

"Endurance" Regression Testing

Obtaining a Hydrostatic Design Basis for Fiberglass pipe

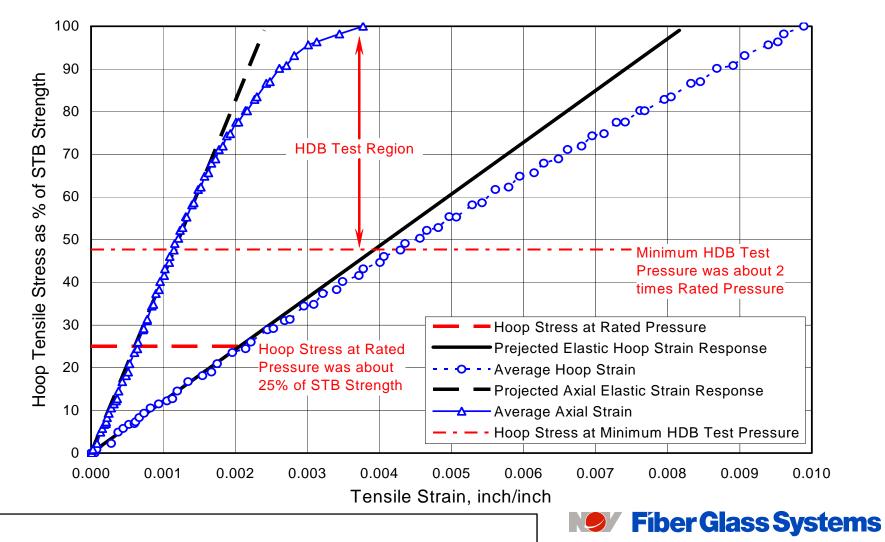
ASTM Subcommittee 20.23

November 16, 2015

David Granderson

The problem

- Lack of confidence in ASTM D2992 methods
- ISO14692, Shell DEP
 - Prescribing Regression Gradients
 - Requiring 100's of 1000 hour tests



Typical complaints of ASTM D2992-B static

- 1. All specimens are damaged
- 2. Multiple failure modes throughout the test, yet plotted as (1)
- 3. Extrapolating different and un-natural failure modes likely innaccurate
- 4. Data < 1000 hours dominates results (most un-natural failure mode of pipe in operation)
- 5. Time to failure is random, single data points at any given time difficult to gauge the reliability of a single failure
- 6. Testing near critical stress for so long, Un-avoidable to cycle (pressure /temperature) Cycles result in failures which otherwise would not have occurred. i.e. Power loss

ASTM D2992: (PEL) Test Damaged pipe to Predicting performance of undamaged pipe?

Attachment 3

"Endurance" Regression Testing

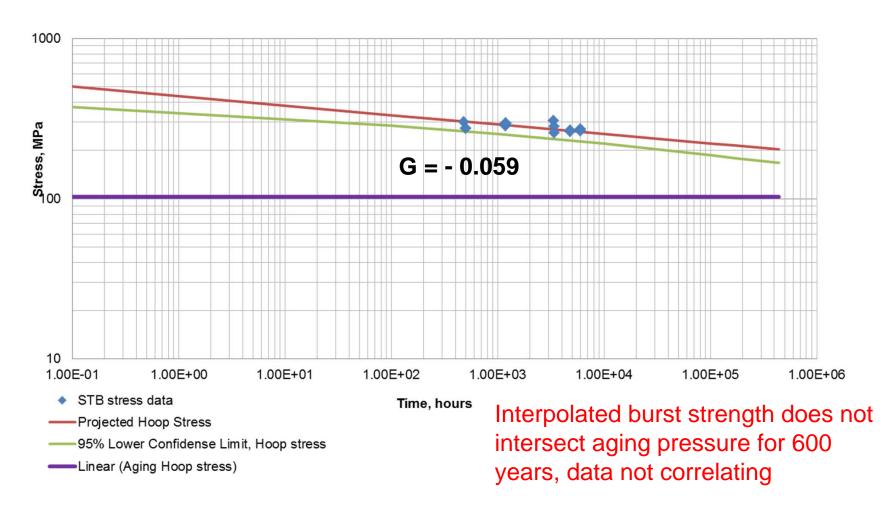
- Modified ASTM D2992-B, maintaining the concept, eliminating some problems
- Endurance: The ability to withstand hardship or adversity; especially: the ability to sustain a prolonged stressful effort or activity
 - Stressful (bearable, not damaged)

Endurance Testing (concept)

- Choose aging pressure (PEL, traditional HDB, experience, other)
- Age all specimens at constant pressure
- Fail multiple specimens at known times
- Plan failure times, invite all (3rd party, end users, YOU!)

Concept continued

- On failure day: fail multiple specimens ASTM D1599 *
 Average, standard deviation at each failure time, identify outliers
- Plot data (Aging pressure, Failure pressures Vs time)
- Extrapolate failure pressure
- Intersect failure/ aging pressure = life at constant age conditions
- Specimens creep naturally / force fluids to diffuse into laminate
- Degradation is natural nearer typical design conditions



Prototype: 150F, 100 – 6000 hours aging stress: HDB > (15KSI) > operating

1000 Stress, MPa 60 G = + 0.04310 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06 STB stress data Time, hours Projected Hoop Stress -95% Lower Confidense Limit, Hoop stress Linear (Aging Hoop stress)

Prototype: same data 500 – 6000 hours

Discuss + regression slope

- Pipe gaining strength over time
- Possibilities:
 - Resin cures a bit further initial aging process?
 - Residual stress, resin shrinkage in cure, later swelling of resin with increased water saturation?
 - Plasticization of the inner resin layers, lowering Tg and modulus allowing greater strain before cracking?
 - Beneficial Creep, reinforcement aligns to suit loading conditions

Conclusion

- Fiberglass pipe rate of degradation is a function of :
 - Construction Materials
 - Strain
 - Chemical exposure
 - Temperature
- This method measures these effects in a more natural state
- Accurate fiberglass Regression Gradients
 - = greater confidence in design
 - = potential method evaluating remaining service life of installed pipe

