
ECE 486/586

Computer Architecture

Lecture # 7

Spring 2015

Portland State University

Lecture Topics

• Instruction Set Principles

– Instruction Encoding

– Role of Compilers

– The MIPS Architecture

Reference:

• Appendix A: Sections A.6, A.7, A.8 and A.9

Encoding Instructions

• OpCode – Operation Code

– The instruction (e.g., “add”, “load”)

– Possible variants (e.g., “load byte”, “load word”…)

• Source and Destination

– Register or memory address

• Addressing Modes

– Impacts code size

– Two options:

• Encode as part of opcode (common in load-store architectures which use a few
number of addressing modes)

• Address specifier for each operand (common in architectures which support may
different addressing modes)

Encoding Instructions

• Tradeoff between size of program versus ease of decoding

• Must balance the following competing requirements:

– Support as many registers and addressing modes as possible

– Impact of size of the register and addressing mode fields on the
average instruction size

– Desire to have instructions encoded into lengths that will be easy
to handle in a pipelined implementation

Encoding Instructions Fixed vs. Variable Length Encoding

• Fixed Length

– Simple, easily decoded

– Larger code size

• Variable Length

– More complex, harder to decode

– More compact, efficient use of memory

• Fewer memory references

• Advantage possibly mitigated by RISC use of cache

– Complex pipeline: instructions vary greatly in both size and amount of
work to be performed

Structure of Compilers Compiler Optimizations

• High-level optimizations done on source

– Procedure in-lining

• Replace “expensive” procedure calls with in-line code

• Local optimizations within a “basic block”

– Common sub-expression elimination (CSE)

• Don’t re-evaluate the same sub-expression; save result and reuse

– Constant propagation

• Replace all instances of variable containing a constant with the constant

• Reduces memory accesses (immediate mode)

Compiler Optimizations (cont.)

• Global optimizations done across branches

– Copy propagation

• Replace all instances of variable assignments A = X with X

– Code motion

• Remove invariant code from loop

• Register Allocation

– Allocate registers to expression evaluation, parameter passing,
variables etc.

Compiler Optimizations (cont.)

• Processor dependent optimizations

– Strength reduction

• Replace/choose instructions with less “expensive” alternatives

• Example: * 2 and / 2 by left shift or right shift

– Pipeline scheduling

• Re-order instructions to improve pipeline performance

How the Computer Architect can help

the Compiler Writer

• Provide regularity

– Make operations, data types, addressing modes orthogonal

– Example: For every operation to which one addressing mode can be
applied, all addressing modes are applicable

• Provide primitives, not solutions

– Special instructions that “match” a high-level language construct are
often unusable

• Simplify trade-offs among alternatives

– Make it easy for the compiler writer to determine the most effective
implementation for a particular instruction sequence

RISC vs CISC Debate

• CISC (VAX)
– Attempts to create instructions to support high-level languages

• Procedure calls

• String processing

• Loops, array accesses

– Complex architecture, harder to pipeline

• RISC (MIPS, ARM)

– Use simpler architecture

• Simpler implementation � faster clock cycle

• Regularity of instruction format � Easier to pipeline

• Make the common case fast, combination of instructions for less
frequent cases

Introduction to MIPS

• Overview of MIPS instruction set architecture (ISA)

– Assembly language

– Machine code

• Why study MIPS?
– Easy architecture to understand

– Understand and create assembly language examples for rest of course

– Provides a framework to understand ISA tradeoffs

– No need to become a MIPS assembly language expert

The MIPS Architecture

• Use general-purpose registers with a load-store
architecture

• Support most common addressing modes
– Register, immediate, displacement

• Support 8-, 16-, 32- and 64-bit integers and 32- and 64-bit
IEEE 754 floating point numbers

• Focus on most commonly executed instructions
– Load, store, add, subtract, move, shift

• Use small number of control instructions
– compare {equal, not equal}

– branch PC-relative

– jump, jump and link (JAL), jump register (JR)

• Use fixed length instruction encoding

MIPS Registers

• Arithmetic instruction operands must be registers

– 32 integer general-purpose registers: R0, R1, …., R31

• Value of R0 is always 0

– 32 floating point registers: F0, F1, …., F31

• Compiler associates variables with registers

• What about a program with lots of variables?

Memory Organization

• Viewed as a large, single-dimensional array, with addresses

• A memory address is an index into the array

• “Byte addressing” means that the index points to a byte of
memory

….

….

8 bits of data

8 bits of data

8 bits of data

8 bits of data

0

1

2

3

Memory Organization

• Data items in typical programs need more than one byte => support
needed for larger “words”

• For MIPS, a word is 32 bits or 4 bytes

• 232 bytes with byte addresses from 0 to 232-1

• 230 words with byte addresses 0, 4, 8, …. , 232-4

• Words are aligned
– What are the least 2 significant bits of a word address?

….

32 bits of data

32 bits of data

32 bits of data

32 bits of data

0

4

8

12

MIPS Instruction Encoding

• All instructions are 32-bits (fixed size) with a 6-bit opcode

– Easy to decode and pipeline

• Basic instruction types
– Arithmetic/Logic

– Loads/Stores

– Control

• Three instruction formats

– I-type

– R-type

– J-type

MIPS Instruction Encoding (cont.) ALU Instructions

• All ALU instructions have three operands

• Operand order is fixed: destination, source1, source2

a = b + c; => add r17, r18, r19

• Keep instruction results in registers if possible

a = b + c; => add r17, r18, r19

f = a + e; add r17, r17, r20

• Machine code representation of first add instruction:

• opcode = 0; funct determines specific ALU operation

R op rs rt rd shamt funct

000000 10010 10011 10001 00000 100000

ALU Instructions (cont.)

• Immediate operands

a = b + 16; => addi r17, r18, 16

• Immediate mode form of ALU operations

– Opcode encodes specific operation (and indicates immediate)

– 16-bit immediate value in low-order 16-bits

I op rs rt Immediate

op 10010 10001 0000000000010000

Load/Store Instructions

• Only instructions which access memory

• Displacement mode addressing

count[4] = x + count[2]; => lw r8, 8(r20)

add r8, r19, r8

sw r8, 16(r20)

– r20: base address of “count” array

– r19: value of “x”

• Machine code representation of “lw” instruction

I op rs rt Immediate

op 10100 01000 0000000000001000

Control Flow Instructions

• Conditional Branches

• Jumps
– Unconditional

• Procedure calls

• Procedure returns

