ENCE717 - Bridge Engineering Long-Span Bridges

Chung C. Fu, Ph.D., P.E. (http: www.best.umd.edu)

Classification Based on Main Span Length

Short Span Bridges (up to 15m)

Medium Span Bridges (up to 50m)

Long Span Bridges (50-150m*)

Extra Long Span Bridges (over 150m*)

* (or 200 m)

Long & Extra Long Span Bridges

Long Span Bridges:

- ➤ Composite Steel Plate Girder Bridge
- ➤ Cast-in-place Post-Tensioned concrete Box Girder
- ➤ Post-Tensioned Concrete Segmental Construction
- ➤ Concrete Arch and Steel Arch

Extra Long Span Bridges:

- ➤ Cable Stayed Bridge
- ➤ Suspension Bridge

Akashi Kaikyō Bridge

Longest Suspension Bridge (Longest span = 1,991 m)

Russian Russky Bridge

Longest Cable-stayed Bridge (Longest span = 1,104 m)

Chaotianmen Bridge

Longest Steel Arch Bridge (Longest span = 552 m)

Canada Pont de Quebec Bridge

Longest Steel Truss Bridge (Longest span = 549 m)

Wanxian Bridge

Longest Concrete Arch Bridge (Longest span = 420 m)

Shibanpo Bridge

Longest Prestressed Concrete Bridge (Longest span = 330 m)

Brazil Rio-Niterói Bridge

Longest Steel Box/Plate Girder Bridge (Longest span = 300 m)

Economical Span Ranges for Segmental Construction

Construction Method		Superstructure Depth -	Economical Span Range
		ft (m)	– ft (m)
Span-by-span	Precast	Constant 6 (1.8)	up to 110 (to 33)
	Precast	Constant 6 to 8 (1.8 to 2.4)	110- 150 (33 - 45)
	Precast/ Cast-in-place	Constant 7 to 12 (2.1 to 3.6)	120- 160 (36 – 48)
Incremental Launch	Cast-in-place	Constant 8 to 12 (2.4 to 3.6)	up to 240 (to 72)
Progressive Cantilever	Precast	Constant 8 to 10 (2.4 to 3.0)	up to 200 (to 60)
Balanced Cantilever	Precast	Constant 6 to 12 (1.8 to 3.6)	160 – 260 (48 – 78)
	Precast	Variable 6 to 20 (1.8 to 6.0)	200 - 450* (60 – 135)
	Cast-in-place	Variable 6 to 40 (1.8 to 12.0)	260 – 750 (78 – 225)
Cable Stay	Precast or Cast-in- place by cantilever erection	Constant 6 to 15 (1.8 to 4.5)	500-1500 (150 – 450)

Span by Span Segmental Construction

- Disadvantage the capital investment in the equipment for this type of construction is considerable.
- Advantage quick, simple erection (2-3 spans/wk); Easy geometry control; savings from less MOT; min. user delays; simple design; ¹² durable structures

Incrementally Launched Segmental Construction

 Disadvantage - Inefficient use of materials. Stringent dimensional control is an absolute necessity at the stationary casting site. Straight or constant radius. (not recommended)

13

Progressive Cantilever Segmental Construction

 Note – Various radius. a movable temporary stay arrangement must be used to limit the cantilever stresses during construction to a reasonable level

Free Cantilever Segmental Construction

- Note The form traveler moves forward on rails attached to the deck of the completed structure and is anchored to the deck at rear.
- 4 to 6 segments/day (45 ft)

Cable Stay Segmental Construction

• Viaduct main span 66.5 m

Post-tensioned Precast Piers

Single-cell Box with Inclined Struts

Current trends in cross-section design lead to single cell box girders for increasingly wider bridges. Ribs or struts are used to provide additional transverse capacity.

Precast Joints

- · Keys (i.e. no reinforcing across joints)
- Epoxy
 - Temporary Clamping
 - Temperature
- Type A joints includes cast-in-place concrete joints, wet concrete joints or epoxy joints.
- Type B joints consist of dry joints between precast units

Cast-in-Place Joints

Cast-in-Place Joints

- Reinforcing Bars
- Joint Preparation
- Bulkheads

21

Grouting top & bottom slab cantilever and continuity tendon

Cast-in-Place Closure

- Outlet event at top of anchor (A) Injection port at low point (B)
- Intermediate vent (C) when duct is longer than 150 ft
- Injection port (D) when (D) is more than 18" lower than vents (C) or (E)
- · Outlet vent at top of anchor (E)

Anchor protection for interior & exterior anchors

Sava River Bridge, Serbia

Cable-Stayed Bridge Demonstration **Project**

Cable-Stayed Bridge Construction

Typology of Cable-Stayed Bridges

Type 4 - asymmetric cable arrangement without back-stays

Free Body Diagram for Member Forces in a Cable-Stayed Bridges

Form and Force Diagrams of a Basic Three-force System

Form and Force Diagrams for a Simple Symmetric Cable-stayed Bridge System

- (a) form diagram
 - force diagram for the right end loading
- (b)
- (c) force diagram for both loadings
- (d) force diagram completed

Form and Force Diagrams for a Simple Asymmetric Cable-stayed Bridge System

- (a) form diagram for a straight tower
- (c) form diagram for an inclined tower

- (b) form diagram for the straight tower
- (d) form diagram for the inclined tower

31

Symmetric forward cable arrangement (modified harp case)

- Legend:
- P: Point loading
- D: Deck
- C: Cable
- T: Tower

- (a) form diagram
- (b) force diagram

Symmetric forward cable arrangement (reverse of the modified harp case)

Asymmetric Cable Layout with Forward and Reverse Arrangement

Form and Force Diagrams showing Multilevel Load Path

Bridge Reconstruction

Bridge Destruction and Construction

- Port Mann Bridge Construction
- Port Mann Bridge Deconstruction

Bridge Replacement

NJDOT Accelerated Bridge Construction

Bridge Widening

- Illinois Tollway Fox River Bridge