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Disclaimers

• I currently work at Google (not on Android)

• This work is not connected with Google
• Research was done while I was a graduate student at UW

• All data is from our experiments or open-source resources

• All opinions are our own
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Today’s mobile memory management is
bad for users and applications
• Each app gets a fixed maximum memory budget

• Mobile OS kills apps when the device runs out of memory
• Even if apps are not actively using their memory

• Restarting apps takes time

• Developers must optimize app memory usage
App

Working 
set
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Traditional swapping is not a solution

• Not suited to managed languages (e.g., Java)
• Garbage collection causes swapping, confuses working set estimation (WSE)

• Page-granularity swapping and WSE do not fit variable-sized objects

• Not suited to latency-sensitive touch devices
• On-demand swapping causes stuttering and delays
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Key insight

• We can co-design the runtime and OS to improve mobile memory 
management

• Possible because modern mobile platforms require all apps to use the 
same runtime
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Marvin

• Android memory manager co-designed with Android’s Java runtime

• Reintroduces swapping to the mobile environment
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Marvin

• Marvin has three main features:
• Ahead-of-time swap

• Object-level working set estimation

• Bookmarking garbage collector [Hertz 05]
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Stubs

• We need an indirection layer between objects referencing each other
• Catch accesses to swapped-out objects

• Stubs provide that indirection layer
• Small pseudo-objects that sit in the Java heap and point to the “real” object

• Store copies of the real object’s references
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Reclamation table

• We need a way for the runtime and OS to coordinate
• Tell OS which objects can be reclaimed

• Prevent OS from reclaiming an object being used by the runtime

• A shared-memory reclamation table allows that coordination
• Stores an object’s location and size, and has metadata bits for locking
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obj A
obj B
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Reclamation Table

address size res app
lock

kernel
lock

0xc00d00a0 512 1 0 0

0xc00e1410 128 1 2 0

0xc0002320 8192 1 0 0



Object access interposition

• The runtime needs a way to transparently act when app code 
accesses objects
• Restoring swapped-out objects

• Update working set metadata

• Object access interposition is a set of paired interpreter and compiler 
modifications implementing those actions
• Interpreter directly acts when performing object accesses

• Compiler generates additional ARM64 instructions around object accesses
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Ahead-of-time swap

• Runtime uses object access 
interposition to set dirty bit in 
object header

• Runtime clears dirty bit after saving 
an object

• Kernel checks dirty bit before 
reclaiming an object
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Object-level working set estimation

• Runtime uses object access interposition to set access bits

• Runtime scans access bits and updates longer-term WSE metadata
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int x = foo.getX();
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0 | 0 | 1100 | 0000

Read bit    Write bit    Read shift register    Write shift register

1 | 0 | 1100 | 00000 | 0 | 1001 | 0000

Interpreter
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Bookmarking garbage collector

• Runtime uses object access interposition to maintain stub references

• GC detects stubs and reads references without touching underlying 
objects
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Marvin implementation

• We modified the Android Runtime (ART) to implement Marvin

• Default policy keeps the foreground app’s objects in-memory

• For experiments, we trigger reclamation in the runtime
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Evaluation

• Experimental setup:
• Pixel XL phones

• Android 7.1.1 (or our modified build)

• Questions:
• Does Marvin let users run more apps?

• Does ahead-of-time swap work?

• What is Marvin’s overhead?
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Does Marvin let users run more apps?

• We periodically started instances of a benchmark app
• Initializes a 220MB heap with a mix of 4KB and 1MB arrays

• Deletes and re-allocates 20MB of those arrays every 5 seconds

• We measured the number of active apps: apps that are alive and 
making progress on their workloads
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Does Marvin let users run more apps?

• Marvin can run over 2x as many apps as stock Android

• On Android w/ Linux swap, a little allocation makes apps unusable
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Does ahead-of-time swap work?

• Marvin reclaims memory much faster than Android w/ Linux swap

Marvin Android

≈8 seconds≈100ms
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What is Marvin’s overhead?

• When objects are memory-
resident, execution overheard 
depends on proportion of 
object accesses

• Overhead is reasonable (15%) 
on PCMark benchmark
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Related work
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Related work
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Acclaim [Liang 20]

SmartSwap [Zhu 17]

A2S [Kim 17]
MARS [Guo 15]

Similarities with Marvin

Addresses incompatibility of garbage 
collection and kernel-level swap



Related work
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Acclaim [Liang 20]

SmartSwap [Zhu 17]

A2S [Kim 17]
MARS [Guo 15]

Perform swapping at the kernel 
level rather than the runtime level

Differences from Marvin



Conclusion

• Problem: Today’s mobile memory management is inadequate

• Insight: We can co-design the runtime and OS to improve memory 
management

• Solution: Marvin improves mobile memory management with three 
co-design features
• Ahead-of-time swap

• Object-level working set estimation

• Bookmarking garbage collection
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Thanks!

• Marvin source code is available on GitHub: 
https://github.com/UWSysLab

• Contact: nl35@cs.washington.edu
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