt - $\mathrm{Bu}(19.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), dimethyl 2-(tetrahydro- 4 H -pyran-4-ylidene)malonate $\mathbf{1 d}(42.8 \mathrm{mg}, 0.2 \mathrm{mmol}$, 1 equiv), and cinnamyl carbonate $\mathbf{2 a}$ $(76.8 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at $20^{\circ} \mathrm{C}$ for 12 h ,
until 2-cyclopentylidenemalonate 1d was fully consumed, as indicated by TLC or UHPLC-MS analysis. Upon completion of the reaction the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. $\mathrm{Et}_{2} \mathrm{O}$ was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ${ }^{1} \mathrm{H}$ NMR of this crude mixture as $>20: 1$. The residue was purified by silica gel flash chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to afford a colorless oil. This oil was then dissolved in 2 mL of toluene and stirred at $100{ }^{\circ} \mathrm{C}$ for 5 h . After the evaporation of toluene under reduced pressure, the desired product 5da ($60.3 \mathrm{mg}, 91 \%$ yield) was obtained as a colorless oil after purification by silica gel flash chromatography (gradient elution, $10 \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes). 94% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-52.9$ (c 1.26, CHCl_{3}); $\mathrm{R}_{f}=0.2\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexanes); ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 7.37$ - $7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 1 \mathrm{H})$, $6.46(\mathrm{dt}, J=15.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{ddd}, J=15.7,8.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=11.1$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dt}, J=11.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{dd}, J=11.6$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (ddd, $J=12.5,11.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dtd}, J=13.7,8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,158.8,137.4,132.6,128.6,127.3,127.2,126.2,123.3,70.2,68.4$, 52.4, 52.3, 41.1, 35.0, 29.0. IR (Neat Film, NaCl) 2952, 2847, 1725, 1633, 1495, 1434, 1384, 1299, 1245, 1228, 1102, 1067, 1047, 1031, $967 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) calc'd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 331.1540$, found 331.1544. SFC conditions: 15% IPA, 2.5 $\mathrm{mL} / \mathrm{min}$, Chiralcel OJ-H column, $\lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: minor $=2.79$, major $=4.44$.

Dimethyl (S)-2-(3-cinnamyltetrahydro-4H-thiopyran-4-ylidene)malonate 5ea: The General Procedure A was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}$ $(4.9 \mathrm{mg}, 0.008 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, and TBD ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The vial was then charged with THF $(1 \mathrm{~mL})$ and stirred at $20^{\circ} \mathrm{C}$ for 10 min , generating a light brown
solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with LiOt - $\mathrm{Bu}(19.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), dimethyl 2-(tetrahydro- 4 H -thiopyran-4-ylidene)malonate $\mathbf{1 e}(46.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), cinnamyl carbonate $\mathbf{2 a}$ ($76.8 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at $20^{\circ} \mathrm{C}$ for 12 h , the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. $\mathrm{Et}_{2} \mathrm{O}$ was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ${ }^{1} \mathrm{H}$ NMR of this crude mixture as $>20: 1$. The mixture was recovered from NMR tube, concentrated, and dried under vacuum. Then this crude mixture was dissolved in 2 mL of toluene and stirred at $100^{\circ} \mathrm{C}$ for 5 h . After the evaporation of toluene under reduced pressure, the desired product $\mathbf{5 a e}(38.7 \mathrm{mg}, 56 \%$ yield) was obtained as a colorless oil after purification by silica gel flash chromatography ($25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes). $93 \% \mathrm{ee}$, $[\alpha]_{\mathrm{D}}{ }^{25}-50.9\left(c 0.67, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.4\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexanes); ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.43-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=15.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ (ddd, $J=15.7,8.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (s, 3 H), 3.78 (s, 3 H), 3.45 (ddt, $J=9.3,6.5,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.28(\mathrm{dt}, J=13.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.79(\mathrm{~m}, 2 \mathrm{H})$, $2.79-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.54(\mathrm{ddd}, J=14.0,12.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,165.7,160.5,137.4,132.7,128.6,127.3,127.0,126.2,124.1,52.4,452.43,39.6$, 34.7, 33.9, 30.4, 29.0. IR (Neat Film, NaCl) 3024, 2950, 2905, 2841, 1727, 1626, 1599, 1494, 1434, 1255, 1231, 1208, 1146, 1061, 1022, 967, 930, $745 \mathrm{~cm}^{-1}$; HRMS (MM: ESIAPCI +) calc'd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 347.1312$, found 347.1303. SFC conditions: 10% IPA, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\min)$: major $=2.75$, $\operatorname{minor}=2.92$.

Dimethyl (S)-2-(1-benzyl-3-cinnamylpiperidin-4-ylidene)malonate 5fa: The General Procedure A was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}(4.9 \mathrm{mg}$, $0.008 \mathrm{mmol}, 4 \mathrm{~mol} \%$), and TBD ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The vial was then
charged with THF (1 mL) and stirred at $20^{\circ} \mathrm{C}$ for 10 min , generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with LiOt - Bu ($19.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), dimethyl 2-(1-benzylpiperidin-4ylidene)malonate $\mathbf{1 f}(60.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), cinnamyl carbonate $\mathbf{2 a}(76.8 \mathrm{mg}$, 0.4 mmol , 2.0 equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at $20^{\circ} \mathrm{C}$ for 12 h . Then the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. EtOAc was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with EtOAc and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: $\mathrm{b}: \mathrm{l}$) was determined by ${ }^{1} \mathrm{H}$ NMR of this crude mixture as $>20: 1$. The mixture was recovered from NMR tube, concentrated, and dried under vacuum. Then this crude mixture was dissolved in 2 mL of toluene and stirred at $100^{\circ} \mathrm{C}$ for 5 h . After the evaporation of toluene under reduced pressure, the desired product $\mathbf{5 f a}(79.2 \mathrm{mg}, 95 \%$ yield) was obtained as a yellow oil after purification by silica gel flash chromatography (15% EtOAc in hexanes). 95% ee, $[\alpha]_{D}{ }^{25}$ -26.1 (c 1.18, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.2\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.39-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{dt}, J=15.8,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.06(\mathrm{ddd}, J=15.4,8.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=13.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.37(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-2.94(\mathrm{~m}, 3 \mathrm{H}), 2.91(\mathrm{dt}, J=11.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ - $2.67(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{ddd}, J=23.7,11.2,3.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,165.9,161.2,138.7,137.6,132.0,129.0,128.5,128.4,128.0$, 127.2, 127.1, 126.2, 122.6, 62.5, 55.8, 54.4, 52.3, 52.2, 40.8, 35.8, 28.5. IR (Neat Film, $\mathrm{NaCl}) 3026,2949,2802,1737,1732,1722,1716,1633,1494,1434,1366,1348,1300$, 1226, 1066, 1038, 1009, 966, $745 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) calc'd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 420.2169$, found 420.2172 . SFC conditions: $10 \% \mathrm{IPA}, 2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: major $=6.64$, $\operatorname{minor}=7.42$.

General Procedure for the Synthesis of Cyclic Alkylidene Malonates.

A known procedure was followed with a slight modification: ${ }^{4}$ A flame-dried flask containing 25 mL of THF chilled with an ice bath was treated with $\mathrm{TiCl}_{4}(13.5 \mathrm{mmol}, 3$ equiv.) slowly via syringe. To the resulting yellow solution was added dropwise a mixture of ketone (4.5 mmol), dimethyl malonate ($13.5 \mathrm{mmol}, 3$ equiv), pyridine (13.5 mmol, 3 equiv) in THF (8 mL) and the reaction mixture was allowed to slowly warm to room temperature. Upon completion, as determined by TLC, the reaction was quenched by slow addition of water until a homogenous solution was obtained. THF was then removed in vacuo and the resulting aqueous solution was extracted with EtOAc. The combined organic layers were sequentially washed with 1 M HCl and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude residue was purified by silica gel flash chromatography to afford the desired product.

Dimethyl 2-cycloheptylidenemalonate (1a).

Colorless oil, 45% yield, $\mathrm{R}_{f}=0.4$ (15% EtOAc in hexanes), purified by silica gel flash chromatography (6% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.76$ (s, 6H), $2.65-2.58(\mathrm{~m}, 4 \mathrm{H}), 1.70(\mathrm{dt}, J=4.3,2.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,165.2,123.4,52.0,34.1,28.9,26.6$; IR (Neat Film, NaCl) 2926.3, $2856.8,1729.0,1622.0,1435.3,1275.5,1234.1,1194.3,1169.8,1150.3,1103.5,1074.1$, 1037.7, 1023.5, $941.5,749.6 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{FAB}+) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 227.1283, found 227.1273.

Dimethyl 2-(tetrahydro-4H-pyran-4-ylidene)malonate (1d).

Colorless oil, 42% yield $\mathrm{R}_{f}=0.2$ (15% EtOAc in hexanes), purified by silica gel flash chromatography (10% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.80-3.76$ (m, $10 \mathrm{H}), 2.68(\mathrm{t}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,156.4,122.5,68.3$, 52.3, 33.0; IR (Neat Film, NaCl) 2955.2, 2914.9, 2849.5, 1726.3, 1639.6, 1634.0, 1435.2, 1382.8, 1357.7, 1295.0, 1259.1, 1242.4, 1205.3, 1097.7, 1061.6, 1031.0, 1005.6, 982.5, 947.1, $912.4,838.8,765.5 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI +) m / z calc'd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}: 215.0914$, found 215.0907.

Dimethyl 2-(tetrahydro-4H-thiopyran-4-ylidene)malonate (1e).

Colorless oil, 83% yield $\mathrm{R}_{f}=0.4\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexanes), purified by silica gel flash chromatography ($25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.76(\mathrm{~d}, J=0.7$ $\mathrm{Hz}, 6 \mathrm{H}), 2.96-2.83(\mathrm{~m}, 4 \mathrm{H}), 2.83-2.70(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7$, 158.5, 123.4, 52.4, 34.5, 30.8; IR (Neat Film, NaCl) 3000, 2951, 2915, 2841, 1725, 1633, 1434, 1321, 1294, 1256, 1228, 1203, 1168, 1060, 1031, 1007, 973, $942 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) m / z calc'd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{SO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 231.0686$, found 231.0684 .

Dimethyl 2-(1-benzylpiperidin-4-ylidene)malonate (1f)

Yellow oil, 56% yield $\mathrm{R}_{f}=0.2$ ($25 \% \mathrm{EtOAc}$ in hexanes), purified by silica gel flash chromatography (25% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.21$ (m , $5 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 2.67(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.56(\mathrm{t}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl_{3}) $\delta 166.0,158.9,138.1,129.2,128.4,127.3,122.1,62.5,54.0$, 52.3, 31.9. IR (Neat Film, NaCl) 2951, 1907, 2801, 2760, 1732, 1639, 1634, 1494, 1435, 1365, 1347, 1295, 1254, 1231, 1208, 1144, 1063, 1033, $997 \mathrm{~cm}^{-1}$; HRMS (MM: ESIAPCI+) m / z calc'd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 304.1543$, found 304.1545 .

Determination of the Absolute Configuration of 5aa.

The absolute configuration of 5 aa was assigned by the X-ray analysis of reduced product $\boldsymbol{S 5 a a}$.

To a flame-dried flask was added malonate $\mathbf{5 a a}(258.0 \mathrm{mg}, 0.75 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and DIBAL (neat, $0.8 \mathrm{~mL}, 4.5$ mmol, 6 equiv) was added slowly via syringe. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then room temperature overnight. The reaction was quenched with saturated Rochelle's salt at $0{ }^{\circ} \mathrm{C}$, and stirred until two clear phases were obtained. The aqueous layer was partitioned with 60 mL of EtOAc, and the combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude mixture was then filtered though a silica pad, and the resulting solid obtained was purified by recrystallization with $\mathrm{Et}_{2} \mathrm{O} /$ hexanes, affording the desired product $\mathbf{S 5 a a}(163.2 \mathrm{mg}, 76 \%$ yield) as colorless crystals. $>99 \%$ ee, $[\alpha]_{\mathrm{D}}{ }^{25}-85.2$ (c 1.31, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.39-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dt}, J$ $=15.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.27(\mathrm{~m}, 4 \mathrm{H}), 2.92-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{ddd}, J=12.6,6.0$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.86(\mathrm{~m}, 5 \mathrm{H}), 1.86-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.03$ (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.6,137.5,132.5,131.4,128.8,128.7,127.2$, 126.1, 62.5, 61.8, 41.5, 40.0, 33.1, 31.1, 30.6, 26.8, 26.0; IR (Neat Film, NaCl) 3349, 2921, 2851, 1643, 1597, 1493, 1447, 1352, 1231, 1046, 998, 965, 745, $692 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI +) m / z calc'd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}: 269.1900$, found 269.1896;

SFC conditions: $20 \% \mathrm{IPA}, 2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: minor $=6.98$, major $=8.97$.

General Procedure for the Ir-Catalyzed Asymmetric Allylic Alkylation of Endocyclic $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated $\boldsymbol{\beta}$-Ketoesters

Please note that the absolute configuration was determined only for the major isomer of compound 7ca (vide infra). The absolute configuration for all other products 7 has been inferred by analogy. For respective SFC conditions, please refer to Table S2. Isolated yields are given in Scheme 4 (see manuscript).

In a nitrogen-filled glove box, $\left[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}_{2}(2.69 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)\right.$, ligand $\mathbf{L} 1$ ($3.71 \mathrm{mg}, 0.008 \mathrm{mmol}, 4 \mathrm{~mol} \%$), and TBD ($2.78 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were added to a 2 dram scintillation vial equipped with a magnetic stirring bar. The vial was then charged with THF (1 mL) and stirred at $25^{\circ} \mathrm{C}$ for 10 min . To a 20 mL scintillation vial was added α, β-unsaturated β-ketoester ($0.4 \mathrm{mmol}, 2.0 \mathrm{eq}$), cinnamyl carbonate 2a (38.4 $\mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and 1 mL of THF, then the above pre-formed catalyst solution was transferred to this vial. The vial was sealed and stirred at $25^{\circ} \mathrm{C}$ for 1 day. The reaction mixture was filtered through a pad of silica gel, rinsed with hexane/ethyl acetate ($5: 1, \mathrm{v} / \mathrm{v}$), and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography and preparative HPLC.

Methyl (S)-7-oxo-1-((R)-1-phenylallyl)cyclohept-2-ene-1-carboxylate (7aa) and methyl (R)-7-oxo-1-((R)-1-phenylallyl)cyclohept-2-ene-1-carboxylate (7aa').

Products 7aa and 7aa' were isolated by silica gel chromatography ($3 \% \mathrm{EtOAc}$ in hexanes) as a mixture of diastereomers (2:1), where were separated by preparative HPLC (3\% EtOAc in hexanes).

The major diastereomer was isolated as a colorless oil, 95% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-15.4$ (c 1.79, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.2\left(9 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.28(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.22(\mathrm{ddd}, J=16.7,10.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-5.91(\mathrm{~m}, 2 \mathrm{H})$, $5.15-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{dt}, J=12.6,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.28(\mathrm{dt}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.37(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.8,170.4,139.1,137.0,132.3,130.5,127.8$, 127.0, 126.1, 117.8, 71.3, 54.3, 52.9, 40.4, 25.3, 22.9; IR (Neat Film, NaCl) 3030, 2948, 2359, 2341, 1738, 1716, 1493, 1453, 1433, 1296, 1226, 1194, 1123, $1056 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{FAB}+) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 285.1491$, found 285.1496; SFC conditions: 5% IPA, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak AD-H column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min}): \operatorname{minor}=4.99$, major $=7.08$.

$7 a^{\prime}$
The minor diastereomer was isolated as a colorless oil, 88% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-75.1$ (c 0.61, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.2\left(9 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.16(\mathrm{~m}$, $5 \mathrm{H}), 6.20$ (ddd, $J=17.0,10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12-6.01(\mathrm{~m}, 2 \mathrm{H}), 5.22-5.10(\mathrm{~m}, 2 \mathrm{H})$, $4.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{ddd}, J=12.7,8.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{ddd}, J=$ $12.7,6.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.71(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.7,170.0,139.5,137.1,131.7,129.6,128.2,127.2,126.2$, 118.5, 70.6, 53.3, 52.7, 40.0, 25.2, 23.5; IR (Neat Film, NaCl) 3030, 2948, 1737, 1719, 1493, 1453, 1434, 1296, 1230, 1194, $1121 \mathrm{~cm}^{-1} ; \operatorname{HRMS}(\mathrm{FAB}+) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{3}$
$[\mathrm{M}+\mathrm{H}]^{+}: 285.1491$, found 285.1498; SFC conditions: $5 \% \mathrm{IPA}, 2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak AD-H column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: major $=5.62$, minor $=7.98$.

Methyl (S,Z)-8-oxo-1-((R)-1-phenylallyl)cyclooct-2-ene-1-carboxylate (7ba) and methyl (R, Z)-8-oxo-1-((R)-1-phenylallyl)cyclooct-2-ene-1-carboxylate (7ba').

Products 7ba and 7ba' were isolated by silica gel chromatography (2\% EtOAc in hexanes) as a mixture of diastereomers (3:1), where were separated by preparative HPLC (3\% EtOAc in hexanes).

The major diastereomer was isolated as a colorless oil, 90% ee, $[\alpha]_{\mathrm{D}}{ }^{25}+59.3$ (c 1.60, CHCl_{3}); $\mathrm{R}_{f}=0.4\left(9 \% \mathrm{EtOAc}\right.$ in hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.38(\mathrm{~m}$, 2H), $7.24-7.18$ (m, 2H), $7.18-7.11$ (m, 1H), 6.15 (dt, $J=16.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.08$ (dd, $J=11.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.49-$ $1.37(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.66-0.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $208.5,169.8,139.1,137.4,135.4,131.0,127.5,126.7,124.7,117.2,70.8,53.7,53.0$, 39.0, 27.6, 25.4, 24.8; IR (Neat Film, NaCl) 3029, 2931, 2859, 1740, 1712, 1492, 1453, 1432, 1331, 1224, 1176, 1123, $1061 \mathrm{~cm}^{-1}$; HRMS (FAB+) m/z calc'd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 299.1647$, found 299.1645; SFC conditions: 5% IPA, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak IA column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: minor $=4.52$, major $=6.36$.

$7{ }^{7} a^{\prime}$
The minor diastereomer was isolated as a colorless oil, 77% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-114.2$ (c 0.52, CHCl_{3}); $\mathrm{R}_{f}=0.4$ (9% EtOAc in hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.15(\mathrm{~m}$, $5 \mathrm{H}), 6.17-6.02(\mathrm{~m}, 2 \mathrm{H}), 6.01-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{ddd}, J=17.0,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (ddd, $J=10.1,1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{td}, J=12.2$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, J=12.3,7.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.53(\mathrm{~m}$,

2H), 1.31 - $1.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 208.2, 169.5, 140.0, 137.0, $134.0,129.3,128.3,127.1,124.9,118.1,69.5,52.8,52.7,39.2,27.6,26.0,25.3$; IR (Neat Film, NaCl) 3028, 2931, 2859, 1740, 1715, 1491, 1453, 1432, 1228, 1177, 1432, 1228, 1177, 1133, $1059 \mathrm{~cm}^{-1}$; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$299.1647, found 299.1654; SFC conditions: 5% IPA, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak IA column, $\lambda=210$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}(\min):$ major $=5.79$, minor $=7.41$.

Ethyl (S)-6-0x0-1-((R)-1-phenylallyl)cyclohex-2-ene-1-carboxylate (7ca) and Ethyl (R)-6-0x0-1-((R)-1-phenylallyl)cyclohex-2-ene-1-carboxylate (7ca').

Products 7ca and 7ca' were isolated by silica gel chromatography (3\% EtOAc in hexanes) as a mixture of diastereomers (5:1), where were separated by preparative HPLC (4\% EtOAc in hexanes).

The major diastereomer was isolated as a colorless oil, 98% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-35.8$ (c 0.71, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.2\left(9 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.14(\mathrm{~m}$, $5 \mathrm{H}), 6.25-6.16(\mathrm{~m}, 1 \mathrm{H}), 6.17-6.11(\mathrm{~m}, 1 \mathrm{H}), 6.05(\mathrm{ddd}, J=10.1,1.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ $-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{dt}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{qd}, J=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.23$ (m, 2H), $1.94-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $205.9,169.3,138.8,136.4,130.5,130.3,128.1,127.1,126.1,118.5,65.6,62.0,54.4$, 38.3, 24.5, 14.2; IR (Neat Film, NaCl) 3033, 2980, 1743, 1719, 1493, 1454, 1416, 1391, 1365, 1342, 1299, 1213, 1165, 1130, 1096, 1044, $1016 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 285.1485$, found 285.1482; SFC conditions: 2% IPA, $3.0 \mathrm{~mL} / \mathrm{min}$, Chiralpak IA column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min}):$ minor $=6.82$, major $=13.26$.

$7 c a^{\prime}$
The minor diastereomer was isolated as a colorless oil, 91% ee, $[\alpha]_{\mathrm{D}}{ }^{25}+28.9$ (c 0.30, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.2$ (9\% EtOAc in hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.16(\mathrm{~m}$,
$5 \mathrm{H}), 6.29-6.18(\mathrm{~m}, 1 \mathrm{H}), 6.15-6.07(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{ddd}, J=10.0,2.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ - $5.07(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 1 \mathrm{H})$, $2.47-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 205.6,169.2,139.2,136.8,130.0,129.7,128.2,127.4,127.2,118.2,65.0,61.9$, 54.5, 39.2, 24.8, 14.0; IR (Neat Film, NaCl) 3032, 2980, 2931, 1736, 1719, 1637, 1601, 1493, 1453, 1444, 1419, 1389, 1365, 1342, 1298, 1218, 1166, 1118, 1097, 1045, 1018 cm^{-1}; HRMS (MM: ESI-APCI +) m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 285.1485$, found 285.1480; SFC conditions: $2 \% \mathrm{IPA}, 3.0 \mathrm{~mL} / \mathrm{min}$, Chiralpak IA column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ $(\mathrm{min}):$ major $=6.95$, minor $=11.43$.

Methyl (R)-1-benzyl-2-oxo-3-((R)-1-phenylallyl)-2,3,6,7-tetrahydro-1H-azepine-3carboxylate (7da) and methyl (S)-1-benzyl-2-oxo-3-((R)-1-phenylallyl)-2,3,6,7-tetrahydro- $\mathbf{H} \mathbf{H}$-azepine-3-carboxylate (7da').

Products 7da and 7da' were isolated by silica gel chromatography (3\% EtOAc in hexanes) as a mixture of diastereomers (2:1), where were separated by preparative HPLC (12% EtOAc in hexanes).

7da
The major diastereomer was isolated as a colorless oil, 79% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-14.6$ (c 0.19, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.4\left(25 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.19$ (m, 10H), $6.27(\mathrm{ddd}, J=17.3,10.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.90(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{dt}, J=10.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dt}, J=17.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dt}, J=5.4$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.00(\mathrm{~m}$, $1 \mathrm{H}), 2.26-2.07(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7,170.7,139.3,138.9$, 137.7, 132.0, 130.4, 128.7, 128.3, 127.9, 127.5, 127.4, 124.7, 118.1, 62.3, 54.7, 52.4, 51.4, 44.0, 28.3; IR (Neat Film, NaCl) 3029, 2048, 1737, 1728, 1656, 1652, 1495, 1480, 1431, 1416, 1357, 1242, 1227, 1164, 1045, $1001 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) m/z calc'd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 376.1907$, found 376.1917 ; SFC conditions: $10 \% \mathrm{MeCN}$, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralcel OD-H column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min}):$ minor $=13.74$, major $=$ 16.85.

7da'
The minor diastereomer was isolated as a colorless oil, 62% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-42.3$ (c 0.12, CHCl_{3}); $\mathrm{R}_{f}=0.4\left(25 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.42$ (m, 2H), $7.36-7.16(\mathrm{~m}, 8 \mathrm{H}), 6.40(\mathrm{ddd}, J=16.9,10.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ (dddd, $J=11.8$, $4.7,3.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.73 (dt, $J=11.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.23-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.51-$ $3.42(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.04(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.0,170.3,140.2,137.7,137.7,131.1,130.3,128.7,128.0,127.9,127.5,126.7,126.2$, 118.2, 63.1, 56.6, 52.7, 51.4, 44.2, 28.2; IR (Neat Film, NaCl) 3028, 2948, 1732, 1656, 1652, 1495, 1480, 1429, 1417, 1357, 1241, 1226, 1163, 1044, $1002 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI +) m / z calc'd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 376.1907, found 376.1915; SFC conditions: $10 \% \mathrm{MeCN}, 2.5 \mathrm{~mL} / \mathrm{min}$, Chiralcel $\mathrm{OD}-\mathrm{H}$ column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: major $=12.34$, minor $=15.02$.

Methyl (S)-7-oxo-1-((R)-1-(p-tolyl)allyl)cyclohept-2-ene-1-carboxylate (7ab) and methyl (R)-7-oxo-1-((R)-1-(p-tolyl)allyl)cyclohept-2-ene-1-carboxylate (7ab').

Products 7ab and 7ab' were isolated by silica gel chromatography ($2 \% \mathrm{EtOAc}$ in hexanes) as a mixture of diastereomers (1.2:1), where were separated by preparative HPLC (3\% EtOAc in hexanes).

$7 a b$
The major diastereomer was isolated as a colorless oil, 95% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-17.5$ (c 0.195, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.3\left(9 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{ddd}, J=16.7,10.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.90(\mathrm{~m}$, 2H), $5.13-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.33$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (s, 3H), 2.71 (dt, $J=12.7,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.43(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.9,170.5,137.2,136.6,136.1,132.3,130.2$,
128.6, 126.2, 117.6, 71.1, 54.0, 52.9, 40.6, 25.6, 22.9, 21.2; IR (Neat Film, NaCl) 2948, 1738, 1716, 1514, 1435, 1225, $1123 \mathrm{~cm}^{-1}$; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 299.1647$, found 299.1655; SFC conditions: 8% IPA, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak $\mathrm{AD}-\mathrm{H}$ column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min}):$ minor $=4.13$, major $=4.50$.

$7 a b^{\prime}$
The minor diastereomer was isolated as a colorless oil, 91% ee, $[\alpha]_{D}{ }^{25}-76.0$ (c 0.17, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.3\left(9 \% \mathrm{EtOAc}\right.$ in hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13-7.00(\mathrm{~m}$, $4 \mathrm{H}), 6.17$ (ddd, $J=17.0,10.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.00(\mathrm{~m}, 2 \mathrm{H}), 5.17$ (ddd, $J=17.0,1.8$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{ddd}, J=10.2,1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H})$, 2.79 (ddd, $J=12.7,8.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39 (ddd, $J=12.6,6.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, $2.17-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 205.8,170.0,137.2,136.7,136.4,131.6,129.3,129.0,126.3,118.2,70.6,52.9$, 52.7, 40.0, 25.2, 23.5, 21.2; IR (Neat Film, NaCl) 2948, 1736, 1720, 1716, 1513, 1435, 1230, 1194, $1123 \mathrm{~cm}^{-1}$; HRMS (FAB+) m/z calc'd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$299.1647, found 299.1640; SFC conditions: 10% IPA, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak AD-H column, $\lambda=$ $210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min}):$ minor $=3.43$, major $=4.49$.

Methyl (S)-1-((R)-1-(3-methoxyphenyl)allyl)-7-oxocyclohept-2-ene-1-carboxylate (7ad) and methyl (R)-1-((\boldsymbol{R})-1-(3-methoxyphenyl)allyl)-7-oxocyclohept-2-ene-1carboxylate (7ad')

Products 7ba and 7ba' were isolated by silica gel chromatography ($2 \% \mathrm{EtOAc}$ in hexanes) as a mixture of diastereomers (2:1), where were separated by preparative HPLC (7\% EtOAc in hexanes).

7ad
The major diastereomer was isolated as a colorless oil, 91% ee, $[\alpha]_{D}{ }^{25}-14.9$ (c 0.29, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.3\left(17 \% \mathrm{EtOAc}\right.$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.74$ (ddd, $J=8.2,2.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.26-6.14(\mathrm{~m}, 1 \mathrm{H})$, $6.02-5.91(\mathrm{~m}, 2 \mathrm{H}), 5.15-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 2.71(\mathrm{dt}, J=12.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dt}, J=12.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 1 \mathrm{H})$, 1.74 - 1.63 (m, 2H), 1.56 - $1.47(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.7,170.4$, $159.0,140.7,136.9,132.3,128.8,126.2,122.8,117.9,116.2,112.4,71.1,55.3,54.4$, 52.9, 40.5, 25.6, 22.8; IR (Neat Film, NaCl) 2949, 1738, 1716, 1599, 1583, 1489, 1455, 1435, 1225, $1050 \mathrm{~cm}^{-1}$; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 315.1596$, found 315.1592; SFC conditions: 8% IPA, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak AD-H column, $\lambda=210 \mathrm{~nm}$, $\mathrm{t}_{\mathrm{R}}(\min):$ minor $=4.28$, major $=4.75$.

$7 a{ }^{\prime}$
The minor diastereomer was isolated as a colorless oil, 81% ee, $[\alpha]_{\mathrm{D}}{ }^{25}-64.5$ (c 0.135, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.3\left(17 \% \mathrm{EtOAc}\right.$ in hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84-6.71(\mathrm{~m}, 3 \mathrm{H}), 6.15(\mathrm{ddd}, J=17.0,10.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.02(\mathrm{~m}, 2 \mathrm{H})$, $5.21(\mathrm{ddd}, J=17.1,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{ddd}, J=10.2,1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{ddd}, J=12.5,8.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (ddd, J $=12.4,6.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.72(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.7,169.9,159.3,141.1,136.8,131.5,129.2,126.3$, $121.8,118.5,115.6,112.3,70.7,55.3,53.2,52.7,39.8,25.1,23.6$; IR (Neat Film, NaCl) 2949, 1735, 1719, 1599, 1583, 1491, 1453, 1434, 1230, $1049 \mathrm{~cm}^{-1} ;$ HRMS (FAB+) m / z calc'd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 315.1596$, found 315.1603 ; SFC conditions: 10% IPA, 2.5 $\mathrm{mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\min)$: minor $=5.40$, major $=5.99$.

Methyl (S)-1-((R)-1-(3-chlorophenyl)allyl)-7-oxocyclohept-2-ene-1-carboxylate (7ae) and methyl $(R)-1-((R)-1$-(3-chlorophenyl)allyl)-7-oxocyclohept-2-ene-1-carboxylate (7ae')

Products 7ae and 7ae' were isolated by silica gel chromatography ($2 \% \mathrm{EtOAc}$ in hexanes) as a mixture of diastereomers (3:1), where were separated by preparative HPLC (3.5\% EtOAc in hexanes).

The major diastereomer was isolated as a colorless oil, 91% ee, $[\alpha]_{D}{ }^{25}-4.9$ (c 0.325, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.4\left(17 \% \mathrm{EtOAc}\right.$ in hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.28(\mathrm{~m}$, $1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.15$ (ddd, $J=16.8,10.2,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.05-5.93 (m, 2H), 5.16-5.06 (m, 2H), $4.35(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.74$ (ddd, $J=12.6,8.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dt}, J=12.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.75-$ $1.63(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.35(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.5,170.1,141.3$, $136.3,133.5,132.6,130.4,129.0,128.8,127.1,125.8,118.4,71.2,53.8,53.0,40.2,25.2$, 22.9; IR (Neat Film, NaCl) 2949, 1738, 1716, 1594, 1571, 1432, 1228, 1195, 1123, 1094 cm^{-1}; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 319.1101$, found 319.1112; SFC conditions: 7% IPA, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak AD-H column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: minor $=4.14$, major $=4.85$.

$7 a{ }^{\prime}$
The minor diastereomer was isolated as a colorless oil, 75% ee, $[\alpha]_{D}{ }^{25}-56.2(c 0.105$, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.4\left(17 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.15(\mathrm{~m}$, $3 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{ddd}, J=17.0,10.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{ddd}, J=11.4,7.2$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=11.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{ddd}, J=12.6,8.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J=12.7,6.5,5.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.3,169.9,141.7,136.4,133.9,132.1,129.7,129.4$, 127.7, 127.4, 125.8, 119.0, 70.4, 53.0, 52.8, 39.9, 25.2, 23.4; IR (Neat Film, NaCl) 2949, 1738, 1720, 1594, 1571, 1476, 1455, 1432, 1231, 1194, 1121, $1095 \mathrm{~cm}^{-1} ;$ HRMS (FAB+) m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 319.1101$, found 319.1089; SFC conditions: 7\% IPA, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak AD-H column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: major $=4.67$, minor $=5.28$.

Methyl (S)-1-((R)-1-(4-bromophenyl)allyl)-7-oxocyclohept-2-ene-1-carboxylate (7af) and methyl (R)-1-((R)-1-(4-bromophenyl)allyl)-7-oxocyclohept-2-ene-1-carboxylate (7af')

Products 7af and 7af' were isolated by silica gel chromatography ($2 \% \mathrm{EtOAc}$ in hexanes) as a mixture of diastereomers (2:1), where were separated by preparative HPLC (4\% EtOAc in hexanes).

7af
The major diastereomer was isolated as a colorless oil, 88% ee, $[\alpha]_{D}{ }^{25}-20.4$ (c 0.31, CHCl_{3}) $\mathrm{R}_{f}=0.3$ ($9 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{ddd}, J=16.8,10.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-5.93(\mathrm{~m}$, $2 \mathrm{H}), 5.15-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{ddd}, J=12.5,8.1$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dt}, J=12.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.63(\mathrm{~m}, 2 \mathrm{H})$, $1.47-1.33(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.7,170.1,138.3,136.4,132.5$, 132.2, 130.9, 125.9, 121.0, 118.2, 71.3, 53.5, 53.0, 40.06, 25.2, 23.1; IR (Neat Film, $\mathrm{NaCl}) 2948,1738,1720,1716,1487,1432,1227,1194,1010 \mathrm{~cm}^{-1} ;$ HRMS (FAB+) m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 363.0596$, found 363.0588 ; SFC conditions: 10% IPA, 2.5 $\mathrm{mL} / \mathrm{min}$, Chiralpak AD-H column $, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: minor $=4.68$, major $=5.17$.

The minor diastereomer was isolated as a colorless oil, 79% ee, $[\alpha]_{D}{ }^{25}-76.3$ (c 0.16, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.3\left(9 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.22-6.11(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{ddd}, J=11.4,7.2,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.97(\mathrm{dd}, J=11.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ (s, 3H), $2.80(\mathrm{ddd}, J=12.7,8.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J=12.7,6.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-$ $2.07(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.5,170.0,138.6,136.6,132.1,131.4,131.3,125.9,121.2,118.8$, $70.4,52.9,52.8,40.0,25.3,23.3$; IR (Neat Film, NaCl) 2948, 1737, 1716, 1488, 1230, 1194, 1075, $1010 \mathrm{~cm}^{-1}$; HRMS (FAB+) m/z calc'd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 363.0596$, found 363.0604 ; SFC conditions: 10% IPA, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=210$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}(\min):$ minor $=4.43$, major $=5.01$.

Determination of the Absolute Configuration of 7ca.

The absolute configuration of 7 ca was determined by comparing the optical rotation of its derivative with compound $\boldsymbol{S} \mathbf{2}$ obtained from the previously known compound $\boldsymbol{S} 1 .{ }^{5}$

General procedure for the Pd/C-catalyzed hydrogenation (for eq 1): To a round bottom flask was added ethyl (R)-2-oxo-1-((S)-1-phenylallyl)cyclohexane-1-carboxylate S1 (42.0 $\mathrm{mg},>99 \% \mathrm{ee}, 0.15 \mathrm{mmol}), 10 \% \mathrm{Pd} / \mathrm{C}(2.9 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and EtOH (4 mL). A hydrogen
balloon was then connected via a three-way stopcock. The flask was vacuumed/purged with H_{2} quickly three times, then stirred for 2 h at room temperature. The mixture was filtered through a silica pad and the desired product $\mathbf{S} 2(25.0 \mathrm{mg}, 59 \%$ yield) was obtained as a colorless oil after purification by silica gel flash chromatography ($1 \rightarrow 5 \%$ EtOAc in hexanes). $\mathrm{R}_{f}=0.4$ (5% EtOAc in hexanes); $[\mathrm{a}]_{\mathrm{D}}{ }^{25}+40.84$ (c $\left.0.67, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}$, $2 \mathrm{H}), 4.21(\mathrm{qd}, J=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{dd}, J=12.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.39(\mathrm{~m}, 2 \mathrm{H})$, 1.95 (ddq, $J=19.7,9.0,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.61-$ $1.47(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 207.9,171.4,139.9,130.4,127.9,126.8,64.6,61.2,51.3$, 41.9, 36.9, 28.0, 24.7, 22.9, 14.2, 13.0. IR (Neat Film NaCl) 3026, 2961, 2935, 2870, $1712,1495,1451,1368,1308,1269,1233,1194,1138,1090,1025,908,865,812,759$ $\mathrm{cm}^{-1} ;$ HRMS (ESI) calc'd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 289.1798$, found 289.1798.

For eq 2: Followed the same procedure as eq 1. The reaction was conducted with 7ba ($76.4 \mathrm{mg}, 0.27 \mathrm{mmol}$), $10 \% \mathrm{Pd} / \mathrm{C}(14.3 \mathrm{mg}, 5 \mathrm{~mol} \%$) and $\mathrm{EtOH}(5 \mathrm{~mL})$. The desired hydrogenation product was obtained in 31% yield (24.0 mg) with the same ${ }^{1} \mathrm{H}$ NMR spectrum and opposite optical rotation when compared to $\mathbf{S} \mathbf{2}$.

General Procedure for the Cope Rearrangment of β-Ketoesters 7.

A solution of compound 7 in toluene $(0.1 \mathrm{M})$ was heated at $100^{\circ} \mathrm{C}$ for five hours. After cooling to room temperature, the reaction mixture was concentrated in vacuo. The residue was purified by silica gel flash chromatography to afford the desired product 9 .

Methyl (R)-3-cinnamyl-7-oxocyclohept-1-ene-1-carboxylate (9aa)

9aa was isolated by silica gel chromatography ($3 \rightarrow 9 \rightarrow 17 \%$ EtOAc in hexanes, 72% yield) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}-23.6\left(c 0.49, \mathrm{CHCl}_{3}\right) ; 95 \%$ ee; $\mathrm{R}_{f}=0.4(25 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.46$ $(\mathrm{d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dt}, J=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.57(\mathrm{~m}, 3 \mathrm{H})$, $2.54-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 203.0,165.5,151.9,137.2,135.4,133.1,128.7,127.6,126.8,126.3,52.5,43.3$, 39.6, 39.1, 30.2, 21.5; IR (Neat Film, NaCl) 3024, 2929, 2858, 1722, 1716, 1495, 1435, 1377, 1256, 1202, $1027 \mathrm{~cm}^{-1} ;$ HRMS (FAB+) m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$285.1491, found 285.1491; SFC conditions: 10% IPA, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralcel OB-H column, $\lambda=$ $210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min}):$ major $=13.72$, minor $=15.18$.

Synthesis of Endocyclic α, β-Unsaturated β-Ketoesters.

The α, β-unsaturated β-ketoesters $\mathbf{6} \mathbf{a}^{6}$ and $\mathbf{6} \mathbf{c}^{7}$ were prepared following literature procedures.

Methyl (\boldsymbol{E})-8-oxocyclooct-1-ene-1-carboxylate (6 b)

Following a modified literature procedure, ${ }^{8} \mathrm{NaH}$ (60% in mineral oil, $440 \mathrm{mg}, 1.1$ equiv) was added to a 250 mL round bottom flask and flushed with N_{2}. THF (27 mL) was then added, and the resulting suspension cooled to $0{ }^{\circ} \mathrm{C}$. A solution of methyl 2-oxocyclooctane-1-carboxylate ${ }^{9}(1.84 \mathrm{~g}, 10 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added slowly at 0 ${ }^{\circ} \mathrm{C}$, and then the reaction mixture was warmed to room temperature. After stirring for 1 h , the enolate solution was cooled to $-78^{\circ} \mathrm{C}$ and a solution of $\mathrm{PhSeCl}(2.01 \mathrm{~g}, 1.05$ equiv) in THF (8 mL) was added. After stirring for 1 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was warmed to room temperature and stirred for an additional 1 h . Upon completion, the solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed twice with 1 M HCl , followed by brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$, and treated with a solution of $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%$ in water, $1.84 \mathrm{~mL}, 2.1$ equiv) dropwise over 30 min . After stirring for an additional 1 h , water was added and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were
washed with saturated NaHCO_{3}, water, brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by silica gel flash chromatography ($5 \rightarrow 9 \%$ EtOAc in hexanes) to provide $\mathbf{6 b}$ as a colorless oil ($1.54 \mathrm{~g}, 85 \%$). $\mathrm{R}_{f}=0.3\left(17 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 2 \mathrm{H})$, $1.94-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.2,165.0$, 147.3, 131.3, 52.4, 44.6, 30.4, 29.3, 22.2, 21.8; IR (Neat Film, NaCl) 2946, 1719, 1696, 1638, 1434, 1411, 1376, 1266, 1237, 1219, 1157, $1068 \mathrm{~cm}^{-1}$; HRMS (FAB+) m/z calc'd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 183.1021$, found 183.1029.

Methyl 1-benzyl-2-oxo-2,5,6,7-tetrahydro-1H-azepine-3-carboxylate (6d)

To a solution of LDA [1.2 equiv, prepared fresh from diisopropylamine ($513 \mu \mathrm{~L}$) and n BuLi, (2.5 M in hexanes, 1.46 mL) in THF (10 mL) at $0^{\circ} \mathrm{C}$ for 15 min] was added dropwise a solution of methyl 1-benzyl-2-oxoazepane-3-carboxylate ($798 \mathrm{mg}, 3.05$ $\mathrm{mmol})$ in THF (3 mL) at $-78^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. A solution of PhSeCl ($615 \mathrm{mg}, 1.05$ equiv) in THF (3 mL) was then added, and the mixture was slowly warmed to room temperature. The mixture was diluted with ethyl acetate, washed twice with 1 M HCl , followed by brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was purified by silica gel flash chromatography $(9 \rightarrow 17 \rightarrow 20 \%$ EtOAc in hexanes) to provide methyl 1-benzyl-2-oxo-3-(phenylselanyl)azepane-3-carboxylate as a yellow oil ($343 \mathrm{mg}, 27 \%$). The isolated compound was carried forward without complete characterization by dissolving in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ and cooling to $0{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ (35% in water, $145 \mu \mathrm{~L}, 2.1$ equiv) was added dropwise over 30 min . After stirring for an additional 1 h , water was added and the aqueous later extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated NaHCO_{3}, water, brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by silica gel flash chromatography ($25 \rightarrow$ 50% EtOAc in hexanes) to provide 9 as a pale yellow oil ($170 \mathrm{mg}, 79 \%$). $\mathrm{R}_{f}=0.3(50 \%$ EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.27$ (m, 6H), 4.72 (s, 2H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,165.1,143.8,138.0,132.4,128.9,128.5,127.8,52.5$,
49.8, 45.4, 27.9, 23.7; IR (Neat Film, NaCl) 3493, 3029, 2952, 1721, 1650, 1621, 1471, 1435, 1359, 1274, 1251, 1193, 1159, 1103, 1067, $1053 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) m / z calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 260.1281$, found 260.1285.

Table S2. Determination of Enantiomeric Excess
entry

entry	compound	SFC analytic conditions	ee (\%)

7

Chiralpak IC, $\lambda=254 \mathrm{~nm}$
$9 \% \mathrm{MeOH} / \mathrm{CO}_{2}$, $2.5 \mathrm{~mL} / \mathrm{min}$

5af

8

$5 a g$
Chiralpak IC, $\lambda=254 \mathrm{~nm}$ $3 \% \mathrm{MeOH} / \mathrm{CO}_{2}$, $2.5 \mathrm{~mL} / \mathrm{min}$

96 $\mathrm{t}_{\mathrm{R}}(\mathrm{min})$ major 11.55, minor 12.69

Chiralcel OJ-H, $\lambda=254 \mathrm{~nm}$ 15% IPA/CO ${ }_{2}$, $2.5 \mathrm{~mL} / \mathrm{min}$

91 $\mathrm{t}_{\mathrm{R}}(\mathrm{min})$ minor 2.87, major 4.16

5ba

Chiralpak AD-H, $\lambda=254 \mathrm{~nm}$
10% IPA/CO ${ }_{2}, 2.5 \mathrm{~mL} / \mathrm{min}$
90
$\mathrm{t}_{\mathrm{R}}(\mathrm{min})$ minor 4.41, major 4.79

Chiralcel OJ-H, $\lambda=254 \mathrm{~nm}$
$15 \% \mathrm{IPA} / \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}$
$\mathrm{t}_{\mathrm{R}}(\mathrm{min})$ minor 2.79, major 4.44

Chiralpak IC, $\lambda=254 \mathrm{~nm}$
$10 \% \mathrm{IPA} / \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}$
93 $t_{R}(\min)$ major 2.75, minor 2.92

entry	compound	SFC analytic conditions	ee (\%)

Chiralpak IC, $\lambda=254 \mathrm{~nm}$
10% IPA $/ \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}$
$t_{R}(\min)$ major 6.64, minor 7.42

Chiralpak IC, $\lambda=254 \mathrm{~nm}$ 20\% IPA/CO 2 , $2.5 \mathrm{~mL} / \mathrm{min}$ $t_{R}(\min)$ minor 6.98, major 8.97

Chiralpak AD-H, $\lambda=210 \mathrm{~nm}$
5% IPA $/ \mathrm{CO}_{2}$, $2.5 \mathrm{~mL} / \mathrm{min}$
95
$\mathrm{t}_{\mathrm{R}}(\mathrm{min})$ minor 4.99, major 7.08

Chiralpak AD-H, $\lambda=210$ nm
$5 \% \mathrm{IPA} / \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}$
88 $\mathrm{t}_{\mathrm{R}}(\mathrm{min})$ major 5.62, minor 7.98

Chiralpak IA, $\lambda=210 \mathrm{~nm}$
$5 \% \mathrm{IPA} / \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}$
90 $\mathrm{t}_{\mathrm{R}}(\mathrm{min})$ minor 4.52, major 6.36

Chiralpak IA, $\lambda=210 \mathrm{~nm}$
5\% IPA/CO ${ }_{2}$, $2.5 \mathrm{~mL} / \mathrm{min}$
77 $t_{R}(\min)$ major 5.79, minor 7.41

Chiralpak IA, $\lambda=210 \mathrm{~nm}$ 2\% IPA/CO ${ }_{2}, 3.0 \mathrm{~mL} / \mathrm{min}$

98 $t_{R}(\min)$ minor 6.82, major 13.26
$7 c a$

entry	compound	SFC analytic conditions	ee (\%)

20

7ca'

Chiralpak IA, $\lambda=210 \mathrm{~nm}$
2% IPA $/ \mathrm{CO}_{2}$, $3.0 \mathrm{~mL} / \mathrm{min}$
$t_{R}(\mathbf{m i n})$ major 6.95, minor 11.43

Chiralcel OD-H, $\lambda=210 \mathrm{~nm}$
$10 \% \mathrm{MeCN} / \mathrm{CO}_{2}$, $2.5 \mathrm{~mL} / \mathrm{min}$
$t_{R}(\min)$ minor 13.74, major 16.85

Chiralcel OD-H, $\lambda=210 \mathrm{~nm}$ $10 \% \mathrm{MeCN} / \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}$

62 $t_{R}(\min)$ major 12.34 , minor 15.02

Chiralpak AD-H, $\lambda=210 \mathrm{~nm}$ 8\% IPA/CO 2 , $2.5 \mathrm{~mL} / \mathrm{min}$

95 $t_{R}(\min)$ minor 4.13 , major 4.50

Chiralpak AD-H, $\lambda=210$ nm 10% IPA $/ \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}$ $t_{R}(\min)$ minor 3.43 , major 4.49

Chiralpak AD-H, $\lambda=210 \mathrm{~nm}$ 8\% IPA/CO 2 , $2.5 \mathrm{~mL} / \mathrm{min}$

91 $t_{R}(\min)$ minor 4.28 , major 4.75
entry \quad compound \quad SFC analytic conditions \quad ee (\%)

9aa

Chiralpak IC, $\lambda=210 \mathrm{~nm}$
10% IPA/CO ${ }_{2}$, $2.5 \mathrm{~mL} / \mathrm{min}$
$\mathrm{t}_{\mathrm{R}}(\mathrm{min})$ minor 5.40 , major 5.99

Chiralpak AD-H, $\lambda=210 \mathrm{~nm}$
7\% IPA/CO 2 , $2.5 \mathrm{~mL} / \mathrm{min}$
91 $t_{R}(\min)$ minor 4.14 , major 4.85

Chiralpak AD-H, $\lambda=210$ nm
$7 \% \mathrm{IPA} / \mathrm{CO}_{2}$, $2.5 \mathrm{~mL} / \mathrm{min}$
75
$t_{R}(\min)$ major 4.67, minor 5.28

Chiralpak AD-H, $\lambda=210 \mathrm{~nm}$
$10 \% \mathrm{IPA}^{2} \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}$ $t_{R}(\min)$ minor 4.68 , major 5.17

Chiralpak IC, $\lambda=210 \mathrm{~nm}$ $10 \% \mathrm{IPA} / \mathrm{CO}_{2}$, $2.5 \mathrm{~mL} / \mathrm{min}$

79 $t_{R}(\mathrm{~min})$ minor 4.43 , major 5.01

Chiralcel OB-H, $\lambda=210 \mathrm{~nm}$ 10% IPA $/ \mathrm{CO}_{2}$, $2.5 \mathrm{~mL} / \mathrm{min}$

95 $t_{R}(\min)$ major 13.72 , minor 15.18

Crystal Structure Analysis of Alkylation Product 3aa (smaple No.: p15559):

The α-alkylated Malonate 3aa ($>99 \%$ ee) was recrystallized from $\mathrm{Et}_{2} \mathrm{O} /$ hexanes (liquid/liquid diffusion) at $0^{\circ} \mathrm{C}$ to provide suitable crystals for X-ray analysis, m.p. $=53-$ $55^{\circ} \mathrm{C}$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}$).

Table 1. Crystal data and structure refinement for p 15559.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
p15559
C21 H26 O4
342.42

100 K
$1.54178 \approx$
Orthorhombic
$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$

$$
\begin{array}{ll}
a=7.7585(6) \approx & \alpha=90 \infty \\
b=9.1039(7) \approx & \beta=90 \infty \\
c=26.2256(17) \approx & \gamma=90 \infty
\end{array}
$$

$$
1852.4(2) \approx^{3}
$$

4
$1.228 \mathrm{Mg} / \mathrm{m}^{3}$
$0.674 \mathrm{~mm}^{-1}$

$\mathrm{F}(000)$	736
Crystal size	$0.21 \times 0.19 \times 0.17 \mathrm{~mm}^{3}$
Theta range for data collection	3.370 to 78.511∞.
Index ranges	$-9<=\mathrm{h}<=9,-11<=\mathrm{k}<=11,-32<=\mathrm{l}<=33$
Reflections collected	39232
Independent reflections	$3967[\mathrm{R}(\mathrm{int})=0.0517]$
Completeness to theta $=67.000 \infty$	99.9%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9612 and 0.9073
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$3967 / 0 / 228$
Goodness-of-fit on F^{2}	1.078
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0402, \mathrm{wR} 2=0.1023$
R indices (all data)	$\mathrm{R} 1=0.0418, \mathrm{wR} 2=0.1032$
Absolute structure parameter	$0.12(7)$
Extinction coefficient	n / a
Largest diff. peak and hole	0.476 and $-0.182 \mathrm{e} . \sim^{\sim}-3$

Table 2. Atomic coordinates ($\times 10^{5}$) and equivalent isotropic displacement parameters $\left(\approx^{2} \times 10^{4}\right)$ for $\mathrm{p} 15559 . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$47530(20)$	$48207(19)$	$71564(6)$	$265(4)$
$\mathrm{O}(2)$	$59320(20)$	$31380(18)$	$66418(6)$	$230(3)$
$\mathrm{O}(3)$	$40030(20)$	$33780(20)$	$54882(7)$	$328(4)$
$\mathrm{O}(4)$	$64670(20)$	$44547(18)$	$57227(6)$	$219(3)$
$\mathrm{C}(1)$	$40600(30)$	$48920(30)$	$62552(8)$	$203(4)$
$\mathrm{C}(2)$	$20770(30)$	$45310(30)$	$62993(9)$	$228(5)$
$\mathrm{C}(3)$	$17000(30)$	$29830(30)$	$64929(10)$	$254(5)$
$\mathrm{C}(4)$	$11800(30)$	$19040(30)$	$61504(11)$	$301(5)$
$\mathrm{C}(5)$	$8120(30)$	$4840(30)$	$63209(13)$	$365(6)$
$\mathrm{C}(6)$	$9650(40)$	$1220(30)$	$68287(12)$	$378(6)$
$\mathrm{C}(7)$	$14440(40)$	$11840(30)$	$71745(12)$	$363(6)$
$\mathrm{C}(8)$	$17930(30)$	$26150(30)$	$70102(10)$	$305(5)$

$\mathrm{C}(9)$	$11240(30)$	$56730(30)$	$66066(10)$	$263(5)$
$\mathrm{C}(10)$	$-2930(30)$	$63250(30)$	$64348(12)$	$344(6)$
$\mathrm{C}(11)$	$43340(30)$	$65720(30)$	$61761(9)$	$216(4)$
$\mathrm{C}(12)$	$35600(30)$	$71790(30)$	$56886(9)$	$270(5)$
$\mathrm{C}(13)$	$48620(40)$	$78740(30)$	$53139(9)$	$297(5)$
$\mathrm{C}(14)$	$55050(40)$	$93870(30)$	$54684(10)$	$308(5)$
$\mathrm{C}(15)$	$65400(30)$	$94390(30)$	$59605(10)$	$292(5)$
$\mathrm{C}(16)$	$55380(30)$	$90340(30)$	$64394(10)$	$289(5)$
$\mathrm{C}(17)$	$52000(30)$	$74110(30)$	$65029(9)$	$237(5)$
$\mathrm{C}(18)$	$49700(30)$	$43240(20)$	$67335(8)$	$184(4)$
$\mathrm{C}(19)$	$68200(40)$	$25170(30)$	$70738(10)$	$337(6)$
$\mathrm{C}(20)$	$48010(30)$	$41220(20)$	$57798(8)$	$191(4)$
$\mathrm{C}(21)$	$73250(30)$	$37220(30)$	$53078(9)$	$288(5)$

Table 3. Bond lengths [\approx] and angles [∞] for p15559.

$\mathrm{O}(1)-\mathrm{C}(18)$	$1.210(3)$
$\mathrm{O}(2)-\mathrm{C}(18)$	$1.334(3)$
$\mathrm{O}(2)-\mathrm{C}(19)$	$1.441(3)$
$\mathrm{O}(3)-\mathrm{C}(20)$	$1.194(3)$
$\mathrm{O}(4)-\mathrm{C}(20)$	$1.336(3)$
$\mathrm{O}(4)-\mathrm{C}(21)$	$1.440(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.577(3)$
$\mathrm{C}(1)-\mathrm{C}(11)$	$1.558(3)$
$\mathrm{C}(1)-\mathrm{C}(18)$	$1.530(3)$
$\mathrm{C}(1)-\mathrm{C}(20)$	$1.541(3)$
$\mathrm{C}(2)-\mathrm{H}(2)$	1.0000
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.526(3)$
$\mathrm{C}(2)-\mathrm{C}(9)$	$1.509(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.391(3)$
$\mathrm{C}(3)-\mathrm{C}(8)$	$1.400(4)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.397(4)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.377(5)$

$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.377(4)$
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.398(4)$
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.328(4)$
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9500
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9500
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.517(3)$
$\mathrm{C}(11)-\mathrm{C}(17)$	$1.330(3)$
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9900
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9900
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.545(4)$
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9900
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9900
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.520(4)$
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9900
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9900
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.521(4)$
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9900
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9900
$\mathrm{C}(15)-\mathrm{C}(16)$	$115.29(18)$
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	$0.922(4)$
$\mathrm{C}(16)-\mathrm{C}(17)$	0.9900
$\mathrm{C}(17)-\mathrm{H}(17)$	$1.510(3)$
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9500
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9800
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800
$\mathrm{C}(20)-\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{C}(21)$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	

$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)$	$110.31(18)$
$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{C}(2)$	$108.65(18)$
$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{C}(11)$	$112.22(18)$
$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{C}(20)$	$109.73(18)$
$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(2)$	$109.16(18)$
$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(11)$	$106.72(18)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	106.4
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$113.83(19)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	106.4
$\mathrm{C}(9)-\mathrm{C}(2)-\mathrm{C}(1)$	$111.94(19)$
$\mathrm{C}(9)-\mathrm{C}(2)-\mathrm{H}(2)$	106.4
$\mathrm{C}(9)-\mathrm{C}(2)-\mathrm{C}(3)$	$111.37(19)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$119.5(2)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	$118.1(2)$
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	$122.3(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	119.8
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.4(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	119.8
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.6
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$120.9(3)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.6
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	120.3
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$119.5(3)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	120.3
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	119.9
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$120.2(3)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	119.9
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8)$	119.6
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$120.8(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.6
$\mathrm{C}(2)-\mathrm{C}(9)-\mathrm{H}(9)$	118.9
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(2)$	$122.2(2)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	118.9
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	120.0
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	120.0
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	120.0
C	

$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(1)$	$114.59(19)$
$\mathrm{C}(17)-\mathrm{C}(11)-\mathrm{C}(1)$	$123.1(2)$
$\mathrm{C}(17)-\mathrm{C}(11)-\mathrm{C}(12)$	$122.3(2)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	108.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$115.3(2)$
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	107.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	108.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	108.6
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	108.6
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	107.6
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$114.6(2)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	108.6
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	108.6
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	108.4
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	108.4
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$115.3(2)$
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	107.5
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	108.4
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	108.4
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	108.5
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	108.5
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$115.0(2)$
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	107.5
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	108.5
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	108.5
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	108.6
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	108.6
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	107.6
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$114.6(2)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	108.6
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	108.6
$\mathrm{C}(11)-\mathrm{C}(17)-\mathrm{C}(16)$	$125.4(2)$
$\mathrm{C}(11)-\mathrm{C}(17)-\mathrm{H}(17)$	117.3
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	117.3

$\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{O}(2)$	$123.1(2)$
$\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{C}(1)$	$124.1(2)$
$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{C}(1)$	$112.58(18)$
$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{O}(4)$	$123.9(2)$
$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{C}(1)$	$125.6(2)$
$\mathrm{O}(4)-\mathrm{C}(20)-\mathrm{C}(1)$	$110.38(18)$
$\mathrm{O}(4)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{O}(4)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{O}(4)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\approx^{2} \times 10^{4}\right)$ for p 15559 . The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$333(9)$	$280(8)$	$183(7)$	$-48(7)$	$-16(7)$	$-5(7)$
$\mathrm{O}(2)$	$272(8)$	$184(7)$	$234(8)$	$-17(6)$	$-28(7)$	$29(7)$
$\mathrm{O}(3)$	$275(9)$	$437(10)$	$271(9)$	$-183(8)$	$0(7)$	$-67(8)$
$\mathrm{O}(4)$	$200(8)$	$270(8)$	$189(7)$	$-67(6)$	$31(6)$	$6(7)$
$\mathrm{C}(1)$	$184(10)$	$259(11)$	$166(9)$	$-48(8)$	$-11(8)$	$10(9)$
$\mathrm{C}(2)$	$192(10)$	$258(11)$	$234(11)$	$-40(9)$	$-7(8)$	$-12(9)$
$\mathrm{C}(3)$	$190(10)$	$242(11)$	$330(12)$	$-54(10)$	$10(9)$	$2(9)$
$\mathrm{C}(4)$	$232(11)$	$291(12)$	$382(13)$	$-85(11)$	$19(10)$	$2(10)$
$\mathrm{C}(5)$	$244(12)$	$264(12)$	$587(18)$	$-120(12)$	$35(12)$	$-9(10)$
$\mathrm{C}(6)$	$279(13)$	$229(12)$	$625(18)$	$26(12)$	$73(12)$	$-13(11)$

$\mathrm{C}(7)$	$288(13)$	$336(13)$	$466(16)$	$53(12)$	$30(12)$	$-15(11)$
$\mathrm{C}(8)$	$250(12)$	$326(13)$	$339(13)$	$-26(11)$	$54(10)$	$-43(10)$
$\mathrm{C}(9)$	$224(11)$	$237(11)$	$329(12)$	$-54(10)$	$16(10)$	$-12(9)$
$\mathrm{C}(10)$	$238(12)$	$258(12)$	$536(16)$	$-36(12)$	$-13(12)$	$9(10)$
$\mathrm{C}(11)$	$175(10)$	$247(11)$	$227(10)$	$-37(9)$	$15(9)$	$7(8)$
$\mathrm{C}(12)$	$261(12)$	$250(12)$	$298(12)$	$3(10)$	$-70(10)$	$-14(10)$
$\mathrm{C}(13)$	$365(13)$	$291(12)$	$237(11)$	$-11(10)$	$-38(10)$	$32(11)$
$\mathrm{C}(14)$	$373(14)$	$258(11)$	$294(12)$	$53(10)$	$1(11)$	$2(10)$
$\mathrm{C}(15)$	$274(12)$	$220(11)$	$383(14)$	$14(10)$	$-49(10)$	$-2(10)$
$\mathrm{C}(16)$	$335(13)$	$211(11)$	$320(12)$	$-46(10)$	$-59(11)$	$-18(10)$
$\mathrm{C}(17)$	$229(11)$	$236(11)$	$247(11)$	$-5(9)$	$-12(9)$	$-2(9)$
$\mathrm{C}(18)$	$209(10)$	$154(9)$	$189(10)$	$-23(8)$	$-5(8)$	$-42(8)$
$\mathrm{C}(19)$	$455(15)$	$255(12)$	$301(13)$	$35(11)$	$-67(12)$	$103(12)$
$\mathrm{C}(20)$	$218(10)$	$189(10)$	$165(10)$	$-10(8)$	$-2(8)$	$-3(9)$
$\mathrm{C}(21)$	$313(13)$	$338(13)$	$213(11)$	$-62(10)$	$103(10)$	$6(10)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\approx^{2} \times 10^{3}\right)$ for p15559.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(2)$	1602	4583	5945	27
$\mathrm{H}(4)$	1074	2134	5798	36
$\mathrm{H}(5)$	452	-242	6083	44
$\mathrm{H}(6)$	741	-853	6940	45
$\mathrm{H}(7)$	1538	944	7526	44
$\mathrm{H}(8)$	2097	3345	7253	37
$\mathrm{H}(9)$	1551	5935	6934	32
$\mathrm{H}(10 \mathrm{~A})$	-738	6077	6108	41
$\mathrm{H}(10 B)$	-862	7040	6638	41
$\mathrm{H}(12 \mathrm{~A})$	2691	7930	5780	32
$\mathrm{H}(12 \mathrm{~B})$	2950	6373	5511	32
$\mathrm{H}(13 \mathrm{~A})$	5865	7209	5281	36
$\mathrm{H}(13 B)$	4312	7949	4974	36

$\mathrm{H}(14 \mathrm{~A})$	4498	10046	5505	37
$\mathrm{H}(14 \mathrm{~B})$	6230	9779	5189	37
$\mathrm{H}(15 \mathrm{~A})$	7007	10443	6003	35
$\mathrm{H}(15 \mathrm{~B})$	7532	8761	5928	35
$\mathrm{H}(16 \mathrm{~A})$	6187	9387	6740	35
$\mathrm{H}(16 B)$	4419	9556	6434	35
$\mathrm{H}(17)$	5641	6951	6801	28
$\mathrm{H}(19 \mathrm{~A})$	7662	1791	6955	51
$\mathrm{H}(19 B)$	5985	2039	7300	51
$\mathrm{H}(19 \mathrm{C})$	7417	3299	7260	51
$\mathrm{H}(21 \mathrm{~A})$	6846	4065	4983	43
$\mathrm{H}(21 B)$	7153	2659	5338	43
$\mathrm{H}(21 \mathrm{C})$	8561	3943	5320	43

Table 6. Torsion angles [∞] for p15559.

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-103.3(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$79.2(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	$128.7(3)$
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$-119.0(2)$
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(17)-\mathrm{C}(16)$	$178.5(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$-62.6(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(17)$	$118.5(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(18)-\mathrm{O}(1)$	$-67.1(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(18)-\mathrm{O}(2)$	$107.8(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(20)-\mathrm{O}(3)$	$0.4(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(20)-\mathrm{O}(4)$	$177.69(18)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-179.4(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$-179.8(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	$-102.6(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-0.3(4)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$2.7(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$1.6(4)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-0.8(4)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$-1.4(4)$
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-1.8(4)$

$\mathrm{C}(9)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$129.0(2)$
$\mathrm{C}(9)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$-48.5(3)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-167.21(18)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(9)$	$-39.8(3)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(18)-\mathrm{O}(1)$	$55.1(3)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(18)-\mathrm{O}(2)$	$-129.96(19)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(20)-\mathrm{O}(3)$	$-118.8(3)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(20)-\mathrm{O}(4)$	$58.5(2)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-75.8(3)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(17)-\mathrm{C}(16)$	$-0.3(4)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$64.0(3)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-64.8(3)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$75.6(3)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(11)$	$-59.5(3)$
$\mathrm{C}(17)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$59.9(3)$
$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-43.8(2)$
$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(9)$	$83.6(2)$
$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$176.12(19)$
$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(17)$	$-2.8(3)$
$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{C}(20)-\mathrm{O}(3)$	$119.4(3)$
$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{C}(20)-\mathrm{O}(4)$	$-63.3(2)$
$\mathrm{C}(19)-\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{O}(1)$	$-4.3(3)$
$\mathrm{C}(19)-\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{C}(1)$	$-179.2(2)$
$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$75.8(2)$
$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(9)$	$-156.8(2)$
$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$55.9(2)$
$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(17)$	$-123.0(2)$
$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(18)-\mathrm{O}(1)$	$173.6(2)$
$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(18)-\mathrm{O}(2)$	$-11.5(3)$
$\mathrm{C}(21)-\mathrm{O}(4)-\mathrm{C}(20)-\mathrm{O}(3)$	$-6.4(3)$
$\mathrm{C}(21)-\mathrm{O}(4)-\mathrm{C}(20)-\mathrm{C}(1)$	$176.25(19)$

[^0]
Crystal Structure Analysis of Diol S5aa (smaple No.: p15573):

The diol $\mathrm{S} 5 \mathrm{aa}\left(>99 \%\right.$ ee) was recrystallized from $\mathrm{Et}_{2} \mathrm{O} /$ hexanes (liquid/liquid diffusion) at $0{ }^{\circ} \mathrm{C}$ to provide suitable crystals for X-ray analysis, m.p. $=91-92{ }^{\circ} \mathrm{C}$ (hexanes/ $\mathrm{Et}_{2} \mathrm{O}$).

Table 1. Crystal data and structure refinement for p 15573.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
p15573
C19 H26 O2
286.40

100 K
$1.54178 \approx$
Orthorhombic
$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
$\mathrm{a}=6.1787(8) \approx \quad \alpha=90 \infty$
$b=9.0018(11) \approx \quad \beta=90 \infty$
$\mathrm{c}=29.470(3) \approx \quad \gamma=90 \infty$
1639.1(3) \approx^{3}

4
$1.161 \mathrm{Mg} / \mathrm{m}^{3}$
$0.569 \mathrm{~mm}^{-1}$
624
$0.17 \times 0.15 \times 0.10 \mathrm{~mm}^{3}$
2.999 to 79.168∞.
$-7<=\mathrm{h}<=6,-11<=\mathrm{k}<=11,-37<=1<=37$

Reflections collected
Independent reflectio
Completeness to theta
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole

42476
$3528[\mathrm{R}(\mathrm{int})=0.0365]$
100.0 \%

Semi-empirical from equivalents
1.0000 and 0.9358

Full-matrix least-squares on F^{2}
3528 / 0 / 274
1.065

R1 $=0.0269$, wR2 $=0.0674$
$\mathrm{R} 1=0.0276, w R 2=0.0680$
0.06(3)
n/a
0.151 and -0.151 e. $\sim^{\sim}-3$

Table 2. Atomic coordinates ($\times 10^{5}$) and equivalent isotropic displacement parameters $\left(\approx^{2} \times 10^{4}\right)$ for $\mathrm{p} 15573 . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$98299(14)$	$29698(10)$	$46715(3)$	$231(2)$
$\mathrm{O}(2)$	$39847(15)$	$37085(11)$	$45850(3)$	$264(2)$
$\mathrm{C}(1)$	$77350(20)$	$60425(14)$	$40871(4)$	$185(2)$
$\mathrm{C}(2)$	$62050(20)$	$65375(14)$	$37135(4)$	$240(3)$
$\mathrm{C}(3)$	$58950(30)$	$82309(16)$	$36918(4)$	$332(4)$
$\mathrm{C}(4)$	$55850(20)$	$89964(16)$	$41547(5)$	$297(3)$
$\mathrm{C}(5)$	$77130(20)$	$94951(15)$	$43706(4)$	$263(3)$
$\mathrm{C}(6)$	$91700(20)$	$82470(15)$	$45366(5)$	$257(3)$
$\mathrm{C}(7)$	$96570(20)$	$70494(14)$	$41772(5)$	$241(3)$
$\mathrm{C}(8)$	$73960(20)$	$47967(13)$	$43291(4)$	$179(2)$
$\mathrm{C}(9)$	$87550(20)$	$43732(14)$	$47335(4)$	$211(3)$
$\mathrm{C}(10)$	$56100(20)$	$36983(14)$	$42365(4)$	$218(3)$
$\mathrm{C}(11)$	$70390(70)$	$59480(50)$	$32407(13)$	$248(7)$
$\mathrm{C}(12)$	$54900(30)$	$62780(20)$	$28662(5)$	$255(5)$
$\mathrm{C}(13)$	$39140(40)$	$53410(20)$	$27498(8)$	$242(5)$

$\mathrm{C}(14)$	$23070(60)$	$55120(40)$	$23888(11)$	$233(5)$
$\mathrm{C}(15)$	$5980(50)$	$45320(40)$	$23756(10)$	$316(6)$
$\mathrm{C}(16)$	$-10090(70)$	$46330(50)$	$20517(16)$	$387(9)$
$\mathrm{C}(17)$	$-9830(90)$	$57330(60)$	$17220(20)$	$343(11)$
$\mathrm{C}(18)$	$8040(100)$	$67220(60)$	$17270(13)$	$372(9)$
$\mathrm{C}(19)$	$24250(60)$	$66010(40)$	$20567(14)$	$323(7)$
$\mathrm{C}(11 \mathrm{~A})$	$64700(300)$	$57900(200)$	$32940(70)$	$420(50)$
$\mathrm{C}(12 \mathrm{~A})$	$44830(140)$	$55960(90)$	$29580(30)$	$261(19)$
$\mathrm{C}(13 \mathrm{~A})$	$43160(110)$	$60900(80)$	$25420(20)$	$240(20)$
$\mathrm{C}(14 \mathrm{~A})$	$23680(160)$	$59780(130)$	$22540(40)$	$143(19)$
$\mathrm{C}(15 \mathrm{~A})$	$5200(300)$	$51020(120)$	$23290(40)$	$340(30)$
$\mathrm{C}(16 \mathrm{~A})$	$-12300(300)$	$52140(130)$	$20330(60)$	$290(30)$
$\mathrm{C}(17 \mathrm{~A})$	$-9100(500)$	$61600(200)$	$16800(90)$	$470(60)$
$\mathrm{C}(18 \mathrm{~A})$	$6600(400)$	$69300(200)$	$15880(50)$	$340(40)$
$\mathrm{C}(19 \mathrm{~A})$	$23080(170)$	$68610(120)$	$18680(40)$	$210(20)$

Table 3. Bond lengths [\approx] and angles [∞] for p15573.

$\mathrm{O}(1)-\mathrm{H}(1)$	0.8400
$\mathrm{O}(1)-\mathrm{C}(9)$	$1.4389(16)$
$\mathrm{O}(2)-\mathrm{H}(2)$	0.8400
$\mathrm{O}(2)-\mathrm{C}(10)$	$1.4365(16)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.5181(17)$
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.5171(18)$
$\mathrm{C}(1)-\mathrm{C}(8)$	$1.3455(17)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	1.0000
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	1.0000
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.5376(19)$
$\mathrm{C}(2)-\mathrm{C}(11)$	$1.577(4)$
$\mathrm{C}(2)-\mathrm{C}(11 \mathrm{~A})$	$1.42(2)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9900
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9900
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.5403(18)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9900
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9900

$\mathrm{C}(4)-\mathrm{C}(5)$	$1.528(2)$		
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9900		
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9900		
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.5205(19)$		
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900		
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900		
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.5410(19)$		
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9900		
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9900		
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.5067(16)$		
$\mathrm{C}(8)-\mathrm{C}(10)$	$1.5066(17)$		
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9900		
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9900		
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9900		
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9900		
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900		
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9900		
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.491(5)$		
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500		
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.333(3)$		
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500		
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.463(4)$		
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.59(2)$		
$\mathrm{C}(14)-\mathrm{C}(19)$	$1.376(5)$		
$\mathrm{C}(15)-\mathrm{H}(15)$	$1.387(4)$		
$\mathrm{C}(15)-\mathrm{C}(16)$	0.9500		
$\mathrm{C}(16)-\mathrm{H}(16)$	$1.380(6)$		
$\mathrm{C}(16)-\mathrm{C}(17)$	0.9500		
$\mathrm{C}(17)-\mathrm{H}(17)$	$1.389(6)$		
$\mathrm{C}(17)-\mathrm{C}(18)$	0.9500		
$\mathrm{C}(18)-\mathrm{H}(18)$	$1.418(9)$		
$\mathrm{C}(18)-\mathrm{C}(19)$	0.9500		
$\mathrm{C}(19)-\mathrm{H}(19)$	C	C	$\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{C})-\mathrm{H}(11 \mathrm{D})$
:---			
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$			

$\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~A})$	0.9500
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	$1.307(12)$
$\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~A})$	0.9500
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	$1.477(12)$
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	$1.405(19)$
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	$1.387(13)$
$\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{~A})$	0.9500
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	$1.39(2)$
$\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{~A})$	0.9500
$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$	$1.36(3)$
$\mathrm{C}(17 \mathrm{~A})-\mathrm{H}(17 \mathrm{~A})$	0.9500
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})$	$1.22(4)$
$\mathrm{C}(18 \mathrm{~A})-\mathrm{H}(18 \mathrm{~A})$	0.9500
$\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	$1.31(2)$
$\mathrm{C}(19 \mathrm{~A})-\mathrm{H}(19 \mathrm{~A})$	0.9500
$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{H}(1)$	109.5
$\mathrm{C}(10)-\mathrm{O}(2)-\mathrm{H}(2)$	109.5
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)$	$116.03(11)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)$	$122.15(12)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(7)$	$121.82(11)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	107.9
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	103.1
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$113.50(11)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11)$	$109.8(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	107.9
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	103.1
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)$	$109.72(19)$
$\mathrm{C}(11)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	107.9
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(2)-\mathrm{C}(1)$	$114.9(8)$
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	103.1
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(2)-\mathrm{C}(3)$	$116.7(9)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$114.97(11)$
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	107.5
C	

$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.5
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.5
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	108.9
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.9
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	107.8
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$113.15(13)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	108.9
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.9
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.5
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	107.5
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$115.23(11)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.5
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.7
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.7
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$114.29(11)$
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	107.6
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.7
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.7
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$112.66(10)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.1
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.1
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.1
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.1
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	107.8
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$122.91(11)$
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(10)$	$124.41(11)$
$\mathrm{C}(10)-\mathrm{C}(8)-\mathrm{C}(9)$	$112.66(10)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	$112.27(10)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.1
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.1
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.1
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.1
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	107.9
$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(8)$	$112.23(10)$

$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.2
$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.2
$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.2
$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.2
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	107.9
$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.2
$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.2
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	107.9
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(2)$	$112.2(3)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.2
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.2
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	118.9
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$122.2(2)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	118.9
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	116.0
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$128.0(2)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	116.0
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$118.3(3)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	$118.3(3)$
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(13)$	$123.5(3)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.0
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$121.9(3)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.0
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	119.2
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$121.5(4)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	119.2
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	121.6
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$116.7(4)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	121.6
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	119.5
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	$121.0(4)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	119.5
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$120.5(3)$
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{H}(19)$	119.8
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	119.8
$\mathrm{C}(2)-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{C})$	107.2
C	

```
C(2)-C(11A)-H(11D) 107.2
C(2)-C(11A)-C(12A) 120.5(11)
H(11C)-C(11A)-H(11D) 106.8
C(12A)-C(11A)-H(11C) 107.2
C(12A)-C(11A)-H(11D) 107.2
C(11A)-C(12A)-H(12A) 116.2
C(13A)-C(12A)-C(11A) 127.6(9)
C(13A)-C(12A)-H(12A) 116.2
C(12A)-C(13A)-H(13A) 117.3
C(12A)-C(13A)-C(14A) 125.5(9)
C(14A)-C(13A)-H(13A) 117.3
C(15A)-C(14A)-C(13A) 127.6(11)
C(19A)-C(14A)-C(13A) 117.0(9)
C(19A)-C(14A)-C(15A) 115.4(9)
C(14A)-C(15A)-H(15A) 120.3
C(16A)-C(15A)-C(14A) 119.4(10)
C(16A)-C(15A)-H(15A) 120.3
C(15A)-C(16A)-H(16A) 122.8
C(17A)-C(16A)-C(15A) 114.4(18)
C(17A)-C(16A)-H(16A) 122.8
C(16A)-C(17A)-H(17A) 115.1
C(18A)-C(17A)-C(16A) 130(3)
C(18A)-C(17A)-H(17A) 115.1
C(17A)-C(18A)-H(18A) 121.7
C(17A)-C(18A)-C(19A) 116.5(17)
C(19A)-C(18A)-H(18A) }121.
C(14A)-C(19A)-H(19A) 117.8
C(18A)-C(19A)-C(14A) 124.4(11)
C(18A)-C(19A)-H(19A) 117.8
```

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\approx^{2} \times 10^{4}\right)$ for p 15573 . The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}

$\mathrm{O}(1)$	$172(4)$	$230(4)$	$292(4)$	$75(4)$	$-21(4)$	$6(3)$
$\mathrm{O}(2)$	$173(4)$	$331(5)$	$289(5)$	$115(4)$	$15(4)$	$-10(4)$
$\mathrm{C}(1)$	$175(5)$	$219(6)$	$162(5)$	$19(4)$	$8(4)$	$23(5)$
$\mathrm{C}(2)$	$308(7)$	$249(6)$	$164(5)$	$9(5)$	$-43(5)$	$76(5)$
$\mathrm{C}(3)$	$542(10)$	$269(7)$	$186(6)$	$19(5)$	$-72(6)$	$135(7)$
$\mathrm{C}(4)$	$369(8)$	$290(7)$	$232(6)$	$-21(5)$	$-40(6)$	$122(6)$
$\mathrm{C}(5)$	$343(7)$	$220(6)$	$227(6)$	$15(5)$	$68(6)$	$-12(6)$
$\mathrm{C}(6)$	$238(6)$	$254(6)$	$279(6)$	$15(5)$	$-9(5)$	$-67(5)$
$\mathrm{C}(7)$	$189(6)$	$230(6)$	$305(6)$	$53(5)$	$47(5)$	$-20(5)$
$\mathrm{C}(8)$	$166(6)$	$211(6)$	$161(5)$	$10(4)$	$-4(5)$	$3(5)$
$\mathrm{C}(9)$	$220(6)$	$216(6)$	$198(6)$	$37(4)$	$-40(5)$	$-3(5)$
$\mathrm{C}(10)$	$190(6)$	$225(6)$	$238(6)$	$3(5)$	$-7(5)$	$-27(5)$
$\mathrm{C}(11)$	$340(20)$	$275(11)$	$130(13)$	$-19(10)$	$32(13)$	$83(12)$
$\mathrm{C}(12)$	$381(11)$	$220(9)$	$163(8)$	$-7(6)$	$-23(7)$	$-7(9)$
$\mathrm{C}(13)$	$335(11)$	$196(10)$	$196(10)$	$-24(8)$	$23(9)$	$16(8)$
$\mathrm{C}(14)$	$301(12)$	$217(14)$	$179(13)$	$-48(10)$	$27(11)$	$12(12)$
$\mathrm{C}(15)$	$287(11)$	$446(19)$	$215(11)$	$25(13)$	$44(8)$	$-46(15)$
$\mathrm{C}(16)$	$284(14)$	$590(20)$	$284(12)$	$10(20)$	$20(10)$	$-146(19)$
$\mathrm{C}(17)$	$314(15)$	$490(30)$	$228(16)$	$-88(19)$	$-10(10)$	$-106(17)$
$\mathrm{C}(18)$	$550(20)$	$312(17)$	$250(20)$	$-34(15)$	$-60(20)$	$-42(15)$
$\mathrm{C}(19)$	$457(14)$	$261(16)$	$252(18)$	$-39(14)$	$-111(17)$	$-76(13)$
$\mathrm{C}(11 \mathrm{~A})$	$310(80)$	$680(90)$	$270(50)$	$240(50)$	$220(50)$	$280(60)$
$\mathrm{C}(12 \mathrm{~A})$	$310(40)$	$210(40)$	$260(40)$	$-60(30)$	$60(30)$	$-70(30)$
$\mathrm{C}(13 \mathrm{~A})$	$220(30)$	$260(40)$	$230(40)$	$-60(30)$	$20(30)$	$-20(30)$
$\mathrm{C}(14 \mathrm{~A})$	$230(30)$	$110(50)$	$100(50)$	$20(30)$	$-30(40)$	$-50(40)$
$\mathrm{C}(15 \mathrm{~A})$	$670(80)$	$170(50)$	$170(40)$	$70(40)$	$100(40)$	$80(50)$
$\mathrm{C}(16 \mathrm{~A})$	$260(50)$	$320(60)$	$300(60)$	$-130(60)$	$80(40)$	$-110(50)$
$\mathrm{C}(17 \mathrm{~A}) 770(110)$	$430(110)$	$220(70)$	$-200(80)$	$120(60)$	$-150(80)$	
$\mathrm{C}(18 \mathrm{~A})$	$560(90)$	$260(60)$	$190(60)$	$-60(50)$	$220(70)$	$-10(50)$
$\mathrm{C}(19 \mathrm{~A})$	$230(50)$	$160(40)$	$250(50)$	$-110(40)$	$30(50)$	$-70(30)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\approx^{2} \times 10^{3}\right)$ for p 15573 .

	x	y	z	U(eq)
H(1)	11102	3117	4581	35
H(2)	4453	3262	4815	40
H(2A)	4760	6077	3773	29
H(2B)	4766	6175	3822	29
H(3A)	4617	8447	3500	40
H(3B)	7174	8673	3541	40
H(4A)	4637	9873	4115	36
H(4B)	4844	8300	4363	36
H(5A)	8525	10093	4146	32
H(5B)	7375	10152	4631	32
H(6A)	8476	7766	4801	31
H(6B)	10556	8681	4641	31
H(7A)	10085	7541	3890	29
H(7B)	10894	6439	4281	29
H(9A)	9852	5155	4787	25
H(9B)	7819	4318	5006	25
$\mathrm{H}(10 \mathrm{~A})$	4927	3938	3942	26
H(10B)	6237	2689	4214	26
H(11A)	8452	6413	3171	30
H(11B)	7262	4860	3260	30
H(12)	5630	7187	2705	31
H(13)	3823	4452	2923	29
H(15)	522	3763	2596	38
H(16)	-2160	3933	2055	46
H(17)	-2106	5820	1503	41
H(18)	901	7479	1503	45
H(19)	3615	7269	2053	39
H(11C)	7024	4783	3363	50
H(11D)	7625	6313	3125	50
H(12A)	3276	5059	3071	31
H(13A)	5551	6561	2415	29
H(15A)	465	4438	2579	41
H(16A)	-2533	4673	2075	35

$\mathrm{H}(17 \mathrm{~A})$	-2083	6235	1473	56
$\mathrm{H}(18 \mathrm{~A})$	686	7555	1327	41
$\mathrm{H}(19 \mathrm{~A})$	3543	7451	1802	26

Table 6. Torsion angles [∞] for p15573.

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-43.6(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$174.6(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	$151.8(11)$
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	$-119.85(13)$
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{O}(2)$	$-110.60(13)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$90.17(13)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$-173.18(11)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(10)$	$5.28(19)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$90.06(17)$
$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$-90.1(3)$
$\mathrm{C}(2)-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	$119.6(12)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$-60.0(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	$-71.7(15)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-69.81(15)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$52.74(15)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(1)$	$-73.65(14)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-36.48(17)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11)$	$86.7(2)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11 \mathrm{~A})$	$101.4(8)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$5.86(18)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(10)$	$-175.69(11)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$142.60(14)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11)$	$-94.2(2)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11 \mathrm{~A})$	$-79.5(8)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$-88.92(15)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{O}(2)$	$67.99(13)$
$\mathrm{C}(10)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	$61.53(13)$
$\mathrm{C}(11)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-166.9(2)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-179.2(2)$

$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-169.1(2)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)$	$11.5(4)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$178.8(3)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$-178.5(3)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$0.0(6)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$2.1(5)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$1.6(7)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$-1.3(8)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$-0.5(7)$
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-1.8(5)$
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$179.2(8)$
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	$-175.2(11)$
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	$-13.2(14)$
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	$165.1(8)$
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	$175.8(10)$
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})$	$-177.1(11)$
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$	$2.3(19)$
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})$	$1.4(15)$
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})$	$-1(3)$
$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	$0(3)$
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	$0(2)$
$\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	$-2.5(15)$

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for p15573 [\approx and ∞].

D-H...A	d(D-H)	d(H...A)	d(D...A)	$<$ (DHA)
$\mathrm{O}(1)-\mathrm{H}(1) \ldots \mathrm{O}(2) \# 1$	0.84	1.86	$2.6640(13)$	160.0
$\mathrm{O}(2)-\mathrm{H}(2) \ldots \mathrm{O}(1) \# 2$	0.84	1.89	$2.7121(13)$	165.9

Symmetry transformations used to generate equivalent atoms:
\#1 x+1,y,z \#2 x-1/2,-y+1/2,-z+1
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra

References

(1) A. M. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, Organometallics, 1996, 15, 1518.
(2) (a) Liu, W.-B.; He, H.; Dai, L.-X.; You, S.-L. Synthesis, 2009, 2076. (b) Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. J.Am. Chem. Soc. 2012, 134, 4812.
(3) (a) Wuts, P. G. M.; Ashford, S. W.; Anderson, A. M.; Atkins, J. R. Org. Lett. 2003, 5, 1483. (b) Malkov, A. V.; Gouriou, L.; Lloyd-Jones, G. C.; Starý, I.; Langer, V.; Spoor, P.; Vinader, V.; Kočovský, P. Chem. Eur. J. 2006, 12, 6910.
(4) Itoh, T.; Nomura, S.; Ohtake, M.; Yoshida, T.; Uno, T.; Kubo, M.; Kajiwara, A.; Sada, K.; Miyata, M. Macromolecules, 2004, 37, 8230-8238.
(5) Liu, W.-B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 10626.
(6) Ikeda, S.; Shibuya, M.; Kanoh, N.; Iwabuchi, Y. Org. Lett. 2009, 11, 1833.
(7) Amat, M.; Arioli, F.; Pérez, M. Molins, E.; Bosch, J. Org. Lett. 2013, 15, 2470.
(8) Darses, B.; Michaelides, I. N.; Sladojevich, F.; Ward, J. W.; Rzepa, P. R.; Dixon, D. J. Org. Lett. 2012, 14, 1684.
(9) Driver, T. G.l Kong, C. Org. Lett. 2015, 17, 802.

[^0]: Symmetry transformations used to generate equivalent atoms:

