\qquad
\qquad
\qquad

End-of-Year Test Modules 1-23

For 1-2, use the graph.

1. Which segment is congruent to $\overline{E F}$?
2. What is the midpoint of $\overline{G H}$?

Use the following information for 3-4.

In the figure, $\mathrm{m} \angle K J L=32^{\circ}$.

3. What is the value of x ?
4. What is $\mathrm{m} \angle K J M$?
\qquad
\qquad Date \qquad Class \qquad

End-of-Year Test Modules 1-23

Use the following information for 10-11. In the figures below, $\triangle A B C \cong \triangle L N M$.

10. What is the value of x ?
11. What is the value of y ?

Use the graph for 12-13.

12. What transformations can you use to show that quadrilaterals $D E F G$ and $D^{\prime} E^{\prime} F^{\prime} G^{\prime}$ are congruent?
\qquad
\qquad
14. In the figure, $\mathrm{m} \angle 2=75^{\circ}$.

What is $\mathrm{m} \angle 7$?
15. The measures of two complementary angles are represented by the expressions $(3 x+16)^{\circ}$ and $(5 x+18)^{\circ}$. Find the value of x.
16. Write an equation for the line that passes through $(1,-3)$ and is perpendicular to $y=\frac{1}{2} x+5$.
\qquad
17. Write an equation for the line that passes through (3,2) and is parallel to $2 x+3 y=3$.
18. In the figure, the measure of $\angle 2$ is 55°.

What is the measure of $\angle 4$?
\qquad
\qquad
\qquad Class \qquad

End-of-Year Test Modules 1-23

19. Use the figures.

Determine the value of x that ensures that the triangles are congruent.

For 20-21, state the additional congruency statement or statements needed to prove $\triangle A B C \cong \triangle X Y Z$ for the given theorem.

20. ASA Theorem
21. AAS Theorem
22. Look at the figure below.

Are triangles $D E F$ and $F G H$ congruent? Explain why or why not. If the triangles are congruent, write a congruence statement.
23. In the figure, $\overline{P Q} \cong \overline{P S}$.

Explain why $\triangle P Q R \cong \triangle P S R$.
\qquad
\qquad
24. In the figure, $\mathrm{m} \angle B A C=9 x+4$ and $\mathrm{m} \angle B A D=3 x+8$.

What value of x indicates that $\overline{A D}$ is the angle bisector of $\angle B A C$?
25. Use the figure.

What is the value of x ?
\qquad
\qquad
\qquad
\qquad

End-of-Year Test Modules 1-23

27. Triangle $R S T$ is an isosceles triangle with $\mathrm{m} \angle R=120^{\circ}$. What is $\mathrm{m} \angle S$? Explain your reasoning.
\qquad
\qquad

For 29-30, use the figure.

29. If $E G=4$, what is $G C$?
\qquad
30. If $A F=15$, what is $A G$?
31. In the figure, $\overline{M N}$ is the midsegment of $\triangle J K L$.

If $K M=11 \mathrm{~cm}$ and $K L=24 \mathrm{~cm}$, what is $K N$?
32. In the figure, $\overline{L P}, \overline{M P}$, and $\overline{N P}$ are perpendicular bisectors.

If $L P=5, L H=12, H P=13$, and $P M=6$, what is $P J$?
33. In the figure, point W is the incenter of the triangle $X Y Z$.

If $R W=5$ and $W Y=14$, what is $W T$?
34. $A B C D$ is a quadrilateral with $\overline{B E} \cong \overline{E D}$ and $\angle B C D \cong \angle D A B$.

If $E C=16 \mathrm{~cm}, \mathrm{~m} \angle A B C=64^{\circ}$, $A E=3 x-5$, and $\mathrm{m} \angle D A B=(4 y-12)^{\circ}$, for what values of x and y is $A B C D$ a parallelogram?
\qquad
\qquad
\qquad
\qquad
\qquad

End-of-Year Test Modules 1-23

36. GIJL is a trapezoid with midsegment $\overline{H K}$.

If $I J=18 \mathrm{~cm}$ and $G L=42 \mathrm{~cm}$, what is HK?
\qquad
\qquad
37. Triangle $P Q R$ is shown in the graph.

Classify the triangle. Explain your reasoning.
\qquad
\qquad
\qquad
\qquad Class \qquad

End-of-Year Test Modules 1-23

Use the following information for 42-43.
Triangle $A B C$ has vertices $A(-6,-2)$, $B(-2,2)$, and $C(4,-8)$. Dilate $\triangle A B C$ using a factor of $\frac{1}{2}$ about the origin. Then dilate its image using a scale factor of 5 about the origin.
42. Determine the coordinates of the final image.
43. Determine the scale factor you could use to dilate $\triangle A B C$ about the origin that would result in the final image in one step.
44. $\triangle C D E$ maps to $\triangle L M N$ with the transformation
$(x, y) \rightarrow(x+3, y-2) \rightarrow\left(\frac{2}{3} x, \frac{2}{3} y\right)$.
If $C D=9$, what is $L M$?
\qquad 49. Which triangles are similar? Write a similarity statement.
\qquad
50. What is $A B$?
51. Use the figure to find the unknown distance.

What is the distance across the river?
\qquad Date \qquad Class \qquad

End-of-Year Test Modules 1-23

52. Rectangles $A B C D$ and $E F G H$ are similar. Rectangle $A B C D$ has a length of 20 cm and a perimeter of 60 cm . Rectangle $E F G H$ has a length of 32 cm . Find the area of rectangle $E F G H$.

Use the following information for 53-55. In the figure, $P S=4$ and $S Q=16$. Find each length to the nearest tenth.

53. What is the length of $\overline{R S}$?
54. What is the length of $\overline{R P}$?
55. What is the length of $\overline{R Q}$?
56. Use the figure.

What is the length of $\overline{F E}$?
\qquad
\qquad
57. Find the coordinate that divides the directed line segment from $A(-2,-4)$ to $B(8,1)$ in the ratio of 2 to 3 .

Use triangle $X Y Z$ for 58-59. Round to the nearest tenth.

58. What is $Y X$?
\qquad
59. What is $Y Z$?

Use the triangle below for questions 60-61. Round to the nearest tenth.

60. If $\mathrm{m} \angle A=50^{\circ}, \mathrm{m} \angle B=100^{\circ}$, and $b=15 \mathrm{~cm}$, what is a ?
\qquad
61. If $a=12 \mathrm{~cm}, b=18 \mathrm{~cm}$, and $c=8 \mathrm{~cm}$, what is $\mathrm{m} \angle A$?
\qquad
\qquad
\qquad
\qquad
\qquad

End-of-Year Test Modules 1-23

62. In the figure, $\mathrm{m} \angle K J L=(12 x+8)$ and $\mathrm{m} \angle K M L=(10 x+16)$.

What is the value of x ?
\qquad
63. In the circle, $m W X=50$ and $m Y Z=130$.

What is $\mathrm{m} \angle V$?
\qquad

Use the circle for 64-65.

In the circle, $m A D=38$ and $m B C=162$.

64. What is $\mathrm{m} \angle A E D$?
\qquad
65. If $D E=3, E B=16$, and $A E=4$, what is $E C$?

Use the circle for 66-68.

66. Find the exact arc length of $Q R$.
67. Convert the central angle to radians.
\qquad
68. What is the area of the sector formed by $\angle R P Q$ to the nearest tenth?
\qquad
69. Write an equation of a circle with center $(3,-4)$ and radius 2.
\qquad
70. Find the center and radius of the circle with the following equation.

$$
x^{2}-6 x+y^{2}+4 y-3=0
$$

\qquad
\qquad Date \qquad Class \qquad

End-of-Year Test Modules 1-23

Use the information for 73-74.

A prism has 6-inch square bases and a height of 10 inches. A cylinder has a diameter of 10 inches and a height of 6 inches.
73. Which solid has the greater volume?
74. Which solid has the greater surface area?
75. The oblique cylinder shown below has a volume of 36π cubic inches. What is the radius of the base of the cylinder to the nearest tenth of an inch?

76. A right cone has a slant length of 9 centimeters and a radius of 4 centimeters. What is the surface area of the cone? Round to the nearest tenth of a square centimeter.
77. The triangular prism has a surface area of 510 square meters. Find the missing value for x.

78. A square pyramid and a cube have equal volumes. The side length of the base of each figure is 16 millimeters. How many times taller is the pyramid than the cube?
79. A cylinder has a radius of 8 inches and a height of 16 inches. The radius of a cone is half the length of the radius of the cylinder.
If the cylinder and the cone have equal volumes, how many times greater is the height of the cone than the height of the cylinder?

Use the following information for 80-81.
A company sells several sizes of the same design of trash cans. The trash cans consist of a cylinder and a hemisphere. The smallest size trash can has the dimensions shown.

80. What is the volume of the trash can to the nearest tenth of a cubic inch?
81. The largest size trash can is 3 times larger than the smallest trash can. Use the scale 1:3 to find the volume of the largest size trash can to the nearest tenth of a cubic inch.
82. A town is shaped like a rectangle that is 4 miles long and 3 miles wide. The population of the town is 288,000 . What is the average population density of the town?
\qquad
\qquad
\qquad

End-of-Year Test Modules 1-23

83. A school assigns each student an identification number. The number consists of 3 digits out of 10 possible digits and no digits are repeated.
How many different identification numbers are possible?
84. There are 15 students on the debate team. The team advisor randomly chooses 4 students to debate in the next competition. How many different ways can a team that includes Joseph, Malena, Carlos, and Abby be chosen?
85. Nina has 3 quarters, 2 dimes, 4 nickels, and 1 penny in her pocket. Nina needs a quarter, so she randomly chooses a coin from her pocket.
What is the probability that she randomly chooses a dime, does not replace it, and then chooses a quarter?

Use the following information for 86-88.

A jar contains 12 red marbles, 8 yellow marbles, 4 blue marbles, and 16 green marbles. One marble is taken from the jar and replaced. Then a second marble is taken from the jar.
86. What is the probability of choosing a blue marble followed by a red marble?
87. What is the probability of choosing two yellow marbles?
\qquad
88. What is the probability of not choosing a green marble?
89. Mr. Martin surveyed the students in his class about whether they had a sibling or a pet. The results are shown in the table.

	Has Pet	No Pet	Total
Has Sibling	7	8	15
No Sibling	3	6	9
Total	10	14	24

What is the probability that a student has a pet if he or she also has a sibling? Round to the nearest hundredth.

Use the following information for 90-93.

A standard deck of 52 playing cards has
4 suits: hearts, diamonds, spades, and clubs. Each suit has 13 cards that include numbers 2-10, jack, queen, king, and ace. Find the probability of randomly selecting each of the following cards.
90. What is the probability of drawing an ace or a 2 ?
91. What is the probability of drawing a card that is a 5 or a diamond?
92. Find the probability that a black card drawn from the deck is a queen.
93. Find the probability that a king drawn from the deck is a diamond.
94. In a contest, five students are chosen to win tickets to a football game. To choose the winners, a teacher picks five students who went to the last football game. Is this contest fair to all students in the school? Explain why or why not.
\qquad
\qquad Class \qquad

Answer Key

End-of-Year Test Modules 1-23

1. $\overline{A B}$
2. $(3.5,-1.5)$
3. $x=7$
4. 70°
5. $(1,-1)$
6. If two angles are congruent, then they are vertical angles. The converse is not true, since any two angles that have the same measure are congruent.
7. $\langle-6,-6\rangle$
8. 5
9. $72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ}$
10.9
11.8
10. a reflection over the y-axis, then a translation 1 unit left and 6 units down
11. $(x, y) \rightarrow(-x-1, y-6)$
12. 105°
15.7
13. $y=-2 x-1$
14. $y=-\frac{2}{3} x+4$
15. 35°
16. $x=9$
17. $\overline{A C} \cong \overline{X Z}$
18. $\overline{A B} \cong \overline{X Y}$ or $\overline{B C} \cong \overline{Y Z}$
19. Yes; the figure shows that $\overline{D F} \cong \overline{G F}$ and $E F \cong H F . \angle D F E$ and $\angle G F H$ are vertical angles, so $\angle D F E \cong \angle G F H$. Therefore, $\triangle D E F \cong \triangle G H F$ by SAS.
20. It is given that $\triangle P Q R$ and $\triangle P S R$ are right triangles and $\overline{P Q} \cong \overline{P S} . \overline{P R} \cong \overline{P R}$ by the Reflexive Property, so
$\triangle P Q R \cong \triangle P S R$ by HL Theorem.
21. $x=4$
22. $x=35$
23. 7 sides
24. $\mathrm{m} \angle S=30^{\circ}$; the base angles of an
isosceles triangles are congruent. Since $\angle R$ is an obtuse angle, the unknown angles are the acute base angles of the triangle. The sum of the base angles is $180-120=60^{\circ}$; so each base angle is equal to 30°.
25. In a triangle, the length of any side must be less than the sum of the lengths of the other two sides and greater than the difference between the lengths of the other two sides. Therefore, the third side must be greater than $8-5=3$ meters or less than $8+5=13$ meters.
26. 8
27. 10
31.12 cm
28. 13
33.5
29. $x=7, y=32$
30. A No B No C Yes D Yes E No
36.30 cm
31. isosceles triangle; using the distance formula, $P Q=\sqrt{34}, Q R=\sqrt{34}, R P=2 \sqrt{2}$.
Since the triangle has two congruent sides, it is isosceles.
32. rectangle; using the distance formula, $D E=F G=6 \sqrt{2}, E F=D G=2 \sqrt{2}$, so the figure has opposite sides that are congruent. The slope of $\overline{D E}=$ slope of $\overline{G F}=1$ and slope of $\overline{E F}=$ slope of $\overline{D G}=-1$, so the figure has two pairs of parallel sides, and consecutive sides are perpendicular. Therefore, the figure is a rectangle.
33. $2 a+b$
34. 19.31 units
35. 24 square units
36. $A^{\prime}(-15,-5), B^{\prime}(-5,5)$, and $C^{\prime}(10,-20)$
37. $\frac{5}{2}$
38. 6
39. reflection over the y-axis, then a dilation
\qquad Date \qquad Class \qquad
about the origin of $\frac{1}{2}$
40. $\frac{B E}{F I}=\frac{C D}{G H}$
41. $\angle H I F$
42. 4
43. $\triangle A C B \sim \triangle A E D$
50.15
51.18 m
$52.512 \mathrm{~cm}^{2}$
53.8
44. 8.9
45. 17.9
46. 13.5
47. $(2,-2)$
48. 55.4 mm
59.48 .9 mm
60.11 .7 cm
$61.32 .1^{\circ}$
49. $x=4$
50. 40°
64.100°
51. 12
52. $\frac{16 \pi}{3}$
53. $\frac{2 \pi}{3}$
$68.67 .0 \mathrm{~mm}^{2}$
54. $(x-3)^{2}+(y+4)^{2}=4$
55. center: $(3,-2)$; radius: 4
56. $y=-\frac{x^{2}}{8}+2$
57. $y=\frac{1}{10}(x-4)^{2}-\frac{1}{2}$
58. cylinder; volume of prism $=360 \mathrm{in}^{3}$; volume of cylinder $\approx 471.2 \mathrm{in}^{3}$
59. cylinder; S.A. of prism $=312 \mathrm{in}^{2}$; S.A. of cylinder $\approx 471.2 \mathrm{in}^{2}$
60. Proof: $36 \pi=\pi r^{2}(18), 2=r^{2}, r=\sqrt{2}$
61. $163.4 \mathrm{in}^{2}$; Proof: SA is $\pi r s+\pi r^{2}$

$$
=\pi(4)(9)+\pi(16)=52 \pi \approx 163.4 \mathrm{in}^{2}
$$

77. S.A. $=(12 \cdot 5)+13 x+5 x+12 x=510$, $450=30 x, x=15 \mathrm{~m}$
78. The height of the pyramid is three times greater than the height of the square.
79. The height of the cone is 192 times greater than the height of the cylinder.
80. $V \approx 395.8 \mathrm{in}^{3}$
81. $V \approx 10,687.7 \mathrm{in}^{3}$
82. 24,000 people per square mile
83. 720
84. $\frac{1}{1365}$
85. Total of 10 coins, so probability

$$
=\left(\frac{2}{10}\right)\left(\frac{3}{9}\right)=\frac{1}{15}
$$

86. 40 marbles total, probability

$$
=\left(\frac{4}{40}\right)\left(\frac{12}{40}\right)=\frac{3}{100}
$$

87. 40 marbles total, probability

$$
=\left(\frac{8}{40}\right)\left(\frac{8}{40}\right)=\frac{1}{25}
$$

88. 40 marbles total, probability

$$
=\frac{(40-16)}{40}=\frac{3}{5}
$$

89. $\frac{7}{15}$
90. 0.15
91. 0.31
92. 0.04
93. 0.02
94. No; the teacher is only choosing from students who went to the last football game and not from all students in the school
