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ABSTRACT
The irregularity of recent Convolutional Neural Network (CNN)
models such as less data reuse and parallelism due to the exten-
sive network pruning and simplification creates new challenges
for FPGA acceleration. Furthermore, without proper optimization,
there could be significant overheads when integrating FPGAs into
existing machine learning frameworks like TensorFlow. Such a
problem is mostly overlooked by previous studies. However, our
study shows that a naive FPGA integration into TensorFlow could
lead to up to 8.45× performance degradation. To address the chal-
lenges mentioned above, we propose several SW/HW co-design
approaches to perform the end-to-end optimization of deep learn-
ing applications. We present a flexible and composable architec-
ture called FlexCNN. It can deliver high computation efficiency for
different types of convolution layers using techniques including
dynamic tiling and data layout optimization. FlexCNN is further
integrated into the TensorFlow framework with a fully-pipelined
software-hardware integration flow. This alleviates the high over-
heads of TensorFlow-FPGA handshake and other non-CNN process-
ing stages. We use OpenPose, a popular CNN-based application for
human pose recognition, as a case study. Experimental results show
that with the FlexCNN architecture optimizations, we can achieve
2.3× performance improvement. The pipelined integration stack
leads to a further 5× speedup. Overall, the SW/HW co-optimization
produces a speedup of 11.5× and results in an end-to-end perfor-
mance of 23.8FPS for OpenPose with floating-point precision, which
is the highest performance reported for this application on FPGA
in the literature.
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Figure 1: Performance comparison of designs using uniform
and dynamic tiling factors for the first 24 convolutional lay-
ers in the CNN network in Figure 3.

1 INTRODUCTION
Convolutional Neural Networks (CNNs) are widely used in many
machine learning (ML) applications and have evolved quickly over
the years. There is a growing interest in FPGA for accelerating CNN
computation due to its high energy efficiency and performance
(e.g., [2, 3, 10, 14, 16, 18, 21, 23, 26–28]). Furthermore, the recent
advancement in CNN models and FPGA-based CNN acceleration
has brought several new challenges.

Challenge 1: Performance disparity of different CNN lay-
ers: Real-world deep learning (DL) applications may have complex
network architectures. In addition, many state-of-the-art efficient
networks such as MobileNetV1 [11] use depth-wise separable con-
volutions (DSC) introduced in [19] to decrease the computation
cost. MobileNetV2 [17] introduced residual bottleneck block (RBB)
to further reduce the computation complexity. These layers reduce
the computation cost but keep the same feature map size; this can
make the layer more communication-bound and reduce the com-
putation efficiency. Apart from this irregularity, different layers of
a CNN have different characteristics in terms of their input and
output number of channels, feature map size, and kernel size. This
changes the computation to communication (CTC) ratio from layer
to layer. Therefore, it is important to handle these layers differently
given the performance disparity across these layers. We found that
tiling factors can play an important role in the performance. Zhang
et al. [26] showed that the CTC ratio of a single convolution layer
varies with different tiling factors. Yang et al. [25] highlighted the
importance of choosing proper tiling factors for the data reuse in the
near and faster memory (on-chip storage for FPGAs) for the overall
latency and energy efficiency. These studies lead us to consider us-
ing different tiling factors across the network. Figure 1 depicts how
different tiling factors can affect the performance for each layer in
one CNN network example as shown in Figure 3. We compare the
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Figure 2: Runtime break down of an FPGA-based CNN accel-
eration pipeline in TensorFlow.

performance of using a single set of tiling factors (uniform tiling) to
using different tiling factors for each layer (dynamic tiling). For the
uniform tiling, we chose the tiling factor that reduces the latency
of the entire network. For the dynamic tiling, we focused on each
layer and selected the best tiling factor accordingly. Experimental
results show that dynamic tiling can speedup the performance of
the whole network by 1.7×.

Challenge 2: Integration overheads of using FPGA in ML
frameworks: When processing a CNN application in modern ML
framework such as TensorFlow [1], the complete stack consists
of reading the input, computing the CNN, processing the result,
and displaying and writing the result. Previous works have only
focused on optimizing the CNN kernel on FPGA (e.g., [2, 3, 10,
14, 21, 23, 26, 28]). This is due to the fact that CNN computation
is the most time-consuming step of the whole stack. Hence the
rest of the overheads are ignored. While several works [10, 16]
have focused on accelerator generation from TensorFlow-described
networks, they did not address the challenges of integrating an
accelerator into TensorFlow. By integrating our accelerator with
TensorFlow, we are able to directly run networks from TensorFlow
on an FPGA. Integrating FPGA into TensorFlow introduces a new
set of overheads: communication between TensorFlow and FPGA
and the communication between the host and the FPGA kernel
itself. Figure 2 shows the break down of the end-to-end runtime for
processing an 384 × 384 RGB image using the network in Figure 3.
These steps are listed and described in Section 4. The time for
CNN processing, using our accelerator denoted as the kernel, only
takes 11.8% of the total runtime. This emphasizes the need for an
end-to-end SW/HW co-optimization. Our experiments show that
this optimization can increase the end-to-end performance of this
network from 4.8FPS to 23.8FPS, leading to a 5× speedup.

To solve the challenges above, in this work, we propose an FPGA-
based CNN accelerator named FlexCNN. It employs dynamic tiling
and data layout transformation to adapt to the performance dispar-
ity of different CNN layers. The accelerator is further integrated
into the TensorFlow framework. To mitigate the large integration
overheads, we propose a two-level software pipeline to overlap the
overheads with the computation.

We use OpenPose [4] as a driving application to test FlexCNN’s
performance. To our knowledge, there is only one prior work [2]
that has implemented OpenPose on FPGA. Its CNN kernel processes
an image in 42.6ms. Whereas, FlexCNN can process an image in
24.7ms, leading to 1.7× speedup.

In summary, the key contributions of this paper are:
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Figure 3: OpenPose-V2 network topology.

• A flexible and composable accelerator architecture, called
FlexCNN, supporting dynamic tiling and data layout trans-
formation to improve computation efficiency for running
CNNs.

• A TensorFlow to FPGA runtime environment for running
CNN on FPGA from TensorFlow and an optimized soft-
ware/hardware pipeline to mitigate the integration over-
heads.

• A fully automated compilation system for the FlexCNN ar-
chitecture.

• The fastest FPGA accelerator to run OpenPose. FlexCNN
yields a 2.3× speedup from supporting dynamic tiling and
optimized data layout. Besides, our framework achieves 5×
speedup from software/hardware pipelining, resulting in a
final performance of 23.8FPS. In addition, FlexCNN is 3.8×
more energy efficient than GPU.

2 APPLICATION DRIVER
2.1 OpenPose
OpenPose [4] is the winner of the COCO 2016 Keypoints Challenge
that can detect 2D poses of multiple people in an image. OpenPose
network first extracts the features of the input image using the
first 10 layers of VGG-19 [20]. This is the backbone of the network.
These featuremaps are the inputs to a two-branch network. The first
branch detects confidence maps, representing body part locations,
and the second branch detects part affinity fields, a set of 2D vectors
showing the location and orientation of the limbs. The results of
these two branches are concatenated with the feature maps from
the backbone network and form the input for the next stage. After
several iterations, these branches produce final predictions.

This network is interesting to us since it has an irregular archi-
tecture compared to modern CNN-based DL applications. Instead
of just a linear forward path where each layer consumes the result
of its previous layer, it has concatenation layers that need extra data
movement. Moreover, to reduce the computation complexity of the
network, we use a modified version of OpenPose [13] that replaces
the backbone with a modification of MobileNetV2 [17] and employs
DSC [19] for the rest of the network, following the trend in the ML
community. Figure 3 depicts the network topology of this version,
we call this network OpenPose-V2. Due to the space limitation, we
only show the convolutional layers. Each convolution is followed
by ReLU and batch normalization layers.

2.2 New Building Blocks
2.2.1 Depthwise Separable Convolution. In a standard convolution
layer (conv), the feature maps are filtered and combined in one
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Figure 4: Accelerator overview.

Table 1: Design parameters and explanations.
Design Parameters Explanation
Th(k ), Tw (k ), Tn(k ), Tm(k ) Tiling factors for H ,W , N , and M for layer k
SIMD SIMD lanes for all modules
SA_ROW , SA_COL Rows and columns of the systolic array kernel

step. The DSC splits this step into two phases. The first phase,
depthwise convolution (DW), does the filtering, and the second
phase, pointwise convolution (PW), combines the produced filtered
feature maps using 1 × 1 kernels.

A conv layer takesN featuremaps as the input, each of sizeH×W .
It usesM ×N ×K ×K kernels, to produce M channels for the output.
The total computation cost for this layer isM ×N ×H ×W ×K ×K .

However, a DSC uses N ×K×K kernels for DW andM×N ×1×1
kernels for PW. By applying this change, the amount of computation
is reduced by a factor of 1

M +
1
K 2 [11].

2.2.2 Residual Bottleneck Block. Google introduced RBB in Mo-
bileNetV2 [17] to reduce the computation cost. It consists of a 1x1
conv followed by a 3x3 DW and then another 1x1 conv, each of
which is followed by ReLU and a batch normalization layer. The
1x1 convolutions are used for dimension reduction or restoration.
The nature of this block allows us to reduce the number of input
and output channels. This reduces the computation intensity and
makes the network more efficient.

3 THE FLEXCNN ARCHITECTURE
The basic layers in different CNNs are convolution, DW, ReLU,
bias/batch normalization, downsampling/pooling, upsampling, and
add. The rest of the building blocks are a combination of these
layers. Thus the FlexCNN architecture has these components as
building blocks and uses them to compose different parts of the
network. This strategy can improve the hardware utilization on
FPGA.

Figure 4 depicts the detailed architecture of the FlexCNN. It
implements the dataflow architecture to process the network layer
by layer. Each layer can load up to two sets of input feature maps,
those from the current layer and the previous layer. Loading the
feature maps from the previous layer is required for supporting
convolutional layers like RBB where the results of the current and
previous layers need to be added together.

The loaded feature maps will pass throughmodules including the
depth-wise convolution module (Depth Conv), ReLU(6)1 module,
standard convolution module (Standard Conv), ReLU(6) module,
add module, max-pooling module (Pool), and bi-linear upsampling
module (Upsample). The final results will be written out to DRAM
via Writer. The operations in batch normalization layer and bias
1ReLU6 outputs the minimum of the value 6 and a normal ReLU.

layer are fused into ReLU(6) modules. Each of the convolutional
operations may be followed by any of the ReLU(6) or normalization
layers. Hence, we put the ReLU(6) module after both the Depth
Conv and Standard Conv modules.

For Standard Conv, the systolic array (SA) architecture is used.
It is generated using the SA compiler in [8]. It can compute a stan-
dard convolution layer with any given kernel size. We implement
line-buffer-based streaming architectures for Depth Conv, ReLU(6),
Add, Pool, and Upsample modules using a similar stencil-based ar-
chitecture as in [7]. All these modules are parameterized by factors
as shown in Table 1, which will be explored by the design space
exploration (DSE) engine covered in section 3.1.1, for the optimal
performance.

Note that all the modules can be bypassed if not being used
for a specific layer. We apply double buffering in both the Loader
modules and the Writer module. Furthermore, if the outputs of the
whole layer can fit into the on-chip buffer, the data will be pushed
into on-chip buffers and directly fetched by the Loader to save the
off-chip communication time.

3.1 Dynamic Tiling
Tiling is applied when processing the network for improving the
data locality and minimizing the communication. Table 1 summa-
rizes the tiling factors employed in FlexCNN.When the tiling factors
are not sub-multiples of the tiled dimensions, redundant computa-
tion is introduced which degrades the performance of the design.
As explained in Section 1, in a normal CNN network, the types and
configurations of different layers vary from each other. Therefore,
the optimal tiling factors will be different from each other as well.
We have observed that using uniform tiling factor for the whole
network will lead to up to 1.7× performance slowdown compared to
the ideal case using different tiling factors across layers. Therefore,
in this work, we apply the dynamic tiling by re-configuring the
tiling factors of the accelerators on-the-fly for different layers to
maximize the performance. This will bring the hardware overheads
to support the dynamic tiling. However, such overheads are negligi-
ble compared to the performance improvement. Section 6 evaluates
the impacts of this technique in detail.

Previous works such as [18, 22, 28] have also emphasized the
need for different tiling factors across layers. Our architecture dis-
tinguishes from the previous work by changing all the tiling factors
across each layer dynamically, whereas previous work only adjusted
part of the tiling factors or used several accelerators, each with dis-
tinct uniform tiling factors on-chip. Eq. 1 shows the restriction on
the tiling factors.

Tw(k) = c1 × SA_COL
Tm(k) = c2 × SA_ROW
Tn(k) = c3 × SIMD

Tm(k) = Tn(k + 1)

(1)

In FlexCNN, the width and output channels of the feature maps
are mapped to columns and rows of the SA respectively. As a re-
sult, for each layer, Tw(k) and Tm(k) should be multiples of their
respective SA dimension. The reduction of multiple input channels
is computed in parallel inside each PE of the SA, which is defined
as the SIMD lane. This implies that Tn(k) should be a multiple of



Figure 5: Architecture support for dynamic tiling in the
Depth Conv module for a 3× 3 kernel with Tw of size 6/8/10.
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Figure 6: Data organization for OpenPose.

SIMD lane. Th(k) can be any arbitrary value. As mentioned before,
the computation in depth conv module can be seen as a stencil
kernel. Figure 5 depicts the 3 × 3 stencil window connected by line
buffers. We realize dynamic tiling by connecting consecutive rows
of the line buffer via a MUX, enabling data feeding from different
locations.

3.1.1 Design Space Exploration. Given the network, the accelerator
architecture, and the FPGA’s resources information, wewill perform
the design space exploration to select the optimal design parameters
that maximize the performance on the target FPGA. Table 1 lists
the design parameters to be determined.

Two analytical models resource_est() and latency_est() are built
for estimating the resource usage and latency of designs. Currently,
the resource model estimates block RAM (BRAM) and DSP usage
that are usually the bottleneck of designs. The DSE process will
sweep through the design space with all feasible combinations of
design parameters. For each design parameter list, the resource
usage is examined first. Designs that over-utilize the resource will
be pruned away. Then, we follow a greedy algorithm to select the
optimal tiling factors that minimize the latency layer by layer. The
DSE process finishes within minutes on a standard workstation.

3.2 Data Layout Optimization
Data layout optimizations are applied to reduce the number of ac-
cesses to DRAM and increase the effective DRAM bandwidth. The
first optimization is on the concatenation layers. A CNN network
may contain blocks that concatenate the results of several layers. As
shown in Figure 3, after each stage in the OpenPose-V2 network, re-
sults from two branches will be concatenated with the first outputs
from the backbone network. This then serves as the inputs for the
following stages. Figure 6 presents the optimized data organization
of the network.

The outputs of the backbone (region B) and each stage (region
A, C) are placed close to each other as shown in Figure 6. To be
more specific, the outputs of Stage 1 will be written to region A.
The regions A and B will serve as the inputs of Stage 2. In Stage 2,
the outputs will be written to region C. The regions B and C will
serve as the inputs of Stage 3 similarly. The outputs of each stage
are written to regions A and C in a round-robin fashion. With this
layout, the outputs of stage branches are concatenated on-the-fly,
eliminating unnecessary off-chip DRAM movements.

To further improve the effective DRAM bandwidth, we change
the data layout of the feature maps from N (k) × H (k) × W (k )
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Figure 7: First level of pipeline.
Tw(k) to N (k )

Tn(k ) × H (k) × W (k )
Tw (k) × Tn(k) × Tw(k). This allows us

to increase the burst length from Tw(k) to Tn(k) ×Tw(k). A DSC
layer can easily become communication-bound because of its low
computation to communication (CTC) ratio since it is mostly using
1 × 1 convolution kernels. In this case, when the kernel size of the
next layer is 1 × 1, since there is no overlapped region between
different tiles, we further change the data layout to N (k )

Tn(k ) ×
H (k )
Th(k ) ×

W (k )
Tw (k ) ×Tn(k)×Tw(k)×Th(k). It further increases the burst length
for these layers to Tn(k) ×Th(k) ×Tw(k). For other kernel sizes,
padding is applied because a tile of Tn(k) × Tw(k) × Th(k) does
not have all the data needed for the computation. We need to have
(p − 1) and ((p − 1) ×Th(k) + (p − 1)2) extra DRAM accesses with
burst length of Tn(k) × Tw(k) and Tn(k) respectively to fetch all
the data (p denoting the kernel size). This increases the number
of DRAM accesses with a burst length of Tn(k), which further
increases the communication time and prevents us from applying
this data layout.

4 TENSORFLOW INTEGRATION
We chose TensorFlow as our ML framework since it is being widely
used for inference in the ML community (e.g. [12, 15]). To invoke
FPGA from TensorFlow, we redefine the nodes in the original com-
putation graph. All computation nodes of CNN are merged into
one node that is implemented by FPGA. The rest of the graph is
still processed on the CPU.

When FPGA is connected to TensorFlow, the whole integration
stack consists of the following steps: 1) reading the inputs of CNN, 2)
pre-processing include stages like image resizing, 3) re-organizing
the initial data layouts in CPU memory, 4) transferring data from
CPU to FPGA device memory, 5) computation on FPGA, 6) fetching
the results back via PCIe, 7) reformatting and passing it to Ten-
sorFlow, 8) non-CNN computation stages on CPU, 9) processing
the results (e.g., estimating the human poses based on the attained
results and drawing them for OpenPose network), and 10) writing
out and displaying the results.

Figure 2 shows the breakdown of these stages in the OpenPose
application for an 384 × 384 RGB input. Among the whole pipeline,
which takes 208.8ms, the FPGA computation in Step 5 only requires
11.8% of the total time. The integration overheads have led to 8.45×
performance slowdown. To reduce these overheads we have applied
an optimized software/hardware pipelining.

A two-level pipelining is applied on the whole integration stack
that enables the simultaneous processing of the aforementioned
steps. The first level overlaps TensorFlow’s overheads (steps 1, 2,
9, 10) with the rest of the steps. The second one overlaps FPGA’s
computation with data movement steps (steps 3, 4, 6, 7).

Figure 7 illustrates the first level of pipeline, which is applied at
the TensorFlow level. The numbers in the figure show the related
step number. Steps 1, 2, 9, and 10 and the rest of the steps are
assigned to different processes connected by queue. Therefore, steps
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1, 2, 9, and 10 are overlapped with FPGA-related steps. The overall
performance is determined by the stage with the longest latency.

To further improve the performance, we fully pipeline the com-
munication and computation of FPGA, which consists of step 3 to 7.
This builds the second level of pipeline. To allow pipelining, a batch
of images are sent to FPGA. For a certain batch size, the additional
latency incurred by batch processing is dissolved when the first
level of the pipeline is applied. After the FPGA finishes processing
the batch, the results are passed back to TensorFlow and the non-
CNN computations are done in parallel for all the images. Figure 8
depicts the redefined graph that we use to achieve such a pipeline.
With this optimization, the data movement steps are overlapped
with kernel computation and the latency for non-CNN computa-
tion (Step 8) is amortized for the whole batch. Note that such deep
software+hardware pipelining techniques were also used in [5, 9]
for integrating FPGA accelerators to Spark-based applications.

5 FLEXCNN COMPILATION SYSTEM
Figure 9 depicts the overview of our compilation system, which
is composed of three modules: design space exploration engine,
instruction generator, and integrator.

• Design space exploration engine. The CNN network de-
scription file parsed fromTensorFlow and the available target
FPGA resources are fed into the design space exploration
engine to search for the optimal hardware configuration pa-
rameters. Once found, these parameters are then used for
generating the accelerator. The DSE process was explained
in Section 3.1.1

• Instruction generator. The instruction generator takes the
CNN network description file and accelerator hardware de-
scription file as the inputs and creates one instruction for
each CNN layer. The non-convolutional layers (e.g., bias,
ReLU(6)) are fused with adjacent convolutional layers to im-
prove the computation efficiency. The instruction generator
produces one VLIW-like instruction for each of these fused
layers. This instruction contains the enable signal for each of
the modules, the layer configurations, and tiling factors. An
RBB contains two convolutional layers in one block. As we
only have one convolution module in the accelerator, we will

Table 2: Frequency and resource utilization.
Precision Frequency LUT FF BRAM URAM DSP
float 32-bit 242.9MHz 43% 40% 60% 15% 50%

Table 3: Performance on OpenPose-V2.

Model Precision Frequency Runtime (ms)
(MHz) (1) (2)

All Uniform float 32-bit 237 57.7 41.5
All Dynamic float 32-bit 242.9 35.6 24.7

(2): With applying DRAM organization for concatenation layers
(1): Without applying DRAM organization for concatenation layers

divide this block into two layers. The first layer performs
the first convolution and the next one computes the rest of
the block.

• Integrator. The integrator takes in the FPGA accelerator
and integrates it into the TensorFlow framework, performing
the end-to-end processing task. The optimizations on the
integrator were covered in Section 4.

6 EXPERIMENTAL RESULTS
6.1 Experiment Setup
The FlexCNN architecture is described using VivadoHLS C[24]. The
target platform is Xilinx Virtex Ultrascale+ VCU1525. The design
is synthesized and implemented using Xilinx SDAccel 2018.3. We
use OpenPose-V2 network explained in Section 2 to test our work.
The accelerator can get any input size. For this section, we have
configured it to take an RGB image of 384× 384 with floating-point
precision as inputs.

6.2 Hardware Optimization
The target FPGA platform comes with four DDR banks. In our
implementation, we use two DDR banks, assigning feature maps
and weights (including bias) to two separate DDR banks. All the
architecture choices are parameterizable and can be adjusted based
on the target FPGA. We found the following configurations that
work best for the OpenPose-V2 application on Xilinx VCU1525. The
systolic array for our standard conv module is organized as an 8× 8
array with SIMD factor of 8. For the rest of the modules we use the
same SIMD factor. The maximal tiling factors for Tn,Tm,Th,Tw
are 64, 64, 12, and 96, respectively. Table 2 shows the frequency and
resource utilization under this configuration.

Table 3 shows the benefits of dynamic tiling and data layout
transformation. We can see that these optimizations increase the
performance by 2.3×. Figure 1 depicts the performance gain of
using dynamic tiling in a layer-by-layer fashion for the first 24 con-
volutional layers. Table 4 shows how applying dynamic tiling and
dynamic data layout affects the tiling factors and effective DRAM
bandwidth (BW) for the first layer of the last RBB in OpenPose-V2
compared to a design without these optimizations. The kernel size
for this layer is 1 × 1 which means it can use the optimized data
layout with burst length of Tn(k) ×Tw(k) ×Th(k) as described in
Section 3.2. This data layout, along with the best tiling factor used
for this layer increases the effective DRAM BW and CTC ratio by
2.8×. This results in 6.1× performance improvement.

We further test the DSP efficiency of our design on a given con-
volution layer. Of all the DSPs, 78.7% of them are used in Standard



Table 4: Performance impacts of dynamic tiling/data layout
transformation.

Model Th Tw Tn Tm Eff. DRAM
BW (GB/s) CTC Perf.

(GFLOPs)
All Uniform 12 48 32 32 4.31 14.9 24.4
All Dynamic 12 24 48 48 12.05 41.3 149.2 (6.1×)

Figure 10: Layers in Table 5 under the roofline model.

Table 5: Performance on different convolutional layers.

Layer Runtime
(ms)

Perf.
(GFLOPs) DSPtotal eff DSPused eff

Conv 3x3 709.3 245.2 73.8% 93%
Conv 1x1 80.2 240.9 72.6% 91.4%
DSC 3x3 113.4 176.3 53.1% 58.6%
DSC 1x1 84.1 230.8 69.5% 76.7%

Table 6: Performance impacts of integration optimization.

Version
Runtime
frame
(ms)

Perf.
(FPS) Speedup

Original 208.8 4.8 1
1st pipeline 97.1 10.3 2.1
2nd pipeline 42 23.8 5

Conv module and 11.2% in Depth Conv module. We measure DSP
efficiency using two factors: the total number of DSPs in the design
and the number of DSPs of the modules used by that layer. All the
tests are on a 256 × 384 × 384 input, producing 256 output channel.
Table 5 summarizes the results. DSC layers take K2× less computa-
tion, making them communication-bound as shown in Figure 10.
This figure depicts that DSC layers fall in the memory-bound region
of the roofline model since they have less CTC ratio. Therefore, we
achieve lower computation efficiency in these layers. Additionally,
it shows that the data layout optimization for the DSC with the
1 × 1 kernel increases the burst length. This helps to increase the
effective DRAM bandwidth, leading to a performance improvement
over the 3 × 3 DSC.

6.3 Integration Optimization
In this section, we evaluate the effect of our integration optimization.
FlexCNN runs at 24.7ms, which translates to a peak performance
of 40.5FPS. However, without proper optimization, the direct inte-
gration into TensorFlow framework only leads to the performance
of 4.8FPS, as shown in Table 6. Table 6 summarizes the impacts
of two-level pipelining on the overall performance. We are using
a batch of 16 for the OpenPose network to enable pipelining on
FPGA since it produces the best performance and smoothest output
when displaying the result. With two-level pipelining, we achieve
up to 5× speedup, which leads to the final performance of 23.8FPS.

Table 7: Performance comparison of different platforms.

Platform Frequency
(GHz)

Runtime
(ms)

Dynamic Power
(W)

CPU 2.4 99.3 17
GPU 1.4 25.3 38

FPGA (ours) 0.243 24.7 10

6.4 Comparative Studies
To the best of our knowledge, there is only one work [2] that has
implemented a variant of OpenPose on FPGA. However, they take a
different approach. They reduce the computation cost of the original
network by making the weights sparse and using only two stages
after the backbone network. Furthermore, they quantized the data
to 16-bit fixed point and stored feature maps and weights on-chip.
After these modifications, they neither reported their network’s
computation cost nor their architecture’s resource utilization. Thus,
we can not compare our results to theirs directly. Instead, we have
compared our results against the network implementation using
TensorFlow on CPU and GPU.

The CPU is a 56-core Intel Xeon CPU E5-2680 v4 that operates
at 2.40GHz. For GPU, we use the NVIDIA Tesla V100 GPU and
it uses cuDNN[6] to run the network. To have a fair comparison
on the latency of running the network on different platforms, we
measure the runtime of a single image inference using OpenPose-
V2 network. Table 7 summarizes the results. The runtime considers
only the CNN inference time on RGB images of size 384 × 384. For
both the FPGA and GPU, the time to transfer the data from host
to device and device to host is excluded from the measurement.
We also measure the dynamic power on each platform, which is
calculated as the difference of the hardware power when running
and not running the application. Both GPU and FPGA suffer from
the low data reuse and degree of parallelism of this network (this is
why FlexCNN’s performance on this network is only 117GFLOPs).
However, FlexCNN is 3.8× more energy efficient than GPU.

7 CONCLUSION
The rapid evolution of CNN networks has brought new challenges
to FPGA acceleration. In this paper, we identify two major chal-
lenges including the performance disparity of different CNN layers
and the high overheads of integrating FPGA into ML framework.
To tackle these two challenges, we propose an accelerator named
FlexCNN which employs dynamic tiling and data layout optimiza-
tion to improve the hardware efficiency across layers. These two
techniques achieve 2.3× speedup on the studied Openpose-V2 net-
work. Furthermore, we propose a two-level integration pipeline to
reduce the integration overheads. It adds another 5x speedup of
the overall performance. At last, we are able to meet the require-
ment of real-time processing with 23.8FPS with these optimization
techniques.
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