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INTRODUCTION

The application of Machine Learning (ML) and Data 
Mining (DM) tools to classification and regression tasks 
has become a standard, not only in research but also in 
administrative agencies, commerce and industry (e.g., 
finance, medicine, engineering). Unfortunately, due 
in part to the number of available techniques and the 
overall complexity of the process, users facing a new 
data mining task must generally either resort to trial-
and-error or consultation of experts. Clearly, neither 
solution is completely satisfactory for the non-expert 
end-users who wish to access the technology more 
directly and cost-effectively.

What is needed is an informed search process to 
reduce the amount of experimentation with different 
techniques while avoiding the pitfalls of local optima 
that may result from low quality models. Informed 
search requires meta-knowledge, that is, knowledge 
about the performance of those techniques. Meta-
learning provides a robust, automatic mechanism for 
building such meta-knowledge. One of the underlying 
goals of meta-learning is to understand the interaction 
between the mechanism of learning and the concrete 
contexts in which that mechanism is applicable. Meta-
learning differs from base-level learning in the scope of 
adaptation. Whereas learning at the base-level focuses 
on accumulating experience on a specific learning 
task (e.g., credit rating, medical diagnosis, mine-rock 
discrimination, fraud detection, etc.), learning at the 
meta-level is concerned with accumulating experi-
ence on the performance of multiple applications of 
a learning system. 

The meta-knowledge induced by meta-learning 
provides the means to inform decisions about the 
precise conditions under which a given algorithm, or 
sequence of algorithms, is better than others for a given 
task. While Data Mining software packages (e.g., SAS 
Enterprise Miner, SPSS Clementine, Insightful Miner, 
PolyAnalyst, KnowledgeStudio, Weka, Yale, Xelopes) 
provide user-friendly access to rich collections of algo-
rithms, they generally offer no real decision support to 
non-expert end-users. Similarly, tools with emphasis 
on advanced visualization help users understand the 
data (e.g., to select adequate transformations) and the 
models (e.g., to tweak parameters, compare results, and 
focus on specific parts of the model), but treat algorithm 
selection as a post-processing activity driven by the users 
rather than the system. Data mining practitioners need 
systems that guide them by producing explicit advice 
automatically. This chapter shows how meta-learning 
can be leveraged to provide such advice in the context 
of algorithm selection.

BACKGROUND

STABB is an early precursor of meta-learning sys-
tems in the sense that it was the first to show that a 
learner’s bias can be adjusted dynamically (Utgoff, 
1986). VBMS may be viewed as the first simple 
meta-learning system (Rendell et al., 1989). It learns 
to choose one of three symbolic learning algorithms 
as a function of the number of training instances and 
the number of features. The StatLog project extended 
VBMS significantly by considering a larger number of 
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dataset characteristics, together with a broad class of 
candidate models and algorithms for selection (Brazdil 
& Henery, 1994). The aim was to characterize the 
space in which a given algorithm achieves positive 
generalization performance.

The MLT project focused on the practice of ma-
chine learning and produced a toolbox consisting of a 
number of learning algorithms, datasets, standards and 
know-how (Kodratoff et al., 1992; Craw et al., 1992). 
Considerable insight into many important machine 
learning issues was gained during the project, much of 
which was translated into meta-rules that formed the 
basis of a kind of user-guidance expert system called 
Consultant-2.

Born out of practical challenges faced by research-
ers at Daimler Benz AG (now), CITRUS is perhaps 
the first implemented system to offer user guidance 
for the complete data mining process, rather than for 
a single phase of the process (Engels, 1996; Wirth 
et al., 1997). Algorithm selection takes place in two 
stages, consisting of: 1) mapping tasks to classes of 
algorithms, and 2) selecting an algorithm from the 
selected class. The mapping stage is driven by decom-
position and guided by high-level pre/post-conditions 
(e.g., interpretability). The selection stage consists 
of using data characteristics (inspired by the Statlog 
project) together with a process of elimination (called 

“strike-through”), where algorithms that do not work 
for the task at hand are successively eliminated until 
the system finds one applicable algorithm. Although 
there is no meta-learning in the traditional sense in 
CITRUS, there is still automatic guidance beyond the 
user’s own input.

Finally, theoretical results, such as the NFL theo-
rems and their consequences have helped in identify-
ing limitations and opportunities for meta-learning 
(Schaffer, 1994; Wolpert & Macready, 1995; Wolpert, 
2001). Additionally, extensive empirical studies have 
confirmed the theory, and provided additional insight 
into learning that may serve both as a source of direct 
meta-knowledge and as input to meta-learning (Aha, 
1992; Holte, 1993; Lim et al., 2000).1

MAIN FOCUS

Meta-learning, in the context of model selection, con-
sists of applying learning mechanisms to the problem 
of mapping learning tasks to algorithms. Let L be a set 
of learning algorithms and T be a set of learning tasks 
such that for each t in T, bL(t) represents the algorithm 
in L that performs best on t for some user-defined per-
formance criterion (e.g., predictive accuracy, execution 
time).2 Since learning tasks may be unwieldy to handle 

Figure 1. Meta-dataset construction
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directly, some type of task characterization is used 
and the meta-learner actually learns a mapping from 
characterizations to algorithms. For each learning task 
t, let c(t) denote the characterization of t by some fixed 
mechanism. The set {<c(t), bL(t)>: t in T} constitutes a 
meta-task or meta-dataset, as depicted in Figure 1.

A meta-learner can then take the meta-dataset 
{<c(t), bL(t)>: t in T} as a training set and induce a 
meta-model that, for each new learning task, predicts 
the model from L that will perform best. Alternatively, 
one may build a meta-model that predicts a ranking of 
algorithms from L (Berrer et al., 2000; Brazdil et al., 
2003). The ranking approach reduces the brittleness of 
the meta-model. Assume, for example, that the model 
predicted best for some new learning task results in what 
appears to be a poor performance. In the single-model 
prediction approach, the user has no further information 
as to what other model to try. In the ranking approach, 
the user may try the second best, third best, and so on, 
in an attempt to improve performance. Furthermore, 
ranking makes it easier to include additional (possibly 
qualitative) criteria, such as comprehensibility, in the 
selection process (Giraud-Carrier, 1998).

Clearly, one of the challenges of meta-learning is the 
construction of the meta-dataset, i.e, <c(t), bL(t)> pairs 
for some base level learning tasks. This raises issues 
with: 1) the choice of the characterization mechanism 
c, 2) the choice of the set of learners L, 3) the collection 
of representative tasks, and 4) the cost of computing 
c(t) and bL(t) for each task. We briefly discuss each of 
these issues in the following sections.

Characterization Mechanism

As in any learning task, the characterization of the 
examples plays a crucial role in enabling learning. 
The central idea is that high-quality dataset character-
istics or meta-features provide useful information to 
discriminate among the performances of a set of given 
learning strategies. Typical characterization techniques 
belong to one of the following classes. 

• Statistical and Information-Theoretic Character-
ization. A number of statistical and information-
theoretic measures are extracted from the dataset, 
such as number of classes, number of features, 
ratio of examples to features, degree of correlation 
between features and target concept, average class 
entropy and class-conditional entropy, skewness, 

kurtosis, signal–to-noise ratio, etc. (Aha, 1992; 
Michie et al., 1994; Engels & Theusinger, 1998; 
Sohn, 1999; Köpf et al., 2000; Kalousis, 2002).

• Model-Based Characterization. Models induced 
on the dataset are used as indicators of the un-
derlying properties of the dataset. To date, only 
decision trees have been used for the extraction 
of characteristics such as nodes per feature, 
maximum tree depth, shape, tree imbalance, etc. 
(Bensusan et al., 2000; Peng et al., 2002).

• Landmarking. The performances of simple 
learners, known as landmarkers, are computed 
on the dataset using cross-validation (Bensusan 
& Giraud-Carrier, 2000; Pfahringer et al., 2000). 
The idea is that landmarkers serve as signposts 
of the performance of the full-fledged target 
learners in L. Alternatively, one can exploit ac-
curacy results obtained on simplified versions of 
the data (e.g., samples), known as sub-sampling 
landmarks (Fürnkranz & Petrak, 2001; Soares et 
al., 2001).

Choice of Base-level Learners

Although no learner is universal, each learner has its 
own area of expertise, which can be informally defined 
as the set of learning tasks on which it performs well. 
Since the role of the meta-model is to predict which 
algorithm is most likely to perform best on each new 
task, one should select base learners with complemen-
tary areas of expertise. In principle, one should seek the 
smallest set of learners that is most likely to ensure a 
reasonable coverage of the base-level learning space. 
One way to ensure diversity is by choosing represen-
tative learners from varied model classes. The more 
varied the biases, the greater the coverage.

Meta-Dataset Construction

The number of accessible, documented, real-world 
learning tasks is relatively small, which poses a chal-
lenge for learning. This challenge may be addressed 
either by augmenting the meta-dataset through sys-
tematic generation of synthetic base level tasks, or by 
taking the view that the model selection task is inher-
ently incremental and treating it as such. The second 
approach results in slower learning since learning 
tasks become available over time. On the other hand, 
it naturally adapts to reality, extending to new areas 
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of the base level learning space only when tasks from 
these areas actually arise.

Computational Cost

The computational cost is the price to pay to be able 
to perform model selection learning at the meta-level. 
However, in order to be justifiable, the cost of comput-
ing c(t) should be significantly lower than the cost of 
computing bL(t). Otherwise, even if the meta-model is 
very accurate, it has little value as the user would be 
better off trying all algorithms and selecting the best 
one, which clearly defeats the purpose of meta-learn-
ing. The characterization mechanisms listed above all 
include many measures that satisfy this condition.

Although much remains to be done, results suggest 
the suitability of meta-learning for model selection 
(Brazdil & Soares, 2000; Bensusan & Kalousis, 2001; 
Hilario & Kalousis, 2001). We briefly describe two 
recent, successful systems as an illustration. One is a 
strict meta-learning system and offers ranking advice 
for model selection. The other is based on an ontology, 
but produces ranking advice for the complete KDD 
process.

Data Mining Advisor
 
The Data Mining Advisor (DMA) is the main product of 
the ESPRIT METAL research project (see http://www.
metal-kdd.org). The DMA is a Web-based meta-learning 
system for the automatic selection of model building 

algorithms in the context of classification and regression 
tasks. Given a dataset and goals defined by the user in 
terms of accuracy and training time, the DMA returns 
a list of algorithms that are ranked according to how 
well they are predicted to meet the stated goals.

The DMA guides the user through a wizard-like 
step-by-step process consisting of 1) uploading a target 
dataset (with some user-defined level of privacy), 2) 
characterizing the dataset automatically using statisti-
cal and information-theoretic measures, 3) setting the 
selection criteria and the ranking method, 4) produc-
ing the ranking advice, and 5) executing user-selected 
algorithms on the dataset. Although the induced models 
themselves are not returned, the DMA reports 10-fold 
cross-validation accuracy, true rank and score, and, 
when relevant, training time. A simple example of the 
ranking produced by the DMA is shown in Figure 2, 
where some algorithms were selected for execution.

The DMA’s choice of providing rankings rather than 
“best-in-class” is motivated by a desire to give as much 
information as possible to the user, as discussed above. 
In some sense, one can argue that the ranking approach 
subsumes the “best-in-class” approach. Interestingly, 
empirical evidence suggests that the best algorithm 
is generally within the top 3 in the DMA  rankings 
(Brazdil et al., 2003).

Intelligent Discovery Assistant
 
The notion of Intelligent Discovery Assistant (IDA) 
provides a template for building ontology-driven, pro-

Figure 2. Sample DMA output
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cess-oriented assistants for KDD (Bernstein & Provost, 
2001; Bernstein et al., 2005). IDAs encompass the three 
main algorithmic steps of the KDD process, namely, 
pre-processing, model building and post-processing. 
In IDAs, any chain of operations consisting of one or 
more operations from each of these steps is called a 
Data Mining (DM) process. The goal of an IDA is to 
propose to the user a list of ranked DM processes that 
are both valid and congruent with user-defined prefer-
ences (e.g., speed, accuracy).

The IDA’s underlying ontology is essentially a 
taxonomy of DM operations or algorithms, where 
the leaves represent implementations available in the 
corresponding IDA. Operations are characterized by 
pre-conditions, post-conditions and heuristic indicators. 
Clearly, the versatility of an IDA is a direct consequence 
of the richness of its ontology. The typical organization 
of an IDA consists of 1) the plan generator, that uses 
the ontology to build a list of (all) valid DM processes 
that are appropriate for the task at hand, and 2) the heu-
ristic ranker, that orders the generated DM processes 
according to preferences defined by the user.

The plan generator takes as input a dataset, a user-
defined objective (e.g., build a fast, comprehensible 
classifier) and user-supplied information about the data, 
i.e., information that may not be obtained automati-
cally. Starting with an empty process, it systematically 
searches for an operation whose pre-conditions are met 
and whose indicators are congruent with the user-de-

fined preferences. Once an operation has been found, it 
is added to the current process, and its post-conditions 
become the system’s new conditions from which the 
search resumes. The search ends once a goal state has 
been found or when it is clear that no satisfactory goal 
state may be reached. The plan generator’s search is 
exhaustive: all valid DM processes are computed. Figure 
3 shows the output of the plan generator for a small 
ontology of only 7 operations, when the input dataset 
is continuous-valued and comprehensible classifiers 
are to be preferred.

The restriction of the plan generator to valid pro-
cesses congruent with user-defined objectives is gener-
ally sufficient to make an exhaustive search feasible. 
The main advantage of this exhaustivity is that no valid 
DM process is ever overlooked, as is likely to be the 
case with most users, including experts. As a result, an 
IDA may, and evidence suggests that it does, uncover 
novel processes that experts had never thought about 
before, thus enriching the community’s meta-knowl-
edge (Bernstein & Provost, 2001).

Once all valid DM processes have been generated, a 
heuristic ranker is applied to assist the user further, by 
organizing processes in descending order of ``return’’ 
on user-specified goals. For example, the processes in 
Figure 3 are ordered from simplest (i.e., least number 
of steps) to most elaborate. The ranking relies on the 
knowledge-based heuristic indicators. If speed rather 
than simplicity were the objective, for example, then 

Figure 3. Sample list of IDA-generated DM processes
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Plan #3 would be bumped to the top of the list, and all 
plans involving random sampling would also move up. 
In the current implementation of IDAs, rankings rely 
on fixed heuristic mechanisms. However, IDAs are 
independent of the ranking method and thus, they could 
possibly be improved by incorporating meta-learning 
to generate rankings based on past performance.

FUTURE TRENDS

One important research direction in meta-learning 
consists in searching for improved meta-features in 
the characterization of datasets. A proper characteriza-
tion of datasets can elucidate the interaction between 
the learning mechanism and the task under analysis. 
Current work has only started to unveil relevant meta-
features; clearly much work lies ahead. For example, 
many statistical and information-theoretic measures 
adopt a global view of the dataset under analysis; 
meta-features are obtained by averaging results over 
the entire training set, implicitly smoothing the actual 
distribution. There is a need for alternative and more 
detailed descriptors of the example distribution in a 
form that highlights the relationship to the learner’s 
performance.

Similarly, further research is needed in character-
izing learning algorithms. Recent efforts in model 
composition may prove useful. In this paradigm, instead 
of seeking to combine several whole algorithms or to 
find one algorithm among several that would perform 
best on a given task, the system breaks the learning 
process down into sub-components and, for each task, 
composes a custom, possibly novel, learning system 
from a combination of these components (Suyama et 
al., 1998; Abe & Yamaguchi, 2002).

Recently proposed agent-based data mining archi-
tectures offer unique ways to increase the versatility, 
extensibility and usability of meta-learning (Botía et al., 
2001; Hernansaez et al., 2004; Zhong et al., 2001).

Finally, the increased amount and detail of data avail-
able about the operations of organizations is leading to 
a demand for a much larger number of models, up to 
hundreds or even thousands. This kind of application 
has been called Extreme Data Mining (Fogelman-
Soulié, 2006). Current DM methodologies, which are 
largely dependent on human efforts, are not suitable 
for this kind of extreme settings because of the large 
amount of human resources required. Meta-learning 

can be used to reduce the need for human intervention 
in model development and thus, we expect that it will 
play a major role in these large-scale Data Mining 
applications.

CONCLUSION

From a practical standpoint, meta-learning helps solve 
important problems in the application of data mining 
tools. First, the successful use of these tools outside 
the boundaries of research is conditioned upon the 
appropriate selection of a suitable predictive model, 
or combination of models, according to the domain of 
application. Without some kind of assistance, model 
selection and combination can turn into solid obstacles 
to non-expert end-users. Second, a problem commonly 
observed in the practical use of data mining tools is 
how to profit from the repetitive use of predictive 
models over similar tasks. The successful application 
of models in real-world scenarios requires continuous 
adaptation to new needs. Rather than starting afresh 
on new tasks, one would expect the learning mecha-
nism itself to re-learn, taking into account previous 
experience. Again, meta-learning systems can help 
control the process of exploiting cumulative expertise 
by searching for patterns across tasks, thus improving 
the utility of data mining. Interestingly, generalizations 
of meta-learning for algorithm selection in other areas, 
such as cryptography, sorting and optimization, have 
recently been proposed (Smith-Miles, 2007).
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KEy TERMS

Data Mining: Application of visualization, statis-
tics and machine learning to the discovery of patterns 
in databases. There is general consensus that patterns 
found by data mining should in some way be novel 
and actionable.

Landmarking: A task characterization that replaces 
a learning task by the performances of a number of 
simple and efficient learning algorithms on that task.
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Meta-Learning

M
Meta-Dataset: Dataset consisting of task character-

izations (or meta-features) together with their associated 
best strategy (i.e., learning algorithm or data mining 
process that gives the best performance on the task).

Meta-Features: Features used to characterize 
datasets, that serve as inputs to meta-learning. These 
features may take the form of statistics, landmarkers 
or model-based attributes. 

Meta-Learning: Application of learning techniques 
at the meta-level. Any use of learning methods to help 
inform the process of machine learning. Learning 
about learning.

Task Characterization: A method for extracting 
features, then known as meta-features, from the dataset 
associated with a learning task.

ENDNOTES

1 Note that, although it is sometimes viewed as a 
form of meta-learning, we purposely omit from 
this discussion the notion of model combination. 
Model combination consists of creating a single 
learning system from a collection of learning 
algorithms. It has been shown that in many cases 
improved performance is obtained by combining 
the strengths of several learning algorithms. These 
approaches reduce the probability of misclas-
sification based on any single induced model by 
increasing the system’s area of expertise through 
combination. However, from the meta-learning 
perspective, they can be regarded as single algo-
rithms.

2 It is easy to extend the notion of best learning 
algorithm for t to best data mining process for 
t.




