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Abstract

This paper presents an asset pricing model that allows for heterogeneous forecasting strategies that
satisfy rational expectations. An exponentially weighted replicator dynamic describes how agents
switch between a forecast based on fundamentals, a rational bubble forecast that uses extraneous
information and a re�ective forecast, which is a weighted average of the former two. If the
innovations to the extraneous martingale have a similar magnitude to those of the dividend process
and agents are su¢ ciently aggressive in switching forecasting strategies, a signi�cant portion of the
population may adopt the rational bubble forecast. Tests on simulated data show excess variance
in the price and persistence and volatility in the price-dividend ratio that is not explained by
representative agent models satisfying the e¢ cient markets hypothesis. The data also matches the
stylized fact that returns are unpredictable in the short run. Conditions determining the frequency
and duration of episodes where a signi�cant fraction of agents adopt the rational bubble forecast
leading to large deviations in the price-dividend ratio are discussed.

JEL Classi�cation: C22, C73, G12, D84

Keywords: evolutionary game theory, rational bubble, heterogeneous forecasts, return pre-
dictability, excess variance



1 Introduction

Though the e¢ cient markets hypothesis (EMH) has been a dominant paradigm in asset pricing for

decades, the assumption that there is a representative expectation for an asset price contradicts the

observed heterogeneity of forecasts, and is at odds with the popular perception that bubbles are

a common phenomena in asset markets. Further, the strong version of the EMH, meaning asset

prices are determined solely by expectations of fundamental information, cannot explain important

features of the data, such as the volatility of the price-dividend ratio.

There are models that allow for bubbles. Models of rational bubbles (Blanchard (1979), Evans

(1991)) are appealing, since expectations are unbiased, and the model matches the stylized fact

that prices and returns are unpredictable in the short run. However, it is unclear how agents

could coordinate on a single forecast based on extraneous information when an alternative forecast

based on the strong EMH is available. Models with heterogenous behavioral forecasting strategies,

such as Brock and Hommes (1998) and LeBaron (2010), can also produce large deviations in the

asset price and price-dividend ratio from the predicted values of the strong EMH, though such

approaches involve strategies do not satisfy rationality.

The present paper explains how agents with a choice of forecasting strategies could adopt

a rational bubble forecast leading large deviations in the asset price from the predictions of the

EMH. The outbreak of such bubbles can explain the persistence and volatility of the price-dividend

ratio and the excess volatility in the price while also producing unforecastable returns. Further,

the model provides a description of factors underlying the frequency and duration of bubbles.

An evolutionary game theory dynamic describes how agents switch between forecasting strate-

gies based on their past performance, given by payo¤s based on forecast errors, as in Parke and

Waters (2007). Agents choose from a fundamental forecast, which corresponds to the strong EMH

prediction, a mystic forecast, which uses an extraneous martingale as in the rational bubble model,

and a re�ective forecast, which is a weighted average of the former two forecasts. The re�ective

forecast embodies all the information available to the agents including the other forecasts and their

relative popularity and is the unique unbiased forecast in an environment with heterogeneous fore-

casting strategies. The behavior of all agents in the present work satis�es the cognitive consistency

principle, described in Evans and Honkapohja (2011), which speci�es that agents in a model are as
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smart as economists. More precisely, agents form expectations using reasonable models according

to economic theory.

In the spirit of evolutionary stability, small fraction of agents experiments with mysticism, and

this strategy can gain a signi�cant following if agents are su¢ ciently aggressive in switching to

better performing strategies and the shocks to the martingale are similar in magnitude to those of

the dividend process1. Bubbles in the asset price are associated with such outbreaks of mysticism,

but endogenously collapse given the assumption that a small fraction of agents do not abandon the

fundamental forecast.

Simulation results demonstrate that bubble episodes can explain a number of empirical features

of the data. The underlying dividend process is calibrated to the annual data used in Shiller (2005).

Simulations where heterogeneity in the forecasting strategies is common demonstrate persistence

and volatility in the price-dividend ratio similar to that in the data, but not explained by the EMH.

The simulated asset price also shows excess variance documented in Shiller (1981). In addition,

the returns are unpredictable in the simulated data for any parameter choices. Parke and Waters

(2007) demonstrate that heterogeneity in forecasting strategies in this model can explain ARCH

and GARCH e¤ects and excess kurtosis in returns, which models with a unique rational bubble

forecast cannot. While these are important implications, this paper focuses on annual data, so

these issues are not given detailed attention.

There are a number interesting alternative approaches to asset pricing that involve deviations

from the strong EMH. Adam, Marcet and Niccolini (2008) and Lansing (2010) are able to match

a number of the features of the U.S. stock market data. In the model in the former paper, a

representative agent updates its estimate of the long run growth rate of the asset price, which is

used for forecasting. In Lansing (2010), the forecasting model (perceived law of motion) includes

a geometric random walk, making bubbles a possibility, and agents update a parameter in the

forecasting model that determines the impact of the bubble. The agent in Branch and Evans�

(2011) model of bubbles updates an estimate of the conditional variance of the return using a

linear model. The time series implications of this approach have yet to be explored in detail.

The representative agent models referenced above all update parameters in a linear model

used for forecasting, deviating from rational expectations but satisfying the cognitive consistency

1These results are demonstrated analytically in Parke and Waters (2012).
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principle. However, these models do not account for the observed heterogeneity of forecasts in

asset markets, and how their forecasting strategies would perform in the presence of alternatives

is an open question. Furthermore, to rule out explosive behavior, these models must restrict the

parameters in the forecasting model used by the agent.

There are a number of models with heterogeneous forecasting strategies. As noted above, these

approaches usually involved strategies that do not satisfy rationality. In LeBaron (2010), some

agents use a "buy and hold" strategy, which has intuitive appeal but does not satisfy cognitive

consistency. The cognitive consistency of agents in the asset pricing models of Brock and Hommes

(1998) and Branch and Evans (2007) is open to interpretation2. In the former paper, some agents

have perfect foresight but must pay a cost. In contrast, the re�ective forecast in the present work

is constructed using all information available to the agents, and does not require a cost. In Branch

and Evans (2007), agents use underparameterized models, which exclude available information that

a¤ects the asset price regardless of the choice of forecasting strategies, unlike the martingale in the

present model.

The paper is organized as follows. Section 2 give details about the asset price model with

heterogeneous expectation, while section 3 presents the dynamic describing the evolution of the

forecasting strategies. Section 4 describes the simulations and the conditions for the formation of

bubbles. Section 5 gives the results of formal tests on the simulated data, and Section 6 concludes.

2 Asset Pricing

This section speci�es the three forecasts and the resulting realization of the asset price, which

thereby determines the forecast errors for each strategy. The underlying motivation is the standard

asset pricing equation

pt = �p
e
t+1 + dt; (1)

where the asset price is pt, the dividend is dt and the parameter � is the discount factor. This

model is not fully su¢ cient for our purpose, since there is a unique representative forecast of the

price. Brock and Hommes (1998) develop a model with mean-variance optimization where investors

2These papers are part of a large literature using the multinomial logit dynamic to describe the evolution of
heterogeneous forecasts. See Hommes (2006) for a survey.
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choose between a riskless and risky asset in constant supply. With risk neutral agents who have

a common belief about the variance of the returns, the model with heterogeneous forecasts can be

written as

pt = �
nX
h=1

xh;teh;t + dt + C (2)

where the vectors et = (e1;t; ::::; en;t) and xt = (xi;t; ::::; xn;t) are the di¤erent forecasts of pt+1 and

the fractions of agents using the forecasts, respectively. The constant C is a risk premium.

The forecasts considered are motivated by the multiplicity of solutions to the model (1) in the

homogeneous case. According to the strong e¢ cient markets hypothesis (EMH), the price is given

by the discounted expected future dividends as given by the following solution to the model (1).

p�t = dt +
1X
j=1

�jEt(dt+j)

Agents referred to as fundamentalists adopt the forecast e2;t determined by the above solution.

e2;t = Et(p
�
t+1) =

1X
j=1

�j�1Et(dt+j�1) (3)

However, this solution is not unique. As discussed in the rational bubble literature, Evans (1991)

for example, there is a continuum of solutions to (1) of the form

pmt = p
�
t + �

�tmt

where the stochastic variable mt is a martingale such that mt = mt�1+�t, for iid, mean zero shocks

�t. Though the information contained in the martingale mt may be extraneous, if agents believe

that information is important, it does a¤ect the asset price. Agents that adopt the forecast e3;t

based on the rational bubble solution above are called mystics, and their forecast is as follows.

e3;t = Et
�
pmt+1

�
= Et(p

�
t+1) + �

�t�1mt (4)

A primary objection to such a solution is that it violates a transversality condition, see Lundqvist

and Sargent (2004, section 13.6). As pointed out by Lansing (2010), an agent could pro�tably
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short the risky asset if the prices follows such a path. However, this hypothetical agent would

need to be in�nitely lived with unlimited resources or ability to borrow. Furthermore, agents in

the present model can adopt or abandon the forecast at any time so this objection to the mystic

forecast is not a major concern.

Both the mystic and fundamental forecasts satisfy rational expectations in that they are unbi-

ased in the homogeneous case. However, our goal is to allow for possible heterogeneity in forecasting

strategies, so we introduce the re�ective forecast, which satis�es rational expectations even in the

presence of heterogeneity. The re�ective forecast e1;t is an average of the alternative forecasts used

in the population weighted according to the relative popularity.

e1;t = (1� nt) e2;t + nte3;t (5)

where

nt =
x3;t

x2;t + x3;t

The variable nt is the relative popularity of mysticism among agents using mysticism or re�ectivism.

Re�ectivism depends on alternative strategies, so to ensure its existence, we make the following

key assumption.

Assumption: The fraction of fundamentalists x2;t never falls below some minimum �2 > 0.

This assumption is not particularly restrictive, considering that in most asset pricing models,

all investors are fundamentalists. Given these three forecasting strategies (3), (4) and (5) and the

asset pricing model allowing for heterogeneity (2), the realization of the asset price is

pt = p
�
t + �

�tntmt: (6)

One can verify that the re�ective forecast has the same form as the realization of the price such

that e1;t = Etpt+1. The re�ective forecast embodies the "beauty contest" characterization (Keynes

1935) of asset markets in that agents use the martingale in their forecast only to the extent that

other agents use it, not because they regard it as inherently important.

Agents evaluate the performance of the forecasting strategies by comparing payo¤s based on

squared forecast errors. Hommes (2001) shows that the mean-variance optimization underpinning
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the model (2) is equivalent to minimizing squared forecast errors. Payo¤s are de�ned as follows.

�i;t = �(pt � ei;t�1)2 (7)

The re�ective forecast error Ut plays an important role in the payo¤s to all three forecasting

strategies, and is comprised of two terms.

Ut = (p
�
t � Et�1(p�t )) + ��t(ntmt � nt�1mt�1) (8)

The �rst term is the current period dividend payment, which is the new fundamental information.

The second term embodies the new information about the martingale�s impact on the asset price.

The part in parentheses can be written as nt�t ��ntmt so both the innovation in the martingale

and its relative use for forecasting within the population a¤ect the re�ective forecast error. The

representation of Ut shows that the re�ective forecast is unbiased, under the assumption that agents

are unable to forecast nt. The innovations to the dividend (dt) and the martingale (�t) and the

change in nt are all independent, mean zero, so the re�ective forecast is unbiased. The re�ective

forecast satis�es rational expectations in the presence of heterogeneity.

The fundamental and mystic forecasts satisfy the weak e¢ cient markets hypothesis in that the

forecasts are unbiased, but their forecast errors are a¤ected by the level of the martingale in the

presence of heterogeneity. A key term in the payo¤s is the weighted martingale At�1 = ��tmt�1.

The re�ective forecast depends only on Ut and, using (7) and (8), has payo¤

�1;t = �U2t : (9)

Fundamentalism has forecast error Ut + nt�1At�1, so its payo¤ is

�2;t = �U2t � 2nt�1UtAt�1 � n2t�1A2t�1: (10)

Similarly, the payo¤ to mysticism is as follows.

�3;t = �U2t + 2(1� nt�1)UtAt�1 � (1� nt�1)2A2t�1 (11)
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Much of the intuition behind the potential for mysticism to gain a following can be observed in

the above three payo¤s. The third terms in the payo¤s to mysticism (11) and fundamentalism (10)

are unambiguously damaging to those payo¤s in comparison with the payo¤ to re�ectivism (9).

If there is heterogeneity in the choice of forecasting strategies (0 < nt�1 < 1), then mysticism and

fundamentalism over- and under-react to the martingale. In expectation, the covariance UtAt�1 is

zero, so re�ectivism outperforms the other two strategies.

However, mysticism can outperform the other strategies in a given period. If the realization of

the covariance UtAt�1 is positive and su¢ ciently large, the second term in (11) may outweigh the

third term so that �3;t > �1;t > �2;t. Such a positive covariance corresponds to a fortunate (for

the mystic) correlation between the martingale and the innovations in the model. In distribution,

dividends are uncorrelated with the martingale, but over a number of periods, such correlations are

likely to occur. For mysticism to have a chance of success, the level of At must be large enough to

that the covariance is signi�cant, but not so large that the martingale terms dominate. Intuitively,

a forecast like "Dow 36K" might attract a signi�cant following, but "Dow 36b" would be dismissed.

The payo¤s also display a herding e¤ect, since the variable nt�1 representing the state of the

choices of forecasting strategies in the population enters the payo¤s. For mysticism to outperform

re�ectivism, the following condition must hold, UtAt�1 > 1
2(1 � nt�1)A

2
t�1. As noted above, the

covariance term UtAt�1 must be positive and su¢ ciently large for this condition to be met, but

the closer nt�1 gets to one, the less strict the requirement on this term becomes. If there is any

inertia in the the choice of forecasting strategies, more agents adopting mysticism leads to a greater

impact of the martingale on the asset price and improves the performance of the mystic forecast.

Hence, the adoption of mysticism is partially self-ful�lling.

3 Evolutionary Dynamics

A generalization of the replicator dynamic, a workhorse in the evolutionary game theory literature,

describes the evolution of the vector xt of the fractions of agents using the di¤erent forecasting

strategies. This dynamic allows for the parameterization of agents�aggressiveness in switching to

better performing strategies, which is a key determinant for the potential adoption of mysticism.

This section discusses the necessary conditions for the resulting endogenous emergence of rational
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bubbles and the reasons for their eventual collapse.

Let the weighting function w (�) be a positive, increasing function of the payo¤s. The general

replicator dynamic3 is

xi;t+1 � xi;t = xi;t
w (�i;t)� wt

wt
; (12)

where the expression wt is the weighted population average wt = x1;tw (�1;t) + � � � + xn;tw (�n;t).

A strategy gains followers if its weighted payo¤ above the weighted population average, i.e. has

positive �tness, in the language of evolutionary game theory. Such a dynamic is said to be imitative

since strategies that are popular today, larger xi;t, tend to gain more adherents if they are successful.

A general form for the dynamic (12) allows for a range of behavior of the agents. Compared to a

linear weighting function w (�), under a convex w (�), agents switch to better performing strategies

more quickly, see Hofbauer and Weibull (1996). A linear weighting function in the dynamic (12)

corresponds to the special case of the replicator dynamic studied in Weibull (1998) and Samuelson

(1997). Sandholm (2011) gives a thorough comparison of the features of a number of evolutionary

dynamics. Waters (2009) discusses discrete time dynamics used in macroeconomic applications.

Using a version of the dynamic (12) with an alternate timing, Parke and Waters (2012) demon-

strate that, for bounded dividends, the payo¤ to re�ectivism is always above the population average.

Therefore, under the replicator (linear w (�)), mysticism cannot take followers away from re�ec-

tivism. Under linear weighting, the covariance (second) terms in the payo¤s to mysticism and

fundamentalism, (11) and (10), cancel in the population average payo¤4, but the third terms with

A2t�1 do not. Since the payo¤ to re�ectivism is una¤ected by the martingale, it is larger than the

population average, so re�ectivism gains followers.

Re�ectivism�s dominance is weaker in the case of a convex weighting function. Here, a positive

covariance term UtAt�1 > 0 has greater bene�t to mysticism than harm to fundamentalism, so it

enters the population average payo¤ and, if it is large enough, mysticism can gain a following. The

model used for simulations focuses on the exponential weighting function

w(�) = e�
2�; (13)

3Parke and Waters (2012) focus on a dynamic with the same form, but slightly altered timing and perform
simulations with the present form as a robustness check.

4Given the timing of the present version of the model, the covariance terms may not cancel out to zero, but their
impact is minimal.
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so � parameterizes the aggressiveness of the agents. An increase in � means that agents are

switching more quickly to the best strategy, but as � decreases the dynamic approaches the linear

weighting case.

One drawback to imitative dynamics such as the generalized replicator (12) is their lack of

inventiveness, see Waters (2009) for a discussion. If a strategy has no followers (xi = 0) then it

cannot gain any. Hence, game theorists usually focus on equilibria that are evolutionarily stable,

meaning they are robust to the introduction of a small fraction of deviating agents. Similarly, the

focus of the present class of models is whether the fundamental forecast is robust to the introduction

of a small fraction of mystics.

It is possible for mysticism to gain a following given the following conditions. i) Some agents

believe that extraneous information may be important to the value of an asset. ii) In some

periods, the extraneous martingale is correlated with fundamentals. iii) Agents must be su¢ ciently

aggressive in switching to superior performing strategies.

Mysticism cannot maintain a following inde�nitely given the existence of a minimum fraction of

fundamentalists �2. If fundamentalism could be eliminated from the population, then nt = 1 and

the payo¤ to mysticism (10) is identical to the payo¤ to re�ectivism (9), and the model collapses

to a representative agent rational bubble model. However, the presence of a minimum fraction of

fundamentalists implies that nt < 1 and that the re�ective and mystic forecasts are not identical.

Since the expected value of the covariance term UtAt�1 in (10) is zero, re�ectivism outperforms

mysticism in the long run. Further, the magnitude of At (a submartingale) grows over time, so the

third term in the payo¤ to mysticism (10) dominates and the performance of mysticism deteriorates

over time. While mysticism can gain a following temporarily whereby the martingale a¤ects the

asset price, eventually agents abandon mysticism, so bubbles endogenously form and collapse. The

goal of the simulations is to determine the quantitative importance of such outbreaks of mysticism.

Since it limits the life of bubbles, the minimum fraction of fundamentalists plays a similar

role as the projection facility used with least squares learning as in Adam, Marcet and Niccolini

(2008). Similarly, Lansing (2010) limits parameters so that agents focus on the one bubble of a

continuum of solutions, that leads to stationarity in the �rst di¤erence of the endogenous variable

being forecast. In these models, a representative agent updates the estimate of the parameters in a

forecasting rule, but the projection facility limits the acceptable estimates. The projection facility
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places stronger restrictions on agents beliefs than the minimum fraction of fundamentalists. In the

present model, a small fraction of agents rejects extraneous information, but under the projection

facility, all agents have a sophisticated understanding of the long run implications of the choice of

forecasting rules.

The present model represents a minimal departure from rationality when mystics are introduced

into the population. Mysticism appears due to a disagreement about what constitutes fundamen-

tal information, but all agents form expectations with a reasonable economic model, i.e. agents

meet the cognitive consistency principle described in Evans and Honkapohja (2011). Further,

both mysticism and fundamentalism satisfy rationality in the homogeneous case, and re�ectivism

satis�es rationality when there is heterogeneity in the forecasting strategies, and this forecasting

strategy is available to agents at all times. When mystics are eliminated from the population, the

re�ective and fundamental forecasts coincide. Only when mystics are introduced do the mystic and

fundamental forecasts deviate from rationality, but mystics believe that the extraneous information

in the martingale is relevant to the forecast of the asset price, and that other agents will eventually

realize it. All agents believe that they are making e¢ cient use of the available information.

4 Simulations

Simulation results of the model with the three forecasting strategies described above verify that the

potential for outbreaks of mysticism depends on the aggressiveness of the agents in switching to

better performing strategies and the magnitude of the shocks to the dividends and the martingale.

Furthermore, for reasonable parameterizations, when a signi�cant portion of the population adopts

the mystic forecasting strategy, there can be bubble-like deviations in the asset price and price-

dividend ratio.

The underlying dividend process is calibrated to the annual S&P 500 data used by Shiller

(2005)5. Given the dividend dt and the martingale mt, the model is determined by the dynamic

(12) along with the exponential weighting function (13), the payo¤s (9), (10) and (11), and the

realization of the asset price (6). The dividend process is speci�ed as a stationary process with

parameter choices below6.

5The data used is updated to included years up to 2011.
6LeBaron, Arthur and Palmer (1999) and Branch and Evans (2011) use stationary dividends. Adam, Marcet and
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dt = d+ �
�
dt�1 � d

�
+ vt

d � �v

0.1166 0.465 0.203

The constant d is chosen so that for � = 0:95, the steady state price-dividend ratio (log dif-

ference) is 2.66, which is close to the long run average for the S&P 500 from the Shiller data.

The persistence parameter � and shocks vt s N (0; �v) are chosen to match values from the H-P

detrended earnings series. Using a linear trend on post-war data gives a similar estimate. Since

not all �rms pay dividends, earnings are used as a proxy for dt to allow for the inclusion of a larger

number of �rms.

Two other �xed parameters are the minimum fraction of fundamentalists �2 = 0:01 and the

fraction of mystics introduced into the population 0.001. The minimum fraction of mystics is

set much smaller so that the introduction of mystics on its own does not have a quantitatively

signi�cant e¤ect on the asset price (6) since the initial n0 is small. If the dynamic used in the

simulations is speci�ed so that if the unconstrained dynamic (12) sets one of the fractions below

its minimum, that fraction is set to its minimum, and the other two strategies split the remaining

followers in the same proportion they would in the unconstrained case. If mysticism falls below its

minimum, that level of followers is reintroduced and the martingale is restarted at mt = 0.

4.1 Bubble frequency and duration

The free parameters �, which measures agent aggressiveness, and ��, the standard deviation of the

martingale innovations, play are large role in determining the potential for outbreaks of mysticism

and bubbles. For such events to occur, agents must be su¢ ciently aggressive, meaning � is

su¢ ciently large, and the magnitude of the martingale innovations must be large enough to have a

noticeable impact on the payo¤s and the asset price, but not so large so that the third term in the

payo¤ to mysticism (11) dominates.

Figures 1-5 demonstrate the role of the parameters � and �� in determining the frequency

and duration of bubbles. Figures 1 and 2 show the evolution of the price dividend ratio, the

Niccolini and Lansing (2010) both model dividends as a random walk with drift, which would complicate the present
model and is left as a possibility for future work.
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forecast errors of the re�ective and fundamental forecasts and the fraction of followers of the three

forecasting strategies for two di¤erent choices of �. In �gure 1, this parameter is set to � = 5=8, a

relatively low value indicating sluggish adjustment to strategies with superior performance. The

simulations are initiated at a point where the fraction of followers of re�ectivism, the potentially

dominant strategy, is at its maximum. For the low level of �, the introduction of a small fraction of

mystics does not induce others to adopt the strategy and has no appreciable impact on the evolution

of the asset price. Again, for smaller ��s, the dynamic (12) approaches the linear weighting case

where re�ectivism dominates.

Figure 2 shows the same variables as Figure 1, but for a higher level of � at � = 5:0. Here,

agents are su¢ ciently aggressive for mysticism to gain a following for signi�cant stretches of time.

There are a number of instances where well over half of the the population is using mysticism and

some of these are associated with large and persistent deviations in both the fundamentalist forecast

errors and the steady state value in the price-dividend ratio. Note that the martingale does not

damage the re�ectivist forecast error in such a persistent way, since re�ectivists use information

about the martingale and the relative popularity of mysticism in their forecast. Re�ective forecast

errors are large only when there is a large change in the popularity of mysticism coinciding with a

large value for the martingale.

Figures 3 and 4 illustrate the role of the standard deviation of the martingale innovations ��

in the formation and duration of bubbles. The agent aggression parameter is set to � = 5:0 as

in Figure 2, but the parameter �� is lower at �� = 0:25�v. Hence, though mysticism often gains

a following, it is more di¢ cult for the martingale to attain a su¢ cient magnitude to noticeably

a¤ect the asset price. However, when they do occur, bubbles in the asset price tend to last longer,

since the martingale grows relatively slowly and more time is required for the martingale (third)

term in the mystic payo¤ (11) to overwhelm the covariance term. Conversely, a higher magnitude

for martingale innovation, as in Figure 4 with �� = 2:0�v, shows that bubble outbreaks become

rare and short-lived as the martingale quickly, if not immediately, grows too large for mysticism to

dominate.

Finally, Figure 5 shows the case where the agent aggression parameter is large at � = 10:0, while

the parameter �� = �v as in Figures 1 and 2. Here, the martingale innovations are at a magnitude

where mysticism can dominate and the agents are quickly switching to superior strategies means
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that the dynamics are dominated by the covariance term in the payo¤s to mysticism (11) and

fundamentalism (10), and there is little inertia in the evolution of the xi;t�s. Hence, mysticism

quickly gains a following with a positive covariance, but quickly loses with the opposite. There

are some occurrences of bubble-like behavior in the price-dividend ratio, but the primary impact

of the martingale is an increase in the volatility of the asset price. We proceed by examining more

formal econometric features of the data to support these qualitative observations.

5 Time Series Tests

The simulated data matches econometric features of asset market data in multiple respects. In

the presence of bubbles, the price-dividend ratio has greater persistence and volatility, and there

is excess variance in the price-dividend ratio. Returns are unpredictable in the short run for any

parameter choices.

5.1 Mystic dominance and bubbles

Simple measures to detect mysticism and bubbles allow a demonstration of the correspondence

between the impact of the martingale and formal econometric features of the data such as excess

variance. We run 10,000 trials of 100 periods, roughly the size of the sample in the Shiller data, with

50 periods for initiation. Table 1 reports the fraction of periods (across all trials) where mysticism

dominated, i.e. when the fraction of followers of mysticism is greater than 0.5. Table 2 reports the

fraction of trials with an occurrence of a bubble in the asset price, de�ned as a price-dividend ratio

(in levels7) greater than double its steady state value. This is a necessarily arbitrary but rather

strict interpretation of a bubble. Observing the major U.S. stock market averages and using a

steady state ratio of 20, the price-earnings ratio in the Shiller data only exceeded 40 in 2009. In

the present model of a bubble, a negative bubble, when prices fall below their fundamental value,

are just as likely as positive bubbles. If both classes of bubbles are included, the values in Table 2

should be doubled.

Tables 1 and 2 verify that outbreaks of mysticism and bubbles require su¢ ciently large choices

for the parameter �, the measure of agent aggressiveness, and the parameter �� the standard

7As a log di¤erence, the bubble condition is pt � dt > �p� �d+ ln 2:

13



deviation of the shocks to the martingale. For low values of these parameters, there are no

occurrences of bubbles or mystic dominance.

As the choices of the parameters � and �� become very large, the occurrences of bubbles

and mystic dominance fall from their maximum values. For example in Table 1 given � = 3=4,

the fraction of mystic dominance initially rises with �� to a maximum of 0.188 at �� = 1:0�v;

corresponding to Figure 2, but falls for larger magnitudes of the shock to the martingale for two

reasons. For large ��, the martingale (third) term in the payo¤ to mysticism (11) dominates,

diminishing the payo¤ and making the emergence of mysticism more di¢ cult, as shown in Figure

4. Second, for large � and ��, bubbles rise and collapse faster, lowering the number of periods

satisfying the criteria for mystic dominance and bubbles, as in Figure 5.

If agents are su¢ ciently aggressive about switching to superior strategies, � � 3=4, the role of the

martingale becomes signi�cant. In these cases, the fraction of periods showing mystic dominance

is always greater than the fraction with bubbles. Even if mysticism has a large following, the

magnitude of the martingale may not be large enough to have a dramatic e¤ect on the asset

price, pointing up the di¢ culty identifying bubbles. It is possible that agents are always using

extraneous information to value assets, but that such information only drives asset prices away

from their fundamental values on rare occasions.

5.2 Persistence and volatility

For parameter settings that produce outbreaks of mysticism and bubbles, the simulated price-

dividend series displays greater persistence than the dividend series and matches the volatility

observed in the Shiller data. Table 3 reports the average autocorrelation coe¢ cient across the

10,000 trials and demonstrates higher persistence for values of � and �� where bubbles can arise.

As with the succeeding tables, the values in the upper left, where both � and �� are small, replicate

the predictions of the EMH. The standard deviation and autocorrelation coe¢ cient of pt � dt of

0.18 and 0.45 under the EMH are low compared to the Shiller data values of 0.38 and 0.8. The

standard deviation is matched closely by many of the simulations (Table 3) where bubbles are

prevalent. While the highest value in the table of 0.64 does not show the persistence in the annual

data of 0.8, Table 4 reports the standard deviation of the autocorrelation coe¢ cients over the trials

and shows that such levels of persistence do occur in a number of trials. Interestingly, for high
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values of � and ��, the persistence falls to low levels as mysticism is adopted and abandoned very

quickly, as in Figure 5.

5.3 Return Predictability

Returns are not predictable in the short run, an implication of the strong and weak versions of

the EMH that is found in stock market data. We examine whether the price-dividend ratio is

informative about per share excess returns

Zt = dt + pt � ��1pt�1; (14)

which is the part of the optimization problem underlying the asset pricing model (2), see Brock

and Hommes (1998). Similar to the re�ective forecast error (8), the excess return depends on the

innovation to the dividend and the term nt�t � �ntmt representing new information about the

martingale. As long as agents are unable to forecast nt, the re�ective forecast is unbiased and

excess returns are unpredictable.

To test predictability, the following equation to test whether lagged price-dividend ratios contain

information about current returns, similar to those used in Fama and French (1988), is estimated

on simulated data with 100 observations.

Zt = �0 + �1 (pt�k � dt�k) + "t;

where k is the lead time for the prediction. If the R2 from the estimation is over 0.1, returns are

de�ned to be predictable. For the annual Shiller data, the value of the R2 for any speci�cation

of the data8 never exceeds 0.12 so 0.1 is a conservative threshold. For any lead time, none of the

simulated series series had predictable returns. Returns at longer horizons are also unpredictable,

which is unsurprising given the stationarity of the dividend process. Tests on the gross returns

give identical results. For Pt = exp pt and Dt = exp dt, the gross return is (Pt +Dt � Pt) =Pt,

which is regressed on the price dividend ratio Pt�k=Dt�k.

In the related literature on learning in asset markets, the results on return predictability vary.

8Some research, see Cochrane (2001), reports predictable returns over longer horizons for di¤erent samples or
frequencies of the data.
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Adam, Marcet and Niccolini (2008) try to match the features of quarterly data for the U.S. stocks

for 1927-2005 and succeed quite well with long run return predictability, but for horizons shorter

that 6 quarters the R2 from the simulated data is too high, roughly the opposite of the results of the

present work. Lansing (2010) reports autocorrelation coe¢ cients on the returns9 from simulated

data that are slightly higher that the annual Shiller data 1871-2005.

In the model with heterogeneous forecasts of Blake (2010), return predictability depends on the

available choice of forecasting strategies. For some simulations, returns show serial correlation,

but the inclusion of a small fraction of agents using a simple AR1 forecasting model makes returns

unpredictable. Though such a strategy was not particularly successful, its presence seems to

arbitrage away the predictability of returns in a way reminiscent of arguments in support of e¢ cient

markets. Whether forecasts of returns using an AR1 model satisfy cognitive consistency is open

to interpretation, but the result is a possible explanation for weakly e¢ cient markets and points

up the need to consider heterogeneous forecasts.

5.4 Excess Variance

Studies such as Shiller (1981) demonstrate that asset prices �uctuate more than predicted by the

EMH, and endogenous rational bubbles can explain such excess variance . Simulations determine

a ratio of the realized variance and the predicted variance based on the variance of the dividends

and the EMH, though the statistical signi�cance is di¢ cult to assess. A statistical test of the

variance of the price-dividend ratio provides more de�nitive evidence.

In the absence of mysticism (nt = 0), the asset price behaves according to the strong version of

the EMH and depends only on the dividend process.

y�t = d

�
�

1� � �
��

1� ��

�
+ dt

�
1 +

��

1� ��

�

Hence, the variance of the asset price should be �2y� = (1� ��)�2 �2d. Table 6 reports the ratio

�2y=�
2
y� of the variance of the simulated asset prices and the predicted variance using the variance

of the simulated dividends. Under the strong EMH, the ratio is unity, which occurs for very low

levels of � and ��. For higher levels, the ratio rises above one, and, for one pair of parameter

9 The associated values of the R2 are not reported.
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values well over three. This level is smaller than Shiller�s initial estimate, but other research10 has

found smaller estimated values.

To examine the statistical signi�cance of the observed excess volatility in the asset prices, we

conduct a test on a transformation of the price-dividend ratio. Let the notation bx denote the
deviation of x from its steady state value. The series cpdt = 1� ��

���d

�byt � bdt� has the standard
normal distribution so the variance ofcpdt is distributed �2 (n) =n where n is the number of periods.
Table 7 reports the fraction of runs such that the variance of the realized cpdt is excessive at a
signi�cance level of 0.05. The results demonstrate that the excess variance shown in Table 6

is statistically signi�cant and corresponds to outbreaks of bubbles. For small values of � and

�� (not reported), the simulations correspond to the EMH and the probability of excess variance

corresponds to the signi�cance level 0.05. The pattern of the excess return probabilities in Table 7

follows that of the probability an occurrence of a bubble in Table 2. For example, for a su¢ ciently

large choice of � such that � � 3=2, both probabilities rise with the magnitude of the martingale

innovation �� for all values reported, but for smaller choice of �, the probabilities both peak at a

choice of �� less than the maximum value �v x 8 in the tables.

The behavior of the simulated time series of the endogenous rational bubbles model matches

multiple features found with stock price and dividend data. Simulations with moderate values of

the agents aggressiveness parameter and the standard deviation of the martingale innovation such

as � = 5 and �� = 1=2 produce data in line with the Shiller data, and these are values where more

than half the runs have bubbles associated with mysticism.

6 Conclusion

Models of asset pricing where a representative agent forms expectations according to the strong

e¢ cient markets hypothesis are at odds with the observed heterogeneity of forecasts and cannot

explain bubbles or related formal econometric features of asset market data. The model with

mysticism introduces heterogeneous forecasting strategies that satisfy rationality but puts few other

restrictions on agents beliefs. Agent aggressiveness in switching strategies is parameterized by the

convexity of the weighting function in the generalized replicator dynamic. While the model is

10Some examples are LeRoy and Porter (1981), Campbell and Shiller (1989) and LeRoy and Parke (1992). The
issue is complicated since some of these models account for a time varying interest rate or discount factor.
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capable of mimicking the behavior under the strong e¢ cient markets hypothesis, for su¢ ciently

aggressive agents and martingale innovations of a magnitude similar to the dividend innovations,

bubbles can arise Though returns remain unpredictable in the short run for any parameter settings,

outbreaks of mysticism explain the observed volatility and persistence of the price-dividend ratio

and excess volatility in asset prices that the e¢ cient markets hypothesis cannot.

There are implications for policies that could minimize bubbles in asset markets. Bubbles arise

due to herding behavior and require agents who switch aggressively between strategies. Hence,

policies that slow trading may limit how quickly agents change strategies and short-circuit coordi-

nation on forecasts based on extraneous information. Some such policies such as limits on single

day movements of an index are already in place, and others options such as a Tobin tax should be

considered.

That rational bubbles can arise endogenously and extraneous information can have an impact

on asset prices and returns is a positive result in that it explains a number of important aspects

of the data, but it also points up the limitations on the information that can be obtained through

observations of asset prices and returns. If extraneous information has an impact on the asset

price, then that price does not re�ect the fundamental value of the asset. While the strong

e¢ cient markets hypothesis remains an important benchmark for de�ning bubbles, it is not a full

description of the behavior of asset markets. The present model provides a tool for assessing

whether prices and returns are truly informative about the value of the underlying asset.

References

Adam, Klaus, Albert Marcet and Juan Pablo Niccolini (2008) Stock market volatility and learning.

CEPR Discussion paper 6518.

Branch, William. and George Evans (2007) Model uncertainty and endogenous volatility. Review

of Economic Dynamics 10, 207-237.

Branch, William. and George Evans (2011) Learning about risk and return: A Simple model of

bubbles and crashes. American Economic Review: Macroeconomics 3(1), 159-191.

Blanchard, Olivier (1979) Backward and forward solutions for economies with rational expecta-

tions, American Economic Review 69(2), 114-118.

18



Brock, William A. and Cars H. Hommes (1998) Heterogeneous beliefs and routes to chaos in a

simple asset pricing model. Journal of Economic Dynamics and Control 22, 1235-1274.

Campbell, Je¤rey Y. and Robert J. Shiller (1989) The dividend-price ratio and expectations of

future dividends and discount factors. Review of Financial Studies 1(3), p.195-228.

Cochrane, John (2001) Asset Pricing. Princeton University Press, Princeton, NJ.

Evans, George (1991) Pitfalls in testing for explosive bubbles in asset prices, American Economic

Review 81(4), 922-930.

Evans, George and Seppo Honkapohja (2011) Learning as a rational foundation for macroeconomics

and �nance, manuscript.

Fama, Eugene F. and French, Kenneth R. (1989) Business conditions and expected returns on

stocks and bonds, Journal of Financial Economics, Elsevier 25(1), p. 23-49.

Hofbauer, Josef and Jorgen Weibull (1996) Evolutionary selection against dominated strategies.

Journal of Economic Theory 71, 558-573.

Hommes, Cars H. (2001) Financial markets as nonlinear adaptive evolutionary systems. Quanti-

tative Finance 1, 149-167.

Hommes, C. 2006, Heterogeneous agent models in economics and �nance. in Tesfatsion, L., Judd,

K.I. (Eds.), Handbook of Computational Economics, Volume 2: Agent-Based Computational Eco-

nomics. Elsevier Science BV, Amsterdam

Keynes, J. M., 1935. The General Theory of Employment, Interest and Money. Harcourt Brace,

New York, NY.

Lansing, K. (2010) Rational and near-rational bubbles without drift. Economic Journal 120, 1149-

1174.

LeBaron, Blake (2010) Heterogeneous gain learning and long swings in asset prices. Journal of

Economic Behavior and Organization, forthcoming.

19



LeBaron, B., Arthur, B., Palmer, R. (1999) Time series properties of an arti�cial stock market.

Journal of Economic Dynamics and Control 23, 1487-1516.

LeRoy, Stephen F. and William R. Parke (1992) Stock price volatility: Tests based on the geomet-

ric random walk. American Economic Review 82(4), 981-992.

LeRoy, Stephen F. and Richard D. Porter (1981) The present value relation: Tests based on im-

plied variance bounds. Econometrica 49(3), p. 555-574.

Lundqvist, Lars and Thomas J. Sargent (2004) Recursive Macroeconomics Theory, The MIT Press,

Cambridge, Massachusetts.

Parke, William R. and George A. Waters (2007) An evolutionary game theory explanation of arch

e¤ects. Journal of Economic Dynamics and Control 31(7), 2234-2262.

Parke, William R. and George A. Waters (2012) On the evolutionary stability of rational expecta-

tions, manuscript.

Samuelson, Lawrence (1997) Evolutionary games and equilibrium selection, The MIT Press, Cam-

bridge, Massachusetts.

Sandholm, William (2011) Population Games and Evolutionary Dynamics, The MIT Press, Cam-

bridge, Massachusetts.

Shiller, Robert J. (1981) Do stock prices move too much to be justi�ed to expected changes in

dividends? American Economics Review 71(3), 421-426.

Shiller, Robert J. (2005) Irrational Exuberance. Princeton University Press, Princeton, N.J.

Waters, George A. (2009) Chaos in the cobweb model with a new learning dynamic. Journal of

Economic Dynamics and Control 33(6), 1201-1216.

Weibull, Jorgen (1998) Evolutionary Game Theory. MIT Press, Cambridge, MA.

20



100 200 300 400 500 600 700 800 900 1000

2

4

Price-Dividend ratio

100 200 300 400 500 600 700 800 900 1000
-2
0
2

Reflectivist Forecast Error

100 200 300 400 500 600 700 800 900 1000
-2
0
2

Fundamentalist Forecast Error

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Mystic Population Share

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Reflectivist Population Share

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Fundamentalist Population Share

Figure 1
� = 5=8; �� = �v x 1:0

21



100 200 300 400 500 600 700 800 900 1000
0

5

Price-Dividend ratio

100 200 300 400 500 600 700 800 900 1000
-2
0
2

Reflectivist Forecast Error

100 200 300 400 500 600 700 800 900 1000
-2
0
2

Fundamentalist Forecast Error

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Mystic Population Share

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Reflectivist Population Share

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Fundamentalist Population Share

Figure 2
� = 5:0; �� = �v x 1:0

22



100 200 300 400 500 600 700 800 900 1000
0

5

Price-Dividend ratio

100 200 300 400 500 600 700 800 900 1000
-2
0
2

Reflectivist Forecast Error

100 200 300 400 500 600 700 800 900 1000
-2
0
2

Fundamentalist Forecast Error

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Mystic Population Share

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Reflectivist Population Share

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Fundamentalist Population Share

Figure 3
� = 5:0; �� = �v x 0:25

23



9

100 200 300 400 500 600 700 800 900 1000
0

5

Price-Dividend ratio

100 200 300 400 500 600 700 800 900 1000
-2
0
2

Reflectivist Forecast Error

100 200 300 400 500 600 700 800 900 1000
-2
0
2

Fundamentalist Forecast Error

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Mystic Population Share

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Reflectivist Population Share

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Fundamentalist Population Share

Figure 4
� = 5:0; �� = �v x 2:0

24



9

100 200 300 400 500 600 700 800 900 1000
0

5

Price-Dividend ratio

100 200 300 400 500 600 700 800 900 1000
-2
0
2

Reflectivist Forecast Error

100 200 300 400 500 600 700 800 900 1000
-2
0
2

Fundamentalist Forecast Error

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Mystic Population Share

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Reflectivist Population Share

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Fundamentalist Population Share

Figure 5
� = 10:0; �� = �v x 1:0

25



ση = σv x

1/8 1/4 1/2 1 2 4 8
5/8 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5/4 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5/2 0.000 0.000 0.002 0.005 0.006 0.002 0.001

θ 5 0.031 0.053 0.064 0.043 0.017 0.007 0.002
10 0.069 0.134 0.174 0.149 0.087 0.042 0.022
20 0.037 0.095 0.152 0.146 0.096 0.054 0.030
40 0.035 0.082 0.116 0.105 0.069 0.039 0.021

Table 1
The fraction of periods over all runs where the mysticism exceeds 50% (x2 > 0:5)

ση = σv x

1/8 1/4 1/2 1 2 4 8
5/8 0.008 0.006 0.008 0.014 0.023 0.059 0.323
5/4 0.007 0.009 0.012 0.016 0.024 0.053 0.251
5/2 0.014 0.019 0.035 0.070 0.110 0.109 0.131

θ 5 0.124 0.203 0.265 0.276 0.278 0.235 0.142
10 0.093 0.265 0.539 0.739 0.839 0.837 0.750
20 0.007 0.017 0.140 0.508 0.815 0.883 0.847
40 0.007 0.007 0.027 0.245 0.625 0.750 0.741

Table 2
The fraction of runs with one period where pt � dt > ln 2 +

�
�p� �d

�
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ση = σv x

1/8 1/4 1/2 1 2 4 8
5/8 0.445 0.446 0.442 0.431 0.408 0.348 0.222
5/4 0.445 0.447 0.445 0.433 0.410 0.358 0.243
5/2 0.454 0.459 0.465 0.465 0.448 0.402 0.360

θ 5 0.536 0.575 0.589 0.552 0.464 0.399 0.388
10 0.529 0.599 0.635 0.553 0.369 0.218 0.148
20 0.454 0.470 0.477 0.398 0.265 0.160 0.096
40 0.442 0.440 0.424 0.359 0.267 0.185 0.117

Table 3
The average across all trials of the one lag autocorrelation coe¢ cient for the price dividend ratio

pt � dt:

ση = σv x

1/8 1/4 1/2 1 2 4 8
5/8 0.090 0.090 0.090 0.090 0.092 0.095 0.100
5/4 0.090 0.090 0.090 0.092 0.091 0.095 0.100
5/2 0.097 0.102 0.118 0.136 0.146 0.139 0.146

θ 5 0.177 0.198 0.201 0.189 0.165 0.160 0.159
10 0.130 0.145 0.142 0.147 0.170 0.178 0.181
20 0.089 0.094 0.104 0.118 0.132 0.139 0.132
40 0.089 0.090 0.092 0.102 0.118 0.126 0.122

Table 4
The standard deviation across all trials of the one lag autocorrelation coe¢ cient.
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ση = σv x

1/8 1/4 1/2 1 2 4 8
5/8 0.182 0.184 0.186 0.188 0.192 0.205 0.254
5/4 0.182 0.184 0.186 0.188 0.191 0.203 0.253
5/2 0.204 0.211 0.282 0.390 0.396 0.315 0.281

θ 5 0.390 0.493 0.499 0.403 0.295 0.249 0.233
10 0.223 0.277 0.336 0.347 0.335 0.350 0.425
20 0.185 0.196 0.225 0.259 0.292 0.352 0.464
40 0.181 0.185 0.197 0.217 0.248 0.302 0.403

Table 5
The standard deviation of the price-dividend ratio.

ση = σv x

1/8 1/4 1/2 1 2 4 8
5/8 1.010 1.017 1.026 1.036 1.044 1.073 1.209
5/4 1.011 1.018 1.028 1.036 1.042 1.066 1.203
5/2 1.059 1.078 1.280 1.740 1.743 1.409 1.285

θ 5 1.732 2.273 2.304 1.792 1.334 1.180 1.133
10 1.132 1.314 1.543 1.585 1.522 1.566 1.907
20 1.017 1.052 1.135 1.236 1.345 1.575 2.136
40 1.004 1.015 1.046 1.103 1.187 1.368 1.812

Table 6
The ratio V ar (y�t ) =V ar (yt) for each run.s
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ση = σv x

1/8 1/4 1/2 1 2 4 8
5/8 0.091 0.111 0.144 0.181 0.251 0.539 0.997
5/4 0.098 0.116 0.158 0.185 0.226 0.481 0.966
5/2 0.119 0.156 0.209 0.260 0.287 0.315 0.396

θ 5 0.330 0.445 0.503 0.490 0.431 0.367 0.263
10 0.419 0.723 0.923 0.968 0.971 0.952 0.932
20 0.118 0.315 0.782 0.961 0.989 0.990 0.997
40 0.083 0.120 0.337 0.724 0.915 0.960 0.997

Table 7
The fraction of runs with excess variance
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