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Abstract

The real world is a 280 dB High Dynamic Range (HDR)
world which imaging sensors cannot record in a single shot.
HDR cameras acquire multiple measurements with differ-
ent exposures, gains and photodiodes, from which an Im-
age Signal Processor (ISP) reconstructs an HDR image.
Dynamic scene HDR image recovery is an open challenge
because of motion and because stitched captures have dif-
ferent noise characteristics, resulting in artifacts that ISPs
must resolve in real time at double-digit megapixel resolu-
tions. Traditionally, ISP settings used by downstream vision
modules are chosen by domain experts; such frozen camera
designs are then used for training data acquisition and su-
pervised learning of downstream vision modules. We depart
from this paradigm and formulate HDR ISP hyperparame-
ter search as an end-to-end optimization problem, propos-
ing a mixed 0th and 1st-order block coordinate descent op-
timizer that jointly learns sensor, ISP and detector network
weights using RAW image data augmented with emulated
SNR transition region artifacts. We assess the proposed
method for human vision and image understanding. For
automotive object detection, the method improves mAP and
mAR by 33% over expert-tuning and 22% over state-of-the-
art optimization methods, outperforming expert-tuned HDR
imaging and vision pipelines in all HDR laboratory rig and
field experiments.

1. Introduction

Real-world scenes have dynamic ranges that often ex-
ceed 1,000,000 :1 (120 dB) [50] and, in extreme cases
like tunnel exit in direct sunlight, reach over 200 dB.
This dynamic range must be captured by vision algorithms
for safety-critical decision making in robotics and naviga-
tion. Existing sensors cannot capture High Dynamic Range
(HDR) in a single shot [9, 12, 38]. As a result, modern
cameras rely on sequentially and spatially-multiplexed ac-
quisition techniques, combining data acquired with differ-
ent exposure times, gains and photodiodes.

Image Signal Processors (ISPs) are low-level pipelines
implemented in hardware that convert RAW sensor pixel
data into images suitable for human viewing or scene un-
derstanding tasks such as object detection and classification.
ISPs thus form an essential interface and abstraction layer
between the sensor and the display or computer vision mod-
ule. ISP processing blocks are configured with tens to hun-
dreds of adjustable hyperparameters which define its static
and dynamic behavior [44, 46, 49, 58], for example adap-
tation to noise level. Choosing optimal ISP hyperparameter
values is challenging as they depend on the context in which
the camera is used (portraits and landscapes vs. all-weather
autonomous driving), on the specifics of the lens and sen-
sor (before the ISP), and on the downstream task (display to
human viewers vs. object detection).

Traditionally, imaging experts have manually selected
ISP hyperparameter values using charts and visual in-
spection [44, 58]. The potential of automated loss-based
hardware ISP hyperparameter optimization in the low-
dynamic range (LDR) context, using differentiable approxi-
mations [58] or 0th-order (derivative-free) methods [44, 46],
was recently established. These methods rely on gain
separability and consequently are limited to LDR image
processing; HDR optimization requires novel approaches.
End-to-end loss-based optimization has not included sen-
sor hyperparameters and work on the optimization of non-
differentiable ISPs for CV [44, 58] has kept the downstream
Convolutional Neural Network (CNN) detector fixed. In
this work, we tackle HDR and jointly optimize the sensor,
ISP and CNN.

The search for optimal HDR imaging pipelines is an
open problem central to imaging and vision tasks in uncon-
trolled in-the-wild scenarios. Real-time applications, e.g.,
in robotics and autonomous driving, and high sensor resolu-
tions, up to triple-digit megapixel counts, mandate efficient
hardware implementations [6]. Multiplexing makes HDR
processing an open challenge. Motion causes ghosting arti-
facts when captures acquired sequentially or with different
exposure times are stitched together [14]. Split-pixel sen-
sors, with two or more diodes per pixel [60], reduce mo-
tion blur discrepancies but are often used with multiple ex-



posure times. With few captures (four or less in automo-
tive imaging [52]), signal-to-noise ratio (SNR) transition
regions show sudden texture changes, resulting in spuri-
ous edge detections by the Human Visual System and CNN
detectors. Complicating matters, some ISP nodes behave
differently in HDR; for example, color artifacts occur near
knee points of the companding curve.

Departing from handcrafted ISP hyperparameter tun-
ing, we propose a task-specific, loss-driven, end-to-end ap-
proach to the joint optimization of the sensor, ISP and detec-
tor for downstream applications such as human viewing and
object detection. Optimization for human viewing is per-
formed with multiple losses, including Contrast Weighted
Lp-Norm, a novel full reference image difference metric
based on Larkin’s universal Noise Visibility Function [32],
and a dynamic HDR lab setup covering 123 dB. When opti-
mizing for image understanding, instead of acquiring large
datasets containing SNR transition region edge cases in se-
mantic scene content, we augment data with a proposed
SNR transition region artifact emulation method. The pro-
posed block coordinate descent approach combines a 0th-
order evolutionary optimizer (with novel centroid weights
that stabilize boundary minima) with 1st-order Stochas-
tic Gradient Descent optimization, demonstrating the first
method that jointly optimizes hardware hyperparameters
and downstream CNN detector weights. The method is val-
idated with state-of-the-art hardware sensors and ISPs in an
HDR lab and in outdoor, in-the-wild human viewing and
automotive object detection HDR scenarios.

In summary, we make the following contributions:

• We propose the first end-to-end hardware-in-the-loop
optimization method for the hyperparameters of multi-
exposure HDR camera systems, and the first method for
the joint optimization of sensor and ISP hardware hyper-
parameters and CNN weights of a vision module.

• We propose a dynamic HDR lab setup, a full reference
perceptual image difference metric, and a data augmen-
tation methodology targeting HDR stitching artifacts.

• With state-of-the-art automotive ISPs and sensors, we
validate the proposed method experimentally and in sim-
ulation for human viewing and 2D object detection.
Across all tasks considered in this paper, the proposed
method outperforms existing methods.

The proposed method has the following limitations. Un-
like Mosleh et al. [44], we only consider one image under-
standing task, namely object detection and classification.
We sparsely sample sensor hyperparameters; a methodol-
ogy with a finer grain, involving for example multiple cam-
eras or coarse optimization followed by additional field data
acquisition, is needed. We only optimize single frame im-
age processing; RAW video sequences could be fed to an
ISP to process temporal cues.

2. Related Work
High Dynamic Range Image Acquisition Hallucinating
HDR from LDR content [12, 13, 35, 36, 40] is not an alter-
native for safety-critical applications. Actual HDR imaging
increases dynamic range by stitching measurements made
with different photodiodes, exposures and/or gains [4, 9, 38,
39, 51, 54, 59]. Temporal multiplexing introduces severe
motion artifacts in dynamic scenes [9, 16, 19, 38, 41, 51].
They are addressed by a large body of work, from post-
capture stitching [14, 15, 21, 26–28, 53] to optical flow [37]
and deep learning [24, 25]. Split-pixel HDR sensors re-
duce motion artifacts by multiplexing with colocated pho-
todiodes with different response sensitivities [10, 55, 57].
Optimization of Image Processing Pipelines Sensor
and ISP Hyperparameter optimization should not be con-
fused with adaptive capture controls like Auto-Exposure
(AE) [48, 64]. Hyperparameters configure camera systems;
they are persistent and fixed during normal operation.

ISPs have traditionally been manually optimized [6]. Re-
cent work demonstrated the potential of automated loss-
based ISP hyperparameter optimization for LDR. Human
viewing loss functions parallel image quality metrics and
standards [8, 22, 42, 43, 48, 62]. Computer vision loss
functions are evaluated on the output of a downstream im-
age understanding module [44]. Nishimura et al. [46, 61]
optimized a model software ISP by combining a global
swarm-intelligence optimization method with local Nelder-
Mead. Portelli et al. [49] optimized a simple model soft-
ware ISP with a Particle Swarm Optimization method.
Tseng et al. [58] optimized hardware ISPs by training a
CNN to mimic it and optimizing this differentiable proxy
with Stochastic Gradient Descent. Very recently, Mosleh et
al. [44] directly optimized hardware ISPs, without approx-
imation, with a two-step method: search space remapping
based on random sampling and statistical analysis, followed
by CMA-ES [17, 23]. Like Tseng and Mosleh, we formu-
late the selection of ISP hyperparameter values as a black-
box optimization problem driven by end-to-end losses; re-
liant on gain separability, their work does not extend to
HDR. Furthermore, Tseng et al. rely on approximating the
hardware, while Mosleh et al.’s 0th-order solver is not suited
for the optimization of CNNs. None considered sensors.
ISP Hyperparameter Optimization for Computer Vi-
sion The impact of ISP hyperparameter values on the per-
formance of a downstream vision module was explored in
[7, 11, 44, 58, 61, 63–65]. Image understanding optimiza-
tion has been driven by various end-to-end losses. Tseng et
al. [58] optimized hardware ISPs for object detection and
classification using Intersection over Union loss (IoU [47]).
Wu et al. [61] optimized a simple model ISP for object
detection and classification using mean Average Precision
(mAP [47]). Mosleh et al. [44] optimized hardware ISPs
for object detection and classification using mAP and mAR



Figure 1: Camera image formation process. Scene radiance
goes through the optical system and reaches the sensor. An
HDR RAW image is built from multiple exposures. The ISP
reverses the capture process and renders an image suitable
for viewing or CV.

(mean Average Recall [47]), object segmentation with mAP,
and panoptic segmentation with PQ [29]. None jointly op-
timized an hardware ISP and an image understanding mod-
ule. We close this gap and jointly train a deep CNN. The
work of Diamond et al. [11] comes closest. It is restricted to
differentiable software ISPs: they jointly optimized a train-
able software ISP and a downstream object classification
model using Top-1 and Top-5 classification accuracy.

3. Background and Image Formation
The total dynamic range of the human eye is about 46

stops (280 dB), from 10-6 cd/m2 at dimmest to 108 cd/m2

where retinal damage may occur [20]; the instantaneous
dynamic range is much lower. Unlike still photographers
who control lighting conditions, surveillance or automotive
imaging applications must accurately capture up to 144 dB
in rapidly changing light conditions. The range of light
measurable by a sensor in a single capture is limited. The
ratio between the brightest and darkest measurable signals
is essentially fixed: Varying exposure time adapts to bright
and dark conditions by shifting the light intensity capture
window, but sensor dynamic range is limited at the top end
by the electron well capacity and, at the bottom end, by the
photodiode sensitivity, electronic noise and sensor bit depth.

HDR, Optics, Sensors and Multiplexing HDR image
capture addresses situations in which 10 stops of light
reaches the sensor, a common real-world scenario [51]. A
typical camera image formation chain is shown in Fig. 1.
Light sources and reflective surfaces send radiation towards
the imaging system. It reaches the optical system and is fo-
cused onto the image sensor, which also receives internal
reflections and scattering. Optical noise thus includes veil-
ing glare, stray light and images of the aperture visible as
lens flare. The veiling glare floor is a hard limit on the dy-
namic range. A raw measurement I∈RW×H

[0,max] captured by
a sensor with resolution W×H is given by the response of

all the elements between the lens and the image sensor:

I = f(L((E∆t) ∗P) + η). (1)

E∈RW×H
[0,∞) is the irradiance of the scene (the HDR ground

truth), ∆t ∈ R[0,∞) is the exposure time, P ∈ RW×H
[0,∞) is

the optical Point Spread Function (PSF), L is glare forma-
tion [56], η∈RW×H is sensor noise (fixed pattern noise in-
cluded), and f is the sensor response, a non-linear mapping
considered smooth and monotonic clipped to [0,max].

Multiple such measurements are combined to produce
one HDR image. Existing methods to acquire the individual
measurements are described in the following:
Temporal Multiplexing: Multiple LDR images are cap-
tured in rapid succession with different exposure times and
merged into a single HDR image. This works well for still
photography, but introduces artifacts in the transitions be-
tween captures around and within moving objects.
Spatial Multiplexing: Individual pixels in the sensor array,
in an alternating pattern, use different exposure times or
gains allowing them to be captured simultaneously. This
reduces temporal discrepancies and spatial resolution.
Split-Pixel: Each sensor pixel has two photodiodes: one
small and one large. The small photodiode captures fewer
photons and acts like a short exposure; the large one, a long
exposure. Different gains may also be used.

HDR Image Formation Model The pixel values of J dif-
ferent captures are combined into an HDR irradiance map.
Assuming, without loss of generality, a split-pixel sensor,
RAW data is modeled as a tuple of exposures by multiple
diodes, with gains folded into effective exposure times ∆tj
(j ∈ {1, . . . , J}). The Sony IMX490 sensor used in this
work, for example, acquires 4-tuples: two diodes with two
conversion gains. Assuming constant irradiance and dis-
regarding the PSF, glare and noise, the estimated relative
log-irradiance of the jth capture at pixel location i is

ln Ẽji = ln
(
f−1(Iji)/∆tj

)
= ln f91(Iji)− ln ∆tj , (2)

where Iji is the jth sensor measurement value at pixel i and
f91 is the inverse camera curve [9] that returns Iji to the
linear domain. In principle, Eq. 2 holds everywhere but at
under- and over-exposed pixels. In practice, however, tem-
poral misalignment between captures can induce large devi-
ations. Captures are aligned using an image warping func-
tion I′j = h(Ij) [51], from which the HDR log-irradiance
map is reconstructed as the weighted average

ln Ẽi =
1∑

jw(I′ji)

∑
j

w(I′ji)
(
ln(f91(I′ji)− ln ∆tj

)
. (3)

This extends dynamic range by lowering the effective noise
floor [51], leaving optical noise as the dominant contribu-
tor in static scenes with large J. With small J or dynamic
content however, existing methods introduce hard to correct
artifacts like ghosting and SNR discontinuities (see Fig. 2).
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Figure 2: Common HDR multiplexing artifacts. Crops (a)
and (b): ghosting. Crop (c): SNR discontinuity.

4. HDR Fusion Simulation
Field data usually contains few samples where stitching

artifacts impact detection. We augment field data with sim-
ulated SNR drop artifacts post-stitching, that is, we modify
captures already passed through the (on-sensor) stitcher.

To optimize sensor hyperparameters, we acquire train-
ing data using consecutive captures that sample 254 com-
binations of sensor hyperparameter values (see Supplemen-
tal Document). To augment this data with simulated HDR
fusion artifacts, we first determine, for each sequence, the
RAW pixel level L above which noise is added: Each
stitched frame is decompanded into “linear RAW” (approx-
imately proportional to photon counts), the median pixel
value within the largest bounding box of each frame is com-
puted, and then L is the median of the frames’ medians, ig-
noring frames with no bounding box. The Sony IMX490
sensor stitches four exposures; three gain ratios, fixed in
hardware, consequently drive noise discontinuities. 70% of
the field RAWs are not modified; each gain ratio is used
with 10% of them. Sequences with the lowest L value
use the gain ratio between the two highest gain exposures
(17.5), those with the highest L value use the gain ratio be-
tween the two lowest gain exposures (65.0), and the rest use
the other gain ratio (6.49). We call this ratio “R”.

Sensor noise is modeled as Gaussian noise with intensity
dependent standard deviation

σnoise(I) =
√

KI +K2 σ2
dark. (4)

K is a gain and σdark is the standard deviation of the dark
noise [3]. (The values of K (9.83 DN24/e-) and σdark (0.54)
for the Sony IMX490 sensor were taken from calibration
data published by LUCID Vision Labs [31].)

Within each frame of the sequence, the absolute value of
random Gaussian noise with standard deviation

σadded =

√
(Rσnoise(L/R))

2 − (σnoise(L))
2 (5)

is added to pixel values I > L. The absolute value is used
because the stitching process generally produces RAWs
slightly lighter on the high gain side and because large neg-
ative noise values introduces unrealistic fusion artifacts.

5. HDR Sensor and ISP Optimization
HDR sensor and ISP optimization is an ill-conditioned

problem which involves discrete hardware registers and

computationally expensive losses. The proposed method
allows us to obtain perceptually pleasing images as well
as images with optimal IoU scores when input into an ob-
ject detector. See the Supplemental Document for a review
of the loss functions used in this work. Like Mosleh et
al. [44], we pose parameter selection as an optimization
problem, but we also include sensor functionality and the
downstream detector in the optimization problem. Relax-
ing integers as real numbers, we model an imaging pipeline
φ that reconstructs trichromatic color images O from J mul-
tiplexed RAW exposures as

φ : RJ×W×H × RP
[0,1] → RW×H×3, (I,Θ) �→ O. (6)

The transformation φ is modulated using P continuous hy-
perparameters Θ on the sensor and ISP with the range of
values normalized to the unit interval R[0,1]. Hardware reg-
isters are actually discrete, each with its own operational
range, for example {0, 1} for an algorithmic branch toggle
and {0, . . . , 210�1} for a noise threshold [58] but they are
relaxed to the continuum [44].

We frame HDR hyperparameter selection as a Multi-
Objective Optimization (MOO) problem [33] with solutions

Θ∗=argmin
Θ∈RP

[0,1]

L(s(Θ)) :=argmin
Θ∈RP

[0,1]

(L1(s(Θ)),. . . ,LL(s(Θ))) ,
(7)

where
s(Θ) = (φ(I1,Θ), . . . , φ(IS,Θ)) (8)

is the output image stack, a collection of HDR captures pro-
cessed by the sensor and ISP with the same hyperparameter
setting Θ but S different RAW image inputs from the HDR
input image stack I1, . . . , IS. The objective is the loss vec-
tor L(s(Θ)). Each of its L components is a loss measured
on the output image stack [44]. Specifically, each end-to-
end loss component Ll(s(Θ)) is derived from an evalua-
tion metric calculated on the output images produced by the
Θ-modulated sensor and ISP. These metrics may include
downstream vision tasks or even human observers [48].

When a deep vision CNN is involved, the loss does not
depend directly on the output image stack. It is then com-
puted with an evaluation metric that quantifies the output of
the downstream CNN

L(s(Θ)) = L(CNN(Ω, s(Θ))), (9)
where the downstream image understanding CNN and its
weights Ω are shown instead of being folded into the loss.

The set of MOO solutions is the Pareto front [33]. MOO
problems generically have multiple solutions. For example,
a first optimal solution may make L1 better but L2 worse
than another optimal solution, each solution manifesting
a different tradeoff between conflicting objectives. Multi-
modality aside, there may be multiple solutions even with a
single objective (L=1). For example, the mapping between
Θ and the output image stack s(Θ) may have a nontrivial



Algorithm 1 ISP Hyperparameter Optimization Method.
Require: Θ∈RP

[0,1] (sensor + ISP hyperparameter vector),
σ∈R(0,∞) (CMA-ES covariance matrix scaling factor),
C∈RP×P (CMA-ES “directional” cov. matrix factor),
ε∈R(0,∞) (small bound), N∈N∗ (number of iterations)

1: p← 0, c← 0 (CMA-ES path vectors)
2: for n = 1 to N do
3: symmetrize C
4: if smallest C eigenvalue < ε then
5: clamp eigenvalues up to ε
6: bring eigenvalues λ closer to 1 by replacing by λ0.99

7: p← 0, c← 0
8: end if
9: if σ < ε or σ > 1/2 then

10: σ ←median(ε, σ, 1/2), p← 0, c← 0
11: end if
12: if largest C eigenvalue > 1/(2σ) then
13: clamp eigenvalues down to 1/(2σ), p← 0, c← 0
14: else if ‖p‖ > CMA-ES bound then
15: p← 0, c← 0
16: end if
17: for p = 1 to 2P do
18: Θ

(n)
p ← draw from Gaussian at Θ with cov. matrix σC

19: Θ
(n)
p ← draw from Gaussian at Θ

(n)
p with diagonal cov.

matrix with entries proportional to quantization grain
20: reflect Θ

(n)
p back into RP

[0,1] (mirroring boundaries)

21: s(Θ
(n)
p )← run ISP on I1, . . . , IS with settings Θ

(n)
p

22: L(s(Θ
(n)
p ))← loss evaluated on ISP output s(Θ

(n)
p )

23: end for
24: update Θ, σ, C, p, c based on the loss
25: end for
26: return Θ

(n)
p with smallest L(s(Θ

(n)
p ))

kernel, meaning that different hyperparameter settings drive
the ISP to produce identical output images and, therefore,
losses. Such kernels should be disambiguated by reducing
the number of search space degrees of freedom so that s is
one-to-one, at least near candidates for optimality. Well-
balanced training data decreases the likelihood that widely
different parameter settings produce similar output image
stacks. This being said, the proposed solver robustly han-
dles some kernels. For example, one of the optimized Sony
IMX490 sensor hyperparameters is a toggle that deactivates
all the others, and optimization proceeded without a hitch.

The pipelines optimized in the present work do not allow
“re-injection” of RAW captures. So, optimization uses ever
changing input image stack instances. When optimizing for
human viewing for example, new lab captures are acquired
whenever a new Θ is evaluated through its loss.

The 0th-order solver Algorithm 1 used to optimize sen-
sor and ISP hyperparameters is a variant of CMA-ES (Co-
variance Matrix Adaptation Evolution Strategy) [17, 23] in
which Line 26 is disambiguated using Mosleh et al.’s max-
rank loss scalarization [44] when performing MOO. Key
differences with Mosleh et al. [44] are discussed below.

Algorithm 2 Joint Sensor, ISP and CNN Optimization
Method.
Require: Ω∈RQ

[0,∞) (CNN weight vector),
Θ∈RP

[0,1] (sensor + ISP hyperparameter vector),
L∈ N∗ (number of joint optimization cycles),
M∈ N∗ (Stochastic Gradient Descent iterations per cycle),
N∈ N∗, σ0∈R(0,∞), C0∈RP×P, ε∈R(0,∞) (Algorithm 1),
η∈R(0,∞) (CNN training learning rate)

1: for l = 1 to L do
2: σ ← σ0, C← C0

3: Θ← Algorithm 1 with loss L evaluated with fixed Ω
4: for m = 1 to M do
5: Ω← Ω− η∇ΩLm (Stochastic Gradient Descent itera-

tion for loss Lm evaluated with fixedΘ)
6: end for
7: σ0 ← σ0/2, η ← η/10
8: end for
9: return (Ω,Θ)

Hyperparameter values at the boundary of the usable
range are valid candidates for optimality, even more so
when ISP output is fed to downstream image understand-
ing modules. Existing CMA-ES methods, when used
with mirroring boundary conditions, are biased away from
the boundary (other boundary conditions also have issues)
[2, 17, 18, 30]. We constructed CMA-ES centroid weights
such that boundary minima in regions where one parame-
ter dominates loss variation are stable in expectation (when
the covariance matrix is consistent), that is, if the so-called
centroid Θ is on that boundary, its update is statistically ex-
pected to stay there. These so-called active [23, 44]) bound-
ary stabilizing weights have been empirically found to work
best with a different generation size (2P vs. 4P/3 in [44])
and discarded trials proportion (none vs. worst ranked quar-
ter). With no discard, the novel weights are obtained by as-
signing a weight of 1 to the best trial of a generation, 1−

√
2

to the worst, interpolating linearly based on rank to get the
other weights, and normalizing to a unit sum, see the Sup-
plemental Document. Other improvements over Mosleh et
al. include that path variables are reset whenever CMA-ES
internals are seatbelted (Lines 3–16 of Algorithm 1) leading
to more reliable improvements past coarse convergence, and
that warm-starting was found to be unnecessary.

6. Joint Sensor, ISP and CNN Optimization
We jointly optimize sensor/ISP hyperparameters and im-

age understanding CNN weights, framing joint HDR hyper-
parameter optimization as a MOO minimization problem
with optimal solutions

(Ω∗,Θ∗) = argmin
Ω∈RQ

[0,∞)
,Θ∈RP

[0,1]

L(CNN(Ω, s(Θ))). (10)

Joint optimization is performed with Algorithm 2. Block
coordinate descent alternates between a 0th-order op-
timizer that improves ISP hyperparameters Θ keeping
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Figure 3: HDR lab setup covering 20.4 stops (123 dB). Top:
overall view. Bottom: ISP output (left) and ROI (Region
Of Interest) content distribution (right). Sensor covers 18.7
stops (112 dB) with SNR discontinuities at -4 and -8 stops.

Table 1: Test targets used in the HDR laboratory setup.
Test target / Source Model / Type Peak lum. (cd/m2)
Printed chart N/A 0.222
Display LG 27UK600-W 3.56
Display LiteMax SLO1568-ENB-I24 48.7
Display Dell UP2718Q 226
Lightbox +
Transmissive chart

IQL LED Lightbox 6500K +
Imatest ISC-LED chart 4,920

Light source Husky C 639975 with halogen Lamp 312,000

CNN weights fixed (Line 3), and Stochastic Gradient De-
scent [34] (Lines 4–6), a 1st-order optimizer that solves for
optimal CNN weights Ω keeping ISP hyperparameters fixed
(the gradient of each loss component is taken with respect
to CNN weights only). A partial input image stack is used
by each of the two block steps. Sensors and ISPs process
images locally; fewer training samples are needed to op-
timize them than to train CNN detectors performing non-
local scene understanding. Also, acquiring a CNN training
dataset for each of hundreds to thousands of sensor settings
is not practical; a workaround is detailed in the Supplemen-
tal Document.

7. Assessment
7.1. HDR Optimization for Human Vision

We validate the method proposed in Sec. 5 with an
ON Semiconductor AR0231AT sensor and AP0202AT
HDR ISP. A two-stage approach is used to optimize hyper-
parameters efficiently and reproducibly. In the first stage,
non HDR-specific ISP hyperparameters are optimized by
minimizing the distance between the ISP output and a ref-

Table 2: Human vision (perceptual) HDR optimization
losses. Lower is better except for SNR (not used for op-
timization). Mean and worst values over all applicable
ROIs. With respect to most metrics, the proposed method
outperforms a combination of “linear-mode” optimization
with [44] and expert-tuned HDR.

Loss Mosleh et al. [44] +
Expert-tuned Proposed

FSITM mean 0.335 0.333
CWLP mean 4.083 4.045
Zippering mean = worst 0.068 0.071
SNR worst 23.60 24.89

erence image, basically Mosleh et al. [44] except in the use
of a novel image difference metric, Contrast Weighted Lp-
Norm (CWLP), that uses Larkin’s universal Noise Visibility
Function [32] as a weight. Compared to expert-tuning and
Mosleh et al., the proposed method strikes a better balance
between detail, noise and artifacts, especially at high gain.

In the second stage, we freeze all previously optimized
hyperparameters except those associated with noise re-
duction, and also optimize adaptive local tone mapping.
The lab setup with the reflective charts, displays and light
sources listed in Table 1 is used. The dynamic range of
this setup exceeds the camera’s; see Fig. 3. Regions Of In-
terest (ROIs) are chosen to optimize detail preservation in
the shadows and highlights, and LCD brightness was ad-
justed so that content straddles sensor SNR discontinuities
(Fig. 3, bottom right). Three evaluation metrics were used:
CWLP; Feature Similarity Index for Tone-Mapped images
(FSITM) [45], an image difference metric that compares the
8-bit output with the full bit depth RAW; and Zippering, a
semi-reference metric that quantifies structured noise [58].
See the Supplemental Document for additional details.

Seven illumination scenarios are cycled through by
switching light sources and displays on and off, see Fig. 4.
At the conclusion of the second stage, a small set of Pareto
points taken from the latest iterations is analyzed visually
and the setting with the best combination of contrast, de-
tails and low noise level throughout the luminance range is
selected. Fig. 4 compares the output obtained with expert-
tuned HDR hyperparameters together with“linear” hyperpa-
rameters optimized with the method of Mosleh et al. [44],
with those obtained with the proposed method. As expected
from comparing loss values (Table 2), the proposed method
better preserves detail throughout the dynamic range.

Perceptual image quality is further evaluated using a sec-
ond controlled lab setup and challenging field captures. The
assessment lab setup consists of a light booth, light sources
and several traffic signs, with several illumination scenar-
ios, from very dark to very bright. Sample results are
shown in Fig. 5 (left), please zoom into electronic version.
The proposed method generally produces images with less
noise and more contrast and detail; the Siemens star is more



Figure 4: All seven scenarios used for HDR perceptual IQ optimization and corresponding ISP output. Top: Expert-tuned
results. Middle: Outputs using the proposed method. Bottom: Zoom-ins where for each triple, the first enlargement shows a
crop of one of the captures in the top row (expert-tuned), the second, optimized with the proposed method (from the second
row), and the third, the corresponding area of the displayed chart (second triple also shows monitor logo outside of the chart).
The proposed method preserves detail at all luminance levels. Gamma correction applied to facilitate crop visualization.

Figure 5: Results of ISP optimization for perceptual IQ. Left: HDR lab scene. Right: Real-life HDR scene. Top: Expert-
tuned outputs. Bottom: Outputs of the proposed method. The proposed approach provides more detail and better dynamic
range compression and local contrast. Please zoom into the electronic version of this document. Gamma correction applied
to facilitate crop visualization.

clearly visible for example. With very bright light sources,
the proposed method achieves better dynamic range com-
pression by reducing artifacts in highlights; see the spotlight
shining on the stop sign in the leftmost crop. Further assess-
ment under challenging in-the-wild conditions confirmed
that the proposed method preserves more contrast and de-
tail. Sample results are shown in Fig. 5 (right). Expert-
tuned HDR settings fail to preserve the crane’s silhouette
in the leftmost crop for example. Loss of detail is apparent
elsewhere.

7.2. Joint HDR and CNN Optimization for Object
Detection

We validate the method proposed in Sec. 6 with a Sony
IMX490 sensor, a Renesas REN AC 085 HDR ISP emula-
tor, and the YOLOv4 [5] CNN for automotive object detec-
tion on the classes “pedestrian” and “car”. For sensor and
ISP optimization (Lines 2–3 of Algorithm 2), 40 groups of
stitched and companded captures, each consisting of 254
consecutive frames sampling different combinations of sen-
sor hyperparameter values, are randomly selected for each
iteration, and the loss used by the 0th-order optimizer is
mAP with IoU>.5 measured on the output of YOLOv4.
The same loss on a larger training dataset is used to train

Table 3: Joint ISP and CNN optimization object detection
mAP and mAR scores. The proposed joint optimization
method outperforms expert-tuned by 33% and [44] by 22%
in mAP and mAR.

mAP
(IoU>0.5)

mAP
(IoU>0.75) mAR

Expert-tuned 0.250 0.244 0.235
Mosleh et al. [44] 0.367 0.356 0.352
Proposed (one iteration) 0.563 0.540 0.536
Proposed (converged) 0.584 0.561 0.560

the CNN (Lines 4–6 of Algorithm 2). In all cases, 30%
of the frames are augmented with emulated SNR drop ar-
tifacts (Sec. 6). The initial optimizer parameters σ is 0.25,
the initial learning rate η is 10−4, and there are 8128 train-
ing frames, 2032 validation frames and 565 test frames. See
Supplemental Document for additional details.

As shown in Table 3, jointly optimized hyperparameters
and CNN weights significantly outperform existing meth-
ods in both mAP and mAR, including expert-tuned (CNN
fine-tuned for fairness) and Mosleh et al. [44] (extended to
sensor and HDR hyperparameters). This results from joint
optimization achieving better denoising and image com-
pression throughout the 14-bit HDR range. As shown in
Fig. 6–7, by preserving the local contrast in shadows (ex-



Expert-tuned Mosleh et al. [44] Proposed (1 iteration) Proposed (converged)

Figure 6: Joint sensor, ISP and CNN optimization for car and pedestrian detection. With higher contrast within lower bits,
the proposed method outperforms expert-tuned and Mosleh et al. [44]. (Please zoom in for confidence scores and class
predictions.)
panding the data in lower bits), the proposed method was
able to significantly improve performance in low light con-
ditions without loss of performance in high light conditions
where, as a result of better denoising and detail preserva-
tion, the proposed method was able to detect significantly
smaller objects. We note that this result is achieved purely
by supervision using the downstream IoU loss without any
additional image quality loss measured on intermediate ISP
output images.

8. Conclusions
We present an end-to-end optimization method that

jointly learns optimal parameter values for an high dynamic
range camera pipeline, both HDR sensor and hardware ISP
parameters and downstream CNN weights of a vision mod-
ule. Individual parameters are supervised only by down-
stream losses at the end of the pipeline—perceptual im-
age quality losses for display, and an IoU loss for object
detection—evaluated on captured training data. We jointly
optimize network weights and ISP parameters with a block-
coordinate descent method alternating between sensor and
ISP optimization and CNN training. Because HDR imag-
ing pipelines do not allow for gain separability like low dy-
namic range ones, optimization for human viewing is per-
formed with a laboratory setup that cycles through challeng-

Figure 7: RAW luminance for the first and third rows of
Fig. 6. Blue = minimum luminance (21868 ≈ 214 for the
first, 9 ≈ 23 for the third). Red = maximum luminance
(16513038 ≈ 224 for both). See the Supplemental Docu-
ment for details [1].

ing illumination conditions resulting in HDR multiplexing
artifacts. As such artifacts are challenging to reproduce con-
sistently outside the lab, we propose a method for simu-
lating them in captured training data when optimizing for
object detection. We validate the proposed method exper-
imentally for human viewing and for 2D object detection
with state-of-the-art automotive ISPs and sensors. Across
all tasks considered in this paper, the proposed method out-
performs existing methods, including manual expert tuning
and existing optimization methods for low-dynamic range
cameras.
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