ENERGY AND CHEMICAL CHANGE

26 AUGUST 2014

Lesson Description

In this lesson we:

- Explain energy change in chemical reactions
- Define exothermic and endothermic reactions
- Define bond energy
- · Discuss change in enthalpy
- Define activation energy and activated complex
- Discuss potential energy diagrams

_

Challenge Question

When sodium bicarbonate dissolves in water the temperature of the solution formed decreases. Is this chemical reaction exothermic or endothermic? Explain your answer.

Summary

Energy Change

Whenever a chemical reactions takes place there is always a change in energy of the system.

An **exothermic** reaction is a reaction in which more energy is released than absorbed.

For example: $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l) + energy$

An **endothermic** reaction is a reaction more energy is absorbed than released

For example: $6CO_2(g) + 6H_2O(l) + energy \rightarrow C_6H_{12}O_{22} + 6O_2(g)$ (photosynthesis)

Enthalpy (H) is the total amount of chemical potential energy in a chemical system

During a chemical reaction the enthalpy of the system changes. Change in enthalpy is given by the symbol ΔH .

For an exothermic reaction ΔH is negative and for endothermic reactions ΔH is greater than zero.

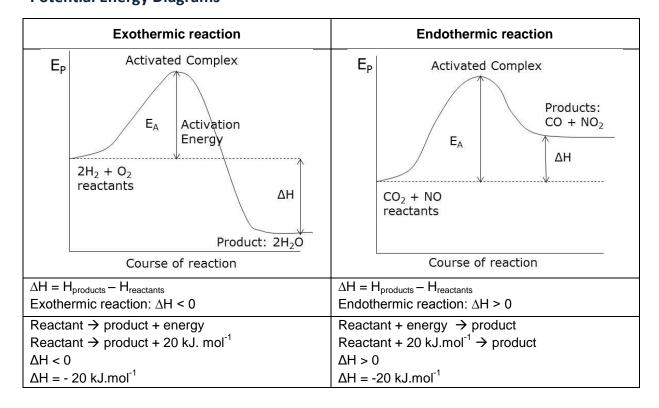
Bond Energy

During a chemical reaction bonds are broken by energy being taken in and new bond s are formed resulting in energy being given off.

The energy which is absorbed when bonds are broken or released when new bonds are formed is known as **bond energy**.

Energy Change = Σ energy absorbed_(bond breaking) - Σ energy released_(bond formation)

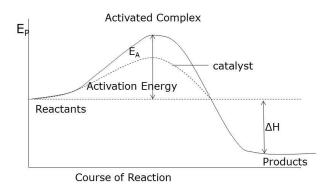
Table of Bond Energies


Bond	Bond energy (kJ·mol)	Bond	Bond energy (kJ·mol)
H – H	432	F — F	159
H – O	459	$C\ell-C\ell$	243
H – C	414	1-1	151
H — N	390	Br — Br	192
H – F	569	O = O	494
H-S	339	C = O	803
H — Cł	431	C – C	348
H — I	299	C – O	258
H — Br	368	C≡C	837
F-F	159	N≡N	946
		C = C	611

Activation Energy and Activated Complex

For a reaction to happen between two substances, a minimum amount of energy must be absorbed to break the existing bonds of the reactants. This minimum energy is known as the **activation energy**.

When this minimum energy has been absorbed the reactants form a substance known as the **activated complex**. The activated complex is a temporary, high energy, unstable state between reactants and products.


Potential Energy Diagrams

Catalyst

A catalyst can increase the rate of a reaction without being consumed by the reaction or taking part in the reaction.

A catalyst lowers the activation energy but does not change the change in enthalpy of the reaction.

Test Yourself

Question 1

When a candle burns candle wax reacts with oxygen to form water and carbon dioxide. Select which of the following statements are true. (More than one option can be selected)

- A The reaction is endothermic
- B The reaction is exothermic
- C $\Delta H = 0$
- D $\Delta H < 0$

Question 2

When a catalyst is added to a chemical reaction,

- A the activation energy always increases
- B the activation energy always decreases
- C ΔH will become smaller
- D ΔH will become bigger

Question 3

In a given reversible reaction the forward reaction is exothermic. What statement about the reverse reaction is true

- A exothermic
- B energy released equal activation energy of forward reaction
- D ΔH value for the reverse reaction is smaller than for the forward reaction

Question 4

Identify which condition is required for a spontaneous reaction

- A. Large activation energy
- B. Large enthalpy
- C. Small activation energy
- D. Small enthalpy

Question 5

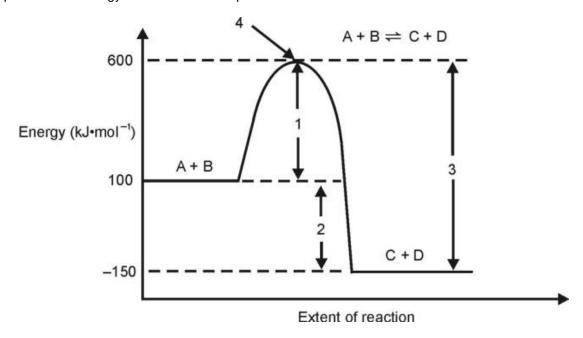
Identify which conditions are true for an explosion

- A. Very small activation energy
- B. Very large activation energy
- C. $\Delta H < 0$
- D. $\Delta H > 0$

Improve your Skills

Question 1

Use the table of bond energies to calculate ΔH for the following reaction:


$$2HCI(g) + Br_2(g) \rightarrow$$

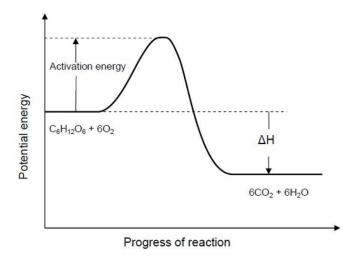
$$2HBr(g) + Cl2(g)$$

Is the reaction is exothermic or endothermic?

Question 2

In the following energy profile diagram, the x-axis represents the extent of reaction. The y-axis represents the energy of the reactants or products.

- 2.1 Provide names for labels 1 to 4.
- 2.2 Calculate the activation energy for the forward reaction shown on the graph.
- 2.3 Calculate the overall enthalpy of this reaction.
- 2.4 Draw a sketch to show the effect of a catalyst


Question 3

(Adapted from Grade 11 Exemplar paper)

During the process of cellular respiration, glucose is broken down to form carbon dioxide and water according to the following equation:

$$C_6H_{12}O_{22} + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

The reaction is catalysed by enzymes. The change in potential energy during this reaction in the human body is illustrated in the graph below:

Use the graph to answer the following questions:

- 3.1 Is the breakdown of glucose an endothermic or an exothermic reaction? Give a reason for your answer.
- 3.2 Explain how the enzymes influence the rate of the reaction.

