
Energy-e�cient Mobile

Device-assisted Schemes in Wireless

Sensor Networks

by

Qiyue�Wu

5IFTJT�TVCNJUUFE� JO�QBSUJBM�GVMGJMMNFOU�PG�UIF�SFRVJSFNFOUT
'PS�.BTUFS�PG�$PNQVUFS�4DJFODF�EFHSFF

School�of�Electrical�Engineering�and�Computer�Science�
Faculty�of�Engineering
University�of�Ottawa

c��Qiyue�Wu,�Ottawa,�Canada,�2020



Abstract

Recently, wireless sensor networks (WSNs), consisted of battery-powered sensor nodes,

are widely adopted by various civilian/military applications for implementing real-time

monitoring or long-term surveillance tasks. One of the critical issues of WSNs is energy

e�ciency. Due to the limited battery capacity, the network lifetime and performance of

WSNs are constrained. Also, once the sensor is deployed into a risky/remote environment,

the replacement of its battery is hard. Therefore, how to improve the energy e�ciency of

the WSN is a critical issue and has gained tremendous attention from researchers around

the world.

To address this problem, by taking advantage of the emerging high-mobility devices

(e.g., unmanned aerial vehicle (UAV)), we propose energy-e�cient mobile device-assisted

schemes in di↵erent-scale WSNs. Thanks to the rapid development of wireless techniques,

two emerging approaches, i.e., data gathering technique and wireless charging technique,

are beneficial to balance the workloads among all sensors or replenish energy to achieve

the semi-permanent WSN. First, we design data gathering schemes using the mobile data

collector. In order to meet the performance requirements of systems with di↵erent scales,

our algorithms have two working modes: single- and multiple-data-collector scenarios. For

the small-scale system, a single data collector is adopted to access and collect data from

the deployed node, and we propose single mobile data collector-assisted (SDCA) data col-

lection schemes for small-scale WSNs. For the large-scale system, multiple data collectors

are utilized to gather sensed data from deployed nodes, and two-mode multiple mobile

data collector-assisted (MDCA) data collection scheme is designed for balancing between

the system energy consumption and the data forwarding latency. Second, the joint data

collection and energy charging scheme is developed by adopting mobile chargers (MCs) as

mobile devices that are responsible for energy charging and data collection simultaneously.

For facing the di↵erent performance requirements of systems, a two-mode MC schedul-

ing algorithm is presented. To evaluate our works, extensive simulation experiments are

conducted on the OMNeT++ simulator. The results demonstrate that the proposed algo-

rithms achieve better performance than the control group regarding system-wide energy

e�ciency, network lifetime and average end-to-end delay.
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Chapter 1

Introduction

Wireless sensor networks (WSNs) consist of a set of battery-powered sensor nodes and

sinks that are deployed in the Field-of-Interest (FoI) to monitor and detect special events

that are of interest to users [7, 8, 9]. Fig. 1.1 shows the general architecture of the WSN.

Many advantages of sensor nodes (e.g., low cost, small size, capable of both sensing and

communication, etc.) make the WSN easy to be deployed for various civil and military ap-

plications, such as target tracking, environmental surveillance and healthcare monitoring.

However, due to the limited battery capacity, the lifetime and performance of the deployed

WSN will be limited/constrained, which may lead to the deployed system unable to meet

the performance requirements. Therefore, how to improve energy e�ciency is a crucial

issue and is considered as our motivation in this thesis. In the following, we will introduce

motivations and contributions of our work in detail.

Figure 1.1: The general architecture in the WSN
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1.1 Motivation and Objective

WSNs aim to provide real-time monitoring or long-term surveillance of the given FoI, and

then forward the gathered information to the designated data sink [10]. Therefore, the de-

sired coverage degree and reliable communication are fundaments to achieve requirements

of WSNs [11, 12, 13]. However, the limited available energy budget for sensors directly

a↵ects the lifetime and performance of the system [14, 15]. Thus, how to enhance energy

e�ciency is still a topic that can be further discussed.

The energy of sensors in WSNs is mainly consumed in two ways, i.e., data transceiving

and sensing. Moreover, the data transceiving consumes more energy. The nodes which

are close to the data sink are prone to deplete their energy because all messages from

sensor nodes to the sink have to go through these nodes, which causes a huge amount of

energy consumption. Once these nodes exhaust their energy, they cannot communicate

with others, which possibly causes that some sensors are isolated and cannot transmit the

data to the data sink. It is commonly called energy-hole problem [16]. Many methods

are proposed to solve this problem. Conventionally, the deployed sensor nodes in the

WSN are static or only have limited mobility (i.e., slow-moving speed and limited/short

moving range, etc.). Accordingly, the structure of the deployed WSN is relatively stable,

and can only be adjusted in a small scale or within a limited time. Hence, the existing

energy-e�cient approaches designed for the conventional static WSN concentrate on several

aspects, such as node deployment schemes [17, 18, 19], node scheduling schemes [20, 21, 22],

energy-e�cient routing algorithms [23, 24, 25, 26, 27], etc. However, the limited capacity

of the built-in battery is a restraint of the system lifetime of the battery-powered WSN

with conventional methods. Fortunately, with the scientific and technological development,

many new emerging technologies are applied to WSNs to enhance the energy e�ciency of

WSNs, e.g., high-mobility data collection devices [28, 29], energy harvesting techniques [30,

31], and cognitive radio [32, 33], etc.

In this thesis, we focus on energy-e�cient schemes with new emerging technologies in

the WSN. Compared with the traditional mobile sensor nodes [34], the new high-mobility

devices (e.g., unmanned aerial vehicle (UAV)) have a much faster-moving speed, a wider

deployment range and a relatively long operating time. By installing the data transceiver

and the wireless charger, the mobile devices can communicate with sensors and replenish

the energy to sensors. Accordingly, the devices can move to specified/designated locations

within a restricted period to collect data and replenish the energy for sensors, by which,

workloads between the deployed sensors can be balanced, and the energy of the sensors can

also be harvested. Moreover, by taking advantage of the long moving range of the mobile

device, the sensor nodes deployed in areas further away from the data sink (or isolated

2



nodes) can also be visited by the device. Thereby, the connectivity of the deployed system

can be ensured.

Currently, the high-mobility devices for the data collection are primarily classified into

the mobile sink and the mobile data collector. The mobile sink is typically considered as

a mobile access point providing access to the internet for the deployed sensors and needs

to connect the backbone all the time. Accordingly, the sink has to carry extra devices

(large payload) to support its functionality. It is normally carried by a vehicle to change

its location [35, 36]. Many energy-e�cient path planning algorithms (e.g., [37, 38, 39, 40])

have been proposed for the application using the mobile sink in WSNs. However, the mobile

sink needs to connect with the backbone all the time. Once the mobile sink changes its

location, the topology of the network should be reconstructed. The corresponding cost for

network reconstruction (e.g., time cost) could be considerable. Thus, the location of the

mobile sink cannot be changed frequently. Moreover, as the carrier of the mobile sink, the

mobility of the ground vehicle would be severely a↵ected by the obstacles on the ground.

On the contrary, the UAV as a data collector flies in the air and can overcome the adverse

e↵ect of the complex geographic surface. To sum up, the mobility of the mobile sink (i.e.,

the ground vehicle) is relatively lower than the mobile data collector (i.e., the UAV), which

may introduce considerable latency [41]. Therefore, adopting a high-mobility data collector

is a more practical option for data gathering across the FoI while allowing system-wide data

transmission latency to be kept at a relatively low level in WSNs.

Except for the data gathering technique with mobile devices, the energy recharging

technique is also considered as a viable method to elongate the lifetime of WSNs [42,

43]. A lot of novel hardware is developed to apply and support the energy recharging

technique in the WSN (e.g., wireless identification, sensing platform). There are two

main methods regarding the energy recharging technique, i.e., energy harvesting from the

ambient environment and wireless charging. A large number of environmental energy

harvesting algorithms have been developed in [44, 45, 46, 47, 48]. In these algorithms,

sensors can harvest energy from ambient sources, such as wind, thermal, solar, mechanical,

temperature variations [49]. However, due to the unstable nature of the ambient energy

source, relying solely on energy harvesting does not provide stable energy supply for the

system. Therefore, the mobile charger-assisted wireless charging technology is regarded

as a more e↵ective energy charging method for the WSN. The mobile charger (MC) as

an emerging device can supply the energy to the sensors stably. The sensors can receive

energy from MCs to make up the energy consumed on data transmission, which keeps them

alive permanently when the number of MCs is adequate. Although many works of wireless

charging have been studied, the energy capacity of the MC is ignored in their works. They

assumed that the MC has infinite energy, which is not practical in real applications. To

3



enable the approach more reasonable, the energy constraint of the MC will be considered

in our proposed scheduling designs.

Typically, a carefully planned moving trajectory is essential for applying the mobile

device. The straightforward method is that the mobile device visits every sensor to gather

the data from it directly and replenish the energy for it. Whereas, this method is only

suitable for sparse networks or networks with a small amount of deployed sensors. It is

not e↵ective for large-scale dense WSNs given that the mobile device needs to traverse a

plethora of sensors, which leads to a long path for the device, and in turn, introduces a

considerable data latency. In practical experience, some applications are delay-sensitive

and their data update period should be minimized. Accordingly, to satisfy the system

delay constraint, the route of the mobile device should be carefully planned.

Based on the motivation, it is feasible to propose energy-e�cient algorithms with mobile

devices in cluster-based WSNs. In the data gathering methods, we adopt the mobile data

collector as the high-mobility decive. On the other hand, the MC is regarded as the high-

mobility device in the joint data collection and energy charging scheme. The components

of these proposed algorithms are mainly the topology construction and the path planning

of the mobile device. The objectives of our proposed schemes are,

1. Decreasing the system-wide energy consumption;

2. Reducing the delivery latency from sensors to the data sink;

3. Designing the algorithms that can be adopted by various scale WSNs.

1.2 Contribution

The main contributions of this thesis are listed as follows:

1. For the small-scale system, we design a single mobile data collector-assisted (SDCA)

data collection scheme. This work aims to solve a joint cluster head (CH) selection

and the routing problem of the single data collector. To ensure that the data can

be forwarded to the sink within a tolerant delay, we apply a genetic algorithm (GA)

to solve the joint problem and obtain the optimal route generated by a GA-based

optimization method.

2. In order to improve the energy e�ciency and system performance based on the SDCA

data collection scheme in WSNs, we propose the improved SDCA data collection

4



scheme. In detail, the deployed sensors are divided into clusters based on our newly

proposed clustering algorithm, and then the optimal path for the data collector is

derived by the improved GA optimization method.

3. To improve the energy e�ciency for large-scale WSNs, we develop a two-mode mul-

tiple mobile data collector-assisted (MDCA) data collection scheme in cluster-based

WSNs: for the delay-sensitive application, the proposed scheme runs in gathering-

and-carrying mode. Each collector gets back to the sink so that the urgent data can

be transmitted to the sink in time; on the other hand, for the delay-tolerant applica-

tion, the scheme runs in data-relaying mode. The data gathered by a collector will

be forwarded to the data sink by intermediate collectors in order to minimize the

energy consumed by the collector traveling back to the data sink.

4. To make the WSN semi-permanent, the joint data collection and energy charging

scheme is designed by adopting MCs in WSNs. First, the clustering algorithm is

improved based on the ↵-hop clustering algorithm by considering the capacity of

sensors. Second, we introduce MCs scheduling schemes by considering two distinctive

scenarios, i.e., the delay-tolerant system and the delay-aware system. For the delay-

tolerant system, we design a single-path scheduling scheme (SPSS). In this scheme,

the genetic algorithm (GA) is adopted to derive a path to achieve the objectives in

the delay-tolerant charging problem. Two MCs traverse the derived path in opposite

directions to collect data and replenish energy for each sensor with full charge in

each cluster. In the delay-aware system, a multiple-path scheduling scheme (MPSS)

is designed to schedule multiple MCs to charge sensors. The data collection task will

be split and executed by multiple MCs through cooperation. Additionally, the sensors

are charged partially to decrease the delay. We combine the minimum spanning tree

algorithm and the 2-approximation algorithm [50] to derive a set of paths for MCs.

To verify the e↵ectiveness of the proposed schemes, we also carry out a set of experiments

by comparing the proposed works with other existing schemes using mobile devices.

1.3 Outlines

The rest of this thesis is organized as follows. Chapter 2 presents and discusses the existing

energy-e�cient schemes. The SDCA data collection scheme is proposed in Chapter 3.

Chapter 4 describes the details of the improved SDCA data collection scheme. In Chapter 5,

we extend the data gathering schemes in WSNs with multiple mobile data collectors.

5



Chapter 6 develops the two-mode scheduling schemes for the MCs in the WSN. In the end,

we conclude this thesis and provide the direction for future work in Chapter 7.
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Chapter 2

Literature Review

In this chapter, we summarize and classify the state-of-the-art energy-e�cient-related ap-

proaches for designing a sustainable WSN. Generally, conventional approaches mainly focus

on static WSNs, in which all deployed sensors are stationary and unable to change their lo-

cations after being deployed in the FoI. Accordingly, the diversity of the topology in static

WSNs is limited, and existing approaches for energy-e�cient static WSNs can be roughly

categorized into five classes: 1) Clustering-based algorithms; 2) Node deployment strate-

gies; 3) Node scheduling schemes; 4) Data routing algorithms; and 5) Joint energy-e�cient

designs.

Recently, with scientific and technological development, many new emerging technolo-

gies are applied to WSNs. Here, we mainly focus on four types of new techniques-based

energy-e�cient approaches: 1) High-mobility data collection devices assisted WSNs; 2)

Energy harvesting (EH)-aided sustainable WSNs; 3) Machine learning-based approaches;

and 4) Cognitive WSNs. We provide a taxonomy of the existing approaches designed to

address the problem of energy e�ciency in WSNs in Fig. 2.1. The following sections will

present conventional methods, emerging techniques-assisted methods, respectively.

2.1 The architecture of WSNs

First of all, we introduce a basic concept in the WSN, i.e., the architecture of WSNs.

Typically, to implement a WSN system, a large number of sensors need to be deployed in

the FoI. Therefore, the architecture of the system should be considered in every approach

based on its performance requirements. There are two main types of architectures that are

widely adopted: flat-based WSNs and hierarchical-based WSNs [51, 52]. We will introduce

the details of these two types of architecture in this section.
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Figure 2.1: Classification of existing approaches proposed for addressing energy e�ciency

problem in WSNs

Flat-based architecture: For this type of architecture, all nodes operate with the

same algorithm, i.e., there is only one tier in the system. A common flat-based architecture

is a spanning tree, which is illustrated in Fig. 2.2(a). Each node transmits its sensed data

to the data sink by direct communication or by relying on its parent nodes. Since the

parent node needs to help its children transmit data while lacking the ability to control the

amount of data transmitted by the child nodes, the parent node will consume much more

energy than its child nodes. Eventually, the energy-hole problem will occur. Therefore,

this type of architecture is unsuitable for the energy-e�cient design of WSNs, due to the

lack of control over the sensor nodes of the system.

Hierarchical-based architecture: Contrary to the flat-based architecture, hierarchical-

based WSNs use multiple-tier architecture [53, 54]. The elements in di↵erent tiers have

diverse functionalities. Cluster-based architecture is a typical hierarchical-based architec-

ture, which is commonly used in WSNs. An example of a cluster-based WSN deployed

in the 2D platform is shown in Fig. 2.2(b). The sensor nodes in the FoI are divided into

several groups called clusters. Each cluster has a cluster head (CH) which is responsible

for collecting the data from its cluster members and controlling its cluster members, such

as changing the working states of its members. Accordingly, to reduce the energy con-

sumption rate of the cluster member, the CH can switch the node into sleep or idle states

to conserve its energy. Additionally, sensors rotate the role of the CH in case the CHs

run out their energy fast, by which, the probability of producing the energy-hole problem

is reduced. Therefore, hierarchical-based architecture is more suitable for designing an

energy-e�cient WSN.
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(a) Flat-based architecture (b) Cluster-based architecture

Figure 2.2: Two kinds of network architecture

2.2 Conventional Methods

In this section, we will discuss some existing energy-e�cient approaches proposed for the

“conventional WSN”. The term ’conventional WSN’ is defined as follows: the components

of the deployed WSN are static/stationary or have only limited mobility (i.e., slow-moving

speed, limited/short moving range, etc.). Accordingly, the structure/topology of the de-

ployed conventional WSN is relatively stable, and can only be adjusted in small-scale or

limited time. For example, in some Virtual-force-based approaches (e.g., [55, 56, 57, 58]),

the adopted mobile sensors can move only to improve the coverage degree of a randomly

deployed network with initial deployment. Therefore, due to the constraint of the limited

mobility, the existing approaches in conventional WSNs mainly focus on the following five

aspects: 1) Node deployment strategies; 2) Clustering-based schemes; 3) Node scheduling

algorithms; 4) Data routing protocols; 5) Joint energy-e�cient designs. In the following

parts of this section, we will discuss each type of approaches, based on the state-of-the-art,

in detail.

2.2.1 Node Deployment Schemes

To achieve the expected system coverage degree and network connectivity, the intensive

node deployment strategy is always adopted to deploy the WSN. Accordingly, the redun-

dant sensor nodes will exist in the system, which may increase the overall deployment cost

of the WSN, and adversely a↵ect the performance of the deployed WSN. Due to the limited
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wireless channel/frequency resource, the intra-system/inter-node interference problem will

be aggravated as the number of deployed nodes increases. Consequently, the system-wide

link condition may be degraded, and the sensor nodes will have to spend more energy on

data retransmission to overcome the potential transmission failures, which in turn increases

the energy consumption rate of the system and reduces the lifetime of the deployed sys-

tem. Therefore, the node deployment scheme, which can reduce the network redundancy

while keeping system coverage degree and connectivity, has attracted much attention from

researchers. Currently, many approaches have been proposed for addressing the node de-

ployment problem. Here, we will discuss a number of node deployment approaches in

detail.

Node deployment strategies need to improve the system’s energy e�ciency (or reduce

the system’s energy consumption) as much as possible while ensuring the stable perfor-

mance of the system. In [59], a novel sensor deployment scheme (ACO-TCAT) was intro-

duced to prolong the network lifetime and ensure the connectivity of the whole network.

To achieve these objectives, the authors derived the preferred positions for each node based

on the ant colony optimization method with three kinds of ant transitions. The first is

called ant transition of Class I (ATC-I). It moves step by step, according to the pheromone

intensity of the path and the heuristic value. In addition, the ants move from the sink

in the beginning. The second kind of ant transition, named ant transition of Class II

(ATC-II), is responsible for e↵ective candidate location selection. The third one is the ant

transition of Class III (ATC-III). If both ATC-I and ATC-II are successful, ATC-III will

be applied to choose the points from candidates. Nodes with remaining energy will become

candidates. To implement the proposed algorithm, the authors assumed that the network

was divided into a set of grids with identical size, and the candidate location of the sensor

was the vertex of the grid. To guarantee the network connectivity, the candidates of the

next step are selected within the transmission range of the sensor in the current step. The

algorithm is implemented as follows. Initially, the system sets  = ('1,'2,'3) to represent

a sequence of three types of ant transitions. The class of ant transition  at location t is

decided by the candidate locations. The pheromone intensity of edge (i, j) after a tour of

the ant is updated as follows,

⌧ij(t+ 1) = (1� ⇢)⌧ij(t) +�⌧ij(t), (2.1)

where ⇢ is pheromone evaporation parameter and �⌧ij(t) is a parameter related to the

number of total points of the solution. In order to narrow the searching area of the

algorithm, two boundary parameters, i.e., ⌧min and ⌧max, should be predetermined, and

Tc is the predefined number of iterations. Moreover, the value of ⇢ needs to be adjusted

in the process of the algorithm. In the first half period, the value should be small so as
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to create the tiny di↵erence in the pheromone intensity of all edges. On the other hand,

in the last half period, the value needs to be large enough to generate a large di↵erence.

The advantage of using multiple types of ant transitions is that it decreases the searching

range and inferior solutions, which in turn improves the operational speed of the algorithm.

Moreover, the authors also considered the e↵ects of the obstacles in this work. Similarly,

in [60], an ant colony optimization-based sensor deployment protocol was proposed to

prolong the network lifetime and achieve full coverage. The authors used the ant colony

optimization to calculate the locations for each sensor and designed a sweep-based protocol

to move the sensors to the assigned positions.

Another node deployment scenario was developed by Hao et al. [61]. The motivation

of this algorithm was to improve the system’s energy e�ciency and the system-wide com-

munication link quality based on the optimal locations of sensors derived by considering

the e↵ects of the noise interference. The authors presented a link weight model which was

formulated on the basis of the current link quality and residual energy level of the node.

In this work, each node first exchanges its state information (i.e., its id and initial energy)

with its neighbors. By receiving the state information from its neighbors, the node calcu-

lated the link weight and sorted its neighbors in the descending order according to their

weights. The neighbor with a lower weight is less than the predetermined constant would

be removed from the list of neighbors. After updating the neighbors list, it multicasts

“link construction” messages to its alive neighbors. If a node receives this link construc-

tion message from its neighbor and the neighbor is still on its neighbors’ list, it will send

back a “ACK” message, and the link between these two nodes will be established. The

advantage of the algorithm is to achieve high link quality, low interference and low energy

consumption simultaneously.

The authors in [62] designed an energy-e�cient connected dominating set (CDS) to

improve both the system energy e�ciency and achievable system connectivity/reliability.

To simultaneously maximize the energy e�ciency and reliability, the authors designed a

multi-objective optimization model by conducting a probabilistic network model to trans-

form the reliable parameter into a probabilistic parameter to capture the uncertainty of

connections between sensors. This is the most significant di↵erence between this work and

other existing approaches. The authors showed that system energy e�ciency was related

to the size of connected dominating sets. The simulation results demonstrated that the

presented algorithm could improve the system performance more e↵ectively than other

heuristic-based algorithms used as a control group in terms of stable period, link condition

and energy consumption rate.

As previously mentioned, node deployment strategies aim to reduce the redundant

nodes based on the system performance requirements, which commonly improve energy
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e�ciency, enhance coverage and connectivity, reduce the system deployment cost, etc. We

summarize some existing node deployment strategies in Table 2.1. Node deployment is the

initial phase for deploying a WSN system, and it is often combined with other methods into

a joint energy-e�cient algorithm. Moreover, the deployment of sensors in some schemes

is deterministic, which means these schemes may not be adopted in all scenarios due to

the lack of flexibility. Therefore, other energy-e�cient methods are proposed, which are

introduced in the following section.

Table 2.1: Node Deployment Strategies
Protocol

Performance

Requirements
Type of sensors Techniques Strengths/Limitations

Liu [59]
Energy e�ciency

& Connectivity
Homogenous Ant Colony Optimization

Strengths: high computation speed &

taking obstacle into consideration

Yourimet et al. [63]
Energy e�ciency

& Coverage
Heterogenous Genetic algorithm

Strengths: low cost & full coverage

as with as few nodes as possible

Hao et al. [61]
Energy e�ciency

& Link quality
Homogenous Model Formulation

Strengths: long stable period & reliable

communication

Tiegang et al. [64]

Energy e�ciency

& Coverage

& Connectivity

Homogenous Model Formulation

Strength: achieve multiple requirements

Limitation: not suitable for all kinds

of WSNs

Khalil et al. [62]
Energy e�ciency

& Connectivity
Heterogenous

Multi-objective Optimization

Algorithm

Strength: full coverage with as few

nodes as possible

Halder et al. [65] Energy e�ciency Heterogenous Model Formulation Strength: high energy conservation

Liao et al. [60]
Energy e�ciency

& Coverage
Homogenous Ant Colony Optimization

Strength: high energy conservation

Limitation: high overhead

2.2.2 Clustering-based Schemes

Recall that; the cluster-based architecture of the system is helpful to balance the workloads

among all sensors, and can e↵ectively solve the energy-hole problem. Therefore, the clus-

tering algorithm is an essential part of many energy-e�cient schemes. For the clustering

algorithms, determining how to form the clusters and select the CH of each cluster are two

key problems. Many algorithms have been proposed for addressing the clustering problem.

One of the most classic clustering methods is Low-Energy Adaptive Clustering Hierarchy

(LEACH) [66]. Compared with the traditional clustering algorithm, the CHs are equally

rotated to distribute the energy load among all the sensor nodes in WSNs in LEACH. In

the setup phase, the CHs are elected with a certain probability. Each sensor has a random

probability. If its probability is over a predefined threshold, the sensor is selected to be

a CH and broadcasts the message to others. The non-CH chooses one of the CHs which

is closed to itself and sends the request message for joining the cluster to its CH. In the

steady phase, the cluster members send the sensed data to CHs. The CHs compress the

received data and forward the data to the sink. After a predetermined time period, all

sensors enter the setup phase again to select a new set of CHs. Although LEACH reduces
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energy consumption and evenly distributes the workload among all sensors, it still has

some drawbacks. The system should consume more overhead while reforming the clusters

periodically. Additionally, due to the probability-based CH election, the selected CH might

have the low residual energy level and would die quickly. Another drawback is that all CHs

need to directly communicate with the sink, in which case the energy expenditure of the

CH would be huge because of the long distance between the CH and the sink.

Many protocols based on LEACH have been proposed to improve energy e�ciency,

e.g., [67, 68, 69, 70, 71, 72, 73, 74]. The improved LEACH-based approaches can be

roughly classified into two types. The first type of approaches focus on improving the

CH selection method in LEACH. For example, LEACH-centralized (LEACH-C) [67] is

a LEACH-based centralized clustering algorithm. In this work, the sink calculates the

average residual energy level of sensors according to the energy levels of all sensors. The

sensors with energy levels remaining higher than the derived average energy level will

become CH candidates. Then, the sink chooses the CHs based on the simulated annealing

algorithm. Similarly, in Energy-LEACH protocol [73], the CHs are also selected based

on the current residual energy. The nodes with more residual energy become the CHs

and inform others, and the nodes with less residual energy turn into cluster members and

send a message for joining the cluster to its new CH. To improve LEACH, an adapted

approach (LEACH-A) is presented in [74]. In this protocol, the residual energy threshold

is predetermined. If its residual energy is over the threshold, the node is elected to be the

CH and to communicate to the sink. However, if the residual energies of all sensors are less

than the threshold, the node nearest the sink is selected to be a CH. In LEACH, if the CH

dies, the cluster cannot communicate with the sink until the system enters the next round.

To avoid this issue, in V-LEACH [68], a CH and a vice-CH are elected in each cluster. The

vice-CH takes the role of the CH once the CH dies. It can decrease the frequency of CH

selection in order to reduce the construction overhead. Another LEACH-based scheme is

LEACH-FL [70]. The threshold is calculated by Fuzzy Logic, which is related to battery

level, distance and node density. Each node has a random value between 0 to 1. The node

with a value less than that of the threshold will be selected to be a CH. The second type

improves LEACH regarding the path from CHs to the sink. For instance, TL-LEACH is

proposed in [69]. A two-level hierarchy is built for reducing energy consumption, in which,

several CHs that can communicate directly with the sink are selected to be heads of CHs.

Accordingly, the cluster members in each cluster communicate with their CH, and the CH

sends the received data to the designated head of CHs. The head of CHs then forwards all

gathered data to the sink.

In addition to the LEACH-based approaches mentioned above, a number of other clus-

tering algorithms have also been proposed. Chamam et al. [75] proposed a clustering
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algorithm regarding the CH election and cluster formation. The CHs are selected based

on three factors, i.e., their residual energies, their distances to cluster members, their

positions within the diagram formed by CHs. Meanwhile, there are some constraints re-

garding routing (connectivity) and coverage within each cluster. The area covered by each

cluster needs to exceed a predefined coverage degree, the size of each cluster should be

smaller than a predetermined upper bound, and the connectivity between CHs and nodes

should be guaranteed. The authors [75] formulated this problem as an Integer Linear Pro-

gramming (LP) model, which is NP-Complete. Then, they designed a Tabu-search-based

algorithm for CHs election under routing and coverage constraints (TABU-RCC) to derive

the near-optimal solution. However, in this work, each non-CH node has to connect to

at least one CH. This results in too many CHs in the network, especially in large-scale

WSNs. Therefore, energy e�ciency may not be achieved e↵ectively. A novel algorithm

named Energy Conserved Unequal Clusters with Fuzzy Logic (ECUCF) was designed and

presented in [76]. The deployed network is first divided into closest, middle and outside

sectors based on the distance to the sink and the residual energy of sensors. Prime-CHs

are chosen based on the nodes’ probability function, and final CHs are selected from the

prime-CHs using type-1 Fuzzy Logic with respect to the distance to the sink, the node’s

residual energy, and the node proximity of the sensor. To improve the performance of the

algorithm with type-1 Fuzzy Logic, authors in [77] presented an energy-e�cient clustering

algorithm for WSNs by type-2 Fuzzy Logic. In this work, the fuzzy input variables are

similar to the parameters in [76]. The results showed that the performance of type-2 Fuzzy

Logic is always better than type-1 Fuzzy Logic because type-2 Fuzzy Logic can handle the

uncertainty in environments with more accuracy than type-1 Fuzzy Logic.

Since the CHs will consume significantly more energy than those co-existing regular

sensors, the selection of the set of CHs for improving energy e�ciency is another critical

problem of the clustering algorithm. A set of approaches have been designed to address the

CH selection problem. Boukerche et al. [2] proposed a CH selection for mobile WSNs. The

objective was to maximize or minimize a function F (x) which could be a mathematical

calculation that could be implemented by a single sensor or a formula capable of capturing

characteristics of sensors, e.g., residual energy level, the average distance to its neighbors,

etc. The proposed algorithm is implemented in multiple phases. In the beginning, all

sensors begin the election process. The nodes are classified into two states through the

election process: follower and candidate. If a node’s state is a follower, then it has five

types of events that can happen: 1) The node receives a “Tree” message from a node which

is the parent of it. 2) The node receives the “I Am Here” message. If the node sending

this message has a better-evaluated leader, then the merging process is launched. 3) The

node receives a “Merge” message, after which its leader will choose which cluster to merge.
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Figure 2.3: The description of the states of nodes in [2]

4) The node receives a “Leader” message. It realizes that the leader is changed and the

spanning tree is reconstructed. 5) The node receives a “Tree2” message. It knows that

two clusters are merged, and the directions of the links of the spanning tree are flipped.

Finally, the leaders are elected from candidates, and the clusters in the network are formed.

After the CH is selected, it informs its cluster members. If it receives a “Merge” message,

it will determine the cluster merging. The detailed description of the states is illustrated

in Fig. 2.3. Similar work can be found in [78]. Han et al. [79] proposed a double-phase CH

election scheme to achieve the energy e�ciency in heterogeneous WSNs. In the first phase,

the temporary CHs are selected based on the relative levels of initial energy and their

residual energy. After selecting temporary CHs, the system enters the second phase. The

temporary CH with the highest residual energy level in its cluster becomes the final CH.

Otherwise, the temporary CH is replaced by its cluster-mates that have higher residual

energy levels in their clusters. The advantage of this protocol is the prevention of the nodes

with low-level energy becoming CHs, by which the lifetime of WSNs can be prolonged.

2.2.3 Node Scheduling Schemes

In Section 2.2.1, we discussed node deployment schemes, by which sensor nodes can be de-

ployed in a deterministic manner to fulfill the system performance requirements. However,

in some specific application areas (e.g., monitoring of volcanic activities, boundary/military-
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related surveillance, etc.), the deterministic deployment strategies may be not applicable

due to environments that are hazardous to human safety. The randomly intensive deploy-

ment methods are still necessary. In this case, the number of deployed nodes is definitely

larger than the optimal number of nodes needed to achieve the expected system cover-

age degree and network connectivity. Therefore, overlaps between the coverage areas and

communication areas of di↵erent nodes are inevitable. The node scheduling scheme, which

can periodically switch the state of nodes ON/OFF in turn to reserve the limited energy

of each node, is considered a potential solution for coping with this problem. Briefly, the

basic logic of the node scheduling scheme is that the system only keeps a minimum num-

ber of carefully selected active nodes to satisfy its performance requirements, and switches

the rest of the nodes into sleep/idle state to save their limited energy. Once the system

performance requirements change or the residual energy levels of some active nodes re-

duces, the nodes in the sleep/idle state will be triggered. Therefore, the crucial problem

of node scheduling lies in creating a balance between energy consumption and network

performance. Additionally, in certain cases, the node scheduling scheme needs to face a

special delay issue, i.e., wakeup delay [80].

We have introduced two kinds of system architectures in WSNs before, i.e., flat-based

and hierarchical-based. Here, we classify the node scheduling schemes based on these

two types of system architectures and provide some examples designed for each type of

architecture, respectively.

For flat-based WSNs, the most distant node needs to transmit the data to the sink

through intermediate nodes. If it is awake and needs to send its sensing data, all the nodes

on the route between this further node and the sink should be awake to ensure that the

data can be forwarded to the sink. Therefore, to improve energy e�ciency, the schemes in

flat-based WSNs primarily focus on how to reduce the number of awake nodes and satisfy

performance requirements at the same time. Now, we introduce some schemes in flat-based

WSNs.

Schurgers et al. [81] proposed a protocol named Sparse Topology and Energy Man-

agement (STEM). The authors adopted two types of channels: one is the data channel

for data transmission, another is the wakeup channel for waking nodes. When a sensor

node needs to transmit data to the sink, it periodically sends a beacon packet to wake its

neighbors through the wakeup channel. Once the neighbor receives the beacon packet, it

replies with an ACK message and switches its state to awake. The beacon messages are

sent periodically until the node receives an ACK packet, or until the waiting time reaches

the predetermined threshold.

By considering the homogeneous WSN environment, another node scheduling scheme
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was presented in [3]. They combined sleep/awake state switching and probabilistic forward-

ing protocol, and then designed a protocol called the Sleep-Wake Probabilistic Forwarding

protocol (SW-PFR). The proposed work has two phases. The initial phase is the front

creation phase. The objective of this phase is to ensure a period of reasonable length for

implementing the data propagation process. They adopted the “flooding” mechanism with

a predetermined number of iterations to create the front. The header of each message has

a counter � which contains the hop number needed to pass in the initial phase. Once a

sensor receives a message, it reduces the � by 1 and deterministically forwards the message

to the sink. The sensor multicasts the packets to its neighbors that lie in the direction

of the sink. The second phase is the probabilistic forwarding phase. Each sensor calcu-

lates the forwarding probability Pfwd = �

⇡
, where � is the angle defined by two lines: the

line connecting this sensor and another sensor which detected the event and another line

connecting this sensor and the sink. The sensor with a larger probability value should be

chosen because it has a bigger angle, which means that it is located closer to the direct

line between the source node and the sink (see Fig. 2.4). The strengths of this protocol

include the implementation of a sleep/wakeup mechanism and the targeting of WSNs with

multiple events.

Another node scheduling protocol named non-zero-sum duty-cycle game (NZS-DCG)

was proposed in [82]. In this protocol, the authors considered the duty cycle assignment

and the cooperation of nodes in the overlapping area. They formulated the problem based

on game theory to obtain the initial duty cycle value for each sensor. The results showed

that the protocol not only reduced energy consumption but also balanced workloads of

sensors.

Figure 2.4: Angle and closeness to optimal line [3]

On the other hand, node scheduling approaches in the hierarchical-based WSN mainly

concentrate on forming clusters and selecting the set of sleep nodes, in which the system

allows the CHs to control the states of its cluster members. By taking advantage of the
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multiple-tiered structure of the system, the controlling workload can be distributed to

CHs. It is helpful for reducing the system computational complexity [83]. In [83], Deng

et al. developed a cluster-based node scheduling scheme called Linear Distance-based

Scheduling (LDS). The objectives of this approach were to prolong the system lifetime

and ensure appropriate sensing coverage degree. In this work, authors assumed that two

kinds of sensors were deployed in the WSNs, i.e., predetermined CHs and regular sensors

(i.e., cluster members). They demonstrated how the CH chose its cluster members that

needed to sleep based on the following criterion: coverage capacity will not be degraded

by switching these nodes into the sleep state. By assuming that the distance between the

node and its CH was known in advance, the authors showed that the nodes far away from

their CHs had a greater chance to be put into sleep, and the presented work achieved high

energy conservation.

Lin et al. [84] proposed an optimal node scheduling based on a CH deployment scenario.

The proposed work considered three system performance requirements: the coverage re-

quirement of sensors, the routing requirement of sinks (i.e., ensuring each CH can transmit

data to the sink in the formed connected network), and the connectivity between each CH

and its cluster members. This approach has two steps. In the first step, each sensor calcu-

lates the maximum number of disjoint full-coverage sets. Then, in the second step, a CH is

deployed into each of the sets to build the set that can meet the coverage requirements as

long as possible. The authors introduced a genetic algorithm (GA) to deploy the minimum

number of CHs to satisfy the requirements.

Hassan et al. [85] presented an idea of multi-level sleep scheduling (MLSS) for cluster-

based WSNs. The duration of sleep is calculated based on the interval between the arrival

times of two consecutive packets. The predicted interval is calculated by the exponential

smooth average (ESA) scheme. After finishing the calculation of the interval, the system

triggers the sleep mode of each node. The drawback of this scheme is that it is not suitable

for delay-sensitive WSNs.

We summarize some of the node scheduling schemes in Table 2.2. Node scheduling is

a widely-used method for achieving energy-e�cient WSNs. Like the examples provided

above, the network lifetime will be prolonged by preserving energy in each sensor node.

However, certain node scheduling schemes need to consider the delay requirements of the

system due to the sleep/wakeup delay. Moreover, the overhead on the wakeup message

transmission needs to be decreased. Meanwhile, the topology of the network is changed due

to the switch of the node’s states. Therefore, the matter of designing a routing protocol

that can face frequent-changing topology is a challenge. A collection of routing strategies

regarding energy conservation will be introduced and discussed in the following section.
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Table 2.2: Node scheduling approaches

Scheme Performance Requirements
System

Architecture

State Exchanging

Scheme
Technicals Strengths/ Limitations

Schurgers et al. [81]
Energy E�ciency

& Reasonable Delay
Flat Event-driven Model Formulation

Strength: higher energy

conservation

Limitation: high overhead

Boukerche et al. [3]
Energy E�ciency

& Event Detection
Flat Event-driven Model Formulation

Strength: suitable for all

scale networks

Tseng et al. [82] Energy E�ciency Flat
Event-driven

& Time-driven

Game theory &

Nash Equilibrium

Strength: balance the

workloads of sensors

Limitation: huge density

of sensors

Deng et al. [83]
Energy E�ciency

& Coverage
Cluster Event-driven Genetic algorithm

Strength: ensure the coverage

Limitation: unequal energy

consumption

Lin et al. [84]
Energy E�ciency &

Coverage & Connectivity
Cluster Time-driven Genetic Algorithm

Strength: low computation

complexity

Hassan et al. [85] Energy E�ciency Cluster Time-driven
Exponential Smooth

Average scheme
Limitation: long data latency

Kang et al. [86]
Energy E�ciency &

Coverage & Connectivity
Flat

Time-driven/

Event-driven
duty-cycling technique

Strength: suitable complex

systems

Limitation: sensors need

always to listen to transmission

channel

2.2.4 Data Routing Schemes

In WSNs, it is essential to ensure that the data from each sensor can be forwarded to the

data sink. In other words, the route from the sensor to the sink should be reliable [87,

88, 89, 90]. For achieving guaranteed and reliable data transmission, a carefully designed

routing scheme is necessary. Meanwhile, since the lifetime of a WSN is directly a↵ected by

the lifetime of the nodes in the system [7], maximizing the e�ciency of nodes’ energy usage

and the overall energy utilization of network is one of the main objectives of designing a

routing scheme for the WSN. One of the most direct ways to design an energy-e�cient

route is to try to shorten the data transmission distance; this is also one of the most

widely adopted routing metrics. Currently, many energy-e�cient routing protocols have

been proposed. In the following, we will discuss some of the state-of-the-art protocols

in detail. Similar to Section 2.2.3, we also categorize the routing protocols based on the

system architectures in WSNs.

First, we introduce some routing schemes in the flat-based WSNs. Based on charac-

teristics of the flat-based WSN, routing protocols are generally designed in a hop-based

manner, i.e., the objective of these protocols is to find a short path between each pair of

sensors until the route reaches the data center.

Chang et al. [91] proposed a distributed shortest path routing algorithm. They for-

mulated the maximum lifetime routing problem as an LP problem. The purpose of their
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formulation was to find the link cost function to derive the maximum network lifetime.

The link cost is calculated based on the energy consumption of data transmissions and the

residual energy levels of two end-nodes on a link, which is given by,

costij =
�
et
ij

�x1
E�x2

i
Ex3

i
+
�
er
ij

�x1
E�x2

j
Ex3

j
, (2.2)

where et
ij

is the energy consumption for transmitting a message and er
ij

is the energy

consumption for receiving a message. Ei and Ej are the initial energy. E
i
and E

j
are

the residual energy. x1, x2, x3 are non-negative weighting factors for each parameter. To

simplify the proposed optimization problem, they adopted a heuristic flow augmentation

algorithm. In this work, for each hop, the link cost for each candidate for the next hop

should be calculated. The node with the minimum link cost will be chosen as the next

hop. Finally, the network can get a routing table with the minimum cost path.

Similarly, Coutinho et al. introduced a transmission power control-based opportunistic

routing (TCOR) algorithm in [15]. Opportunistic routing as a new routing paradigm can

guarantee reliable communications due to the properties of the wireless medium [92], e.g.,

broadcast nature, spatial diversity, etc. It is helpful for decreasing the energy consumed by

retransmissions and adjusting the workloads of critical sensors dynamically. The objective

of the TCOR algorithm is to reduce the energy consumption of data transmissions while

ensuring reliable communication. This algorithm has two phases. The first phase is the

neighborhood discovery. In this phase, each node will establish its neighboring table, which

contains neighbors’ location information and the corresponding link condition information.

To achieve this goal, each node needs to broadcast beacon messages in its vicinity. Mean-

while, by receiving a beacon message, the node calculates the link error probability between

the sender and itself and updates its neighboring table. The second phase is the forwarder

set selection. The selected set must satisfy the following conditions: 1) The probability

of every node in the forwarder set should be greater than or equal to the predetermined

threshold; and 2) The energy consumption of the forwarder set is minimal. Then, the next

hop of each sensor is selected through TCOR. The advantage of the proposed algorithm is

that it improves energy e�ciency and achieves system-wide communication reliability.

Moreover, based on the Particle Swarm Optimization (PSO) method, Liu et al. [93] pro-

posed an agent-assisted Quality-of-Service-based routing algorithm (QoS-PSO) for WSNs

to derive the optimal path. This algorithm improves energy e�ciency and ensures low data

latency. The drawback of QoS-PSO is that it is not applicable to the large-scale WSNs

because the system needs to store a significant amount of information for each sensor.

In addition to the routing protocols in flat-based WSNs, many routing protocols have

been proposed for hierarchical-based WSNs. In [94], a novel cluster arrangement energy-

e�cient routing protocol algorithm (CAERP) was proposed. This protocol was composed

20



of three parts: cluster formation algorithm, cluster head selection algorithm and a routing

algorithm. For clustering, they introduced an uneven clustering algorithm, i.e., the sizes of

clusters in the network are di↵erent. Clusters that are closer to the sink are smaller than

those that are farther from the sink. The purpose of the uneven clustering is to save cluster

heads’ energy for communications with inter-clustered nodes since they should spend more

energy on communication with other cluster heads. Each cluster head is selected based on

both the distance from the sink and the residual energy. For routing algorithms, the CH

(or cluster member) simply chooses the nearest CH (or CH/cluster member) as its next

hop. The CAERP is simple to implement and can solve the initial dead node problem.

However, the node that is far from the sink will run out of its energy quickly.

In [95], a multipath routing protocol (MRP) was proposed. This approach applied

dynamic clustering and ant colony optimization that has introduced in [59]. The ants

can find food faster over the shortest path, so the pheromone of this path is increased.

The best path is eventually chosen according to the highest value of pheromone. The

search ant (SANT) is responsible for information gathering about paths to the sink and

intermediate nodes on the path. The backward ant (BANT) is responsible for updating

the pheromone value of the path from the sink to the source node. The abnormal ant

(AANT) is responsible for avoiding the suspension of the scheme. The process of finding

the best path from a CH to the sink has two steps: First, the CH generates a set of SANTs

to find the sink, and SANTs collect path information. The AANT is created based on the

probability that the SANT can get to an intermediate node. Second, the sink generates a

BANT once a SANT arrives at the sink. The BANT goes back to the source node while

updating the pheromone, and finally brings path information back to the source node.

Each node can then get the optimal path information according to the information from

BANT. If the number of optimal paths is more than one (i.e., there is more than one

path with the same pheromone value), the source node will choose one of them randomly.

MRP is helpful for improving data collection e�ciency and system connectivity. Here, we

summarize the features of the routing protocols discussed above in Table 2.3.

2.2.5 Joint Energy-e�cient Designs in Conventional WSNs

The WSN is a somewhat complex system, and many parameters in the system a↵ect the

system performance. Typically, to achieve the desired system performance, an applica-

ble WSN system needs to make the trade-o↵ between multiple performance requirements.

Accordingly, to improve the overall performance of WSNs, the joint energy-e�cient de-

sign that considers multiple inter-dependent methods (namely, node deployment, node

scheduling, routing, etc.) is necessary. In this section, we will discuss two kinds of joint
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Table 2.3: Routing Schemes

Protocol
Performance

Requirements

System

Architecture

Known

Position
Techniques Strengths/ Limitations

Zeng et al. [96] Energy e�ciency Flat No
HS algorithm &

Local search strategy

Limitation: does not consider

the distance between sensors

Coutinho et al. [15]
Energy e�ciency &

Reliable Communication
Flat Yes

Formulation with packet

delivery probability estimation
Limitation: long data latency

Liu et al. [93]
Energy e�ciency &

Su�cient QoS
Flat Yes

Particle swarm optimization

algorithm

Limitation: not suitable to

the huge-scale WSNs

Vijayan et al. [94] Energy e�ciency Cluster Yes Uneven clustering mechanism
Limitation: high message

overhead

Zungeru et al. [95] Energy e�ciency Cluster No
Dynamic clustering & Ant

colony optimization

Strength: high data collection

e�ciency

Chang et al. [91] Energy e�ciency Flat No
Linear programming problem

& Flow augmentation algorithm

Limitation: high cost on path

switching

energy-e�cient approaches.

First, we will introduce some schemes by jointly considering node deployment and node

scheduling. Mini et al. [97] proposed a novel joint sensor deployment and scheduling scheme

to optimize the performance of WSNs. In this work, their goal was to improve energy

e�ciency and achieve the target coverage mentioned in [7]. They applied the artificial

bee colony algorithm [98] to compute the locations of deployed sensors. In the beginning,

the system derives the initial solution, in which all targets can be covered by k sensors.

To reduce the energy wasted by the task-free sensors, each deployed sensor must cover at

least one target. In the artificial bee colony algorithm, the fitness function is formulated to

evaluate the quality of the potential/candidate solutions. In this work, the fitness function

is related to the network lifetime, which is calculated as,

F = min
j

�P
i
Mij ⇤ bi
k

⌫
, (2.3)

where Mij is a coverage metric that represents the sensor Si monitors the target Tj.

bi =
initial energy

energy consumption rate
is the battery lifetime. The system looks for new solutions by

implementing the artificial bee colony algorithm in the neighborhood. The solution is re-

placed by the new one which is superior to the original solution. The process will repeat

until it has satisfied the terminal conditions, and then the near-optimal solution can be

obtained. The results showed that system performance was improved regarding the net-

work lifetime and system coverage degree. The authors in [4] developed another joint node

deployment and scheduling scheme for group-based industrial WSNs [99]. The sensors

in the industrial WSN are divided into several groups. Accordingly, when two groups of

nodes need to communicate with each other, the data must be transmitted by the nodes

located in the intersection region of these two groups. Consequently, the nodes in the

intersection region will consume more energy than other nodes. Therefore, the key point
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of this scheme is the node deployment in the intersection region. This strategy has two

stages. In the first stage, an improved geometric selective harmony search algorithm [100]

was adopted to determine the node deployment position and the number of sleep schedules

in order to minimize overall energy consumption. Fig. 2.5 shows the flowchart of this work,

where par(g) is an increasing linear function of g, and bw(g) is an exponential function

of g. Then, the system enters the second stage and checks whether there is an available

sensor between the centers of two neighboring groups. If so, the system would determine

the sleep schedules in the next round based on the improved geometric selective harmony

search algorithm. Then it repeats stage 2 until there is no redundant sensor.

Figure 2.5: The proposed improved geometric selective harmony search algorithm in [4]

In addition to the joint node deployment and scheduling schemes mentioned above, the

joint routing and scheduling algorithms also attracted much attention from researchers.

Hsu et al. [92] proposed a joint Asynchronous Sleep-wake Schedules and Opportunistic

Routing Technology (ASSORT) to prolong the network lifetime. The authors adopted the

asynchronous sleep-wake scheduling that could be easily implemented in WSNs and could

reduce the overhead on clock synchronization. To simplify the mathematical analysis,
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the authors adopted the Poisson process. Accordingly, the sleep period is represented

by an exponentially random variable with the reciprocal of the wake-up rate �. The

wakeup period is donated by �wake. The value of these two parameters is derived by a

simple search algorithm introduced in [101]. All sensors will operate the sleep-wakeup

scheduling. When a sensor has a message to send, its scheduling is suspended. Then, the

node starts the probing period in which the node decides its forwarder. For the routing

algorithm, the forwarder for each node is selected from its multiple-forwarder set, which is

derived by the proposed metric called opportunistic energy cost with a sleep-wake schedule

(OECS). Residual energy is an important factor in the OECS. Briefly, a sensor with less

energy should focus on saving energy. Accordingly, the energy cost of the sensor node is

proportional to the remaining energy. The OECS value is related to the cost of probing

Cprob, waking Cwake, transmitting data Ctx, receiving data Crx and forwarding data to sink

Cfwd, which is given by

OECSu(Fu, Pu) =
Cprob + Cwake + Ctx + Crx + Cfwd

PTS

, (2.4)

where PTS is the probability that means at least one sender will receive data. Initially,

the OECS values of the sensors and the sink are infinite and zero, respectively. Once a

node receives the OECS value of its neighbors, it updates its OECS value and broadcasts

its OECS to its neighbors. Each sensor adds the neighbor node with the smallest OECS

value to its multiple-forwarder set. When a sensor has a message to send, its scheduling

is suspended. Then, the node starts the probing period in which the node decides its

forwarder. This node broadcasts a beacon message to its multiple-forwarder set. By

receiving an ACK message from its awake neighbor, the node selects this neighbor as the

forwarder and sends the data to it. If the node does not need to work, it will turn to

sleep. The advantage of the proposed scheme is the reduction of the system overhead

while providing reliable communication.

In [102], authors developed a node scheduling scheme by taking advantage of geographic

routing in WSNs. Typically, in geographic routing, the position information is available

to all sensors by using the Global Position System (GPS) or other mobility-based localiza-

tion approaches, e.g., [103]. The authors proposed two kinds of geographic distance-based

connected-k neighborhood node scheduling schemes. In this scheme, the forwarding infor-

mation was decided based on the position of nodes. The first proposed scheme focused

on the shorter first transmission path, called the Geographic distance-based Connected-

k Neighborhood for the First path (GCKNF) algorithm. Another scheme focuses on all

routing paths for multipath transmission, which is called the Geographic-distance-based

Connected-k Neighborhood for All paths (GCKNA) algorithm. To implement these two

algorithms, the authors made two assumptions: 1) To save energy, the node with at least
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k awake neighbors needs to be put into sleep state as well as ensure it is k-connected. 2)

The neighbor of each node that is closest to the sink should be awake, which can achieve

the shortest path for data transmission. In GCKNF, each node first checks if it has k

neighbors, otherwise, it increases its transmission range until it belongs to a connect-k

neighborhood. Then, the node chooses its neighbor located closest to the sink as its next

hop. Next, the node selects a random rank and records its neighbors whose ranks exceed

its own rank into a list named Cu. If the size of Cu of a node exceeds the number k and this

node is not the next hop for others, the node will be put to sleep. In GCKNA, the node

checks the connected-k neighborhood, which is the same as the first step in GCKNF. Each

node then calculates the geographic distance between itself and the sink and records its

awake neighbors whose distances from the sink are less than its distance into Cu. The node

will be asleep if the size of Cu is greater than k. This scheme can achieve low computation

complexity. However, it is not suitable for sparse WSNs. For example, in the worst case,

each node in the system is the next hop for one of the other nodes. Thus, all the nodes

need to stay in the active state. We summarize the discussed joint energy-e�cient schemes

in Table 2.4.

Table 2.4: Joint-designed conventional methods

Protocol
Combined

Methods

Performance

Requirements

System

Architecture
Techniques Strengths/ Limitations

Mini et al. [97]
Node deployment

& Node scheduling

Energy e�ciency

& Target Coverage
Flat

Artificial bee colony

algorithm

Strengths: high energy

e�ciency & achieving coverage

Lin et al. [4]
Node deployment

& Node scheduling
Energy e�ciency Flat

Improved geometric

selective harmony

search algorithm

Strength: high energy e�ciency

Hsu et al. [92]
Node scheduling

& Routing

Energy e�ciency &

Reliable communication
Flat Poisson process

Strength: improving the

link reliability

Buratti et al. [104]
Node scheduling

& Routing

Energy e�ciency

& Throughput
Flat

Dijkstra’s algorithm &

DSATUR algorithm [105]

Strengths: high delivery ratio

& low data latency

Zhu et al. [102]
Node scheduling

& Routing

Energy e�ciency

& Connectivity
Flat

Connect-k neighborhood

basis

Limitation: not suitable to the

low density of sensors

Elsersy et al. [106]
Node deployment

& Routing

Energy e�ciency &

Information quality
Flat

Genetic algorithm &

E↵ective independence

model

Strength: low computing

complexity

For the conventional WSN, we discussed five main types of energy-e�cient approaches.

The approaches designed for the traditional WSNs are helpful for reducing the energy

consumption rate or minimizing the working period for the deployed sensors. However,

due to the limited capacity of the built-in battery, the system lifetime of the battery-

powered WSN is still limited with conventional methods. To improve energy e�ciency more

e↵ectively, new techniques are developed and adopted in WSNs, e.g., high-mobility data

collectors, energy-harvesting techniques, etc. The approaches with these new techniques

can prolong the network lifetime and even make the semi-permanent WSNs. In the next

section, we will provide a detailed discussion of some recent energy-e�cient approaches
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designed based on emerging techniques.

2.3 Emerging Techniques-assisted Methods

The emerging techniques-assisted methods for energy e�ciency in WSNs are mainly clas-

sified into four types: mobile data collection schemes, EH-aided approaches, machine

learning-based algorithms, cognitive networks. Mobile data collection schemes can ef-

fectively decrease the energy consumption of sensors. Besides, EH-aided approaches make

sensors harvest energy from other devices to prolong the lifetime of the WSN. In the fol-

lowing, a set of emerging techniques-assisted methods for energy e�ciency in WSNs are

presented in detail.

2.3.1 Mobile Data Collection Schemes

In recent years, depending on the booming development of unmanned vehicle techniques,

many mobile devices have been developed (e.g., UAV, automatic vehicle (AV), etc.) and

widely adopted in both military and civilian applications [107, 108]. Data collection with

new mobile devices is an emerging and e↵ective approach for energy conservation. Com-

pared with traditional mobile sensor nodes, the emerging mobile devices (e.g., UAV) have a

much faster-moving speed, longer deployment range, and relatively longer operating time.

Hence, by installing the sensing and communication equipment, these emerging mobile

devices can be considered as sensors with high mobility. Additionally, due to the mobility

of the mobile devices, they can arrive at any position and visit any node to collect data

from it, which saves more energy than is consumed by forwarding data by sensors. There

are two main kinds of approaches with di↵erent types of mobile devices: mobile-sink based

and mobile-data-collector based. We will survey the related approaches in detail in the

following.

Mobile-sink-based Approaches

The greatest benefits of using mobile sinks are as follows: 1) Avoiding long-hop relaying:

The mobile sink will move according to di↵erent metrics, such as the probability of target

detection or the density of sensor nodes. Therefore, the sensor could transmit the data to

the sink with a small number of hops. 2) Balancing the workload of the whole network: In

this case, no node is always near the sink. It can eliminate the energy-hole problem. Cur-

rently, depending on the adopted mobility model, existing mobile-sink based approaches

26



can be categorized into two types: uncontrollable mobility (e.g., random mobility model)

and controllable mobility (e.g., unrestricted model, geographically restricted model). We

will introduce several schemes according to these two types of mobility models, respectively.

Normally, the existing approaches for the uncontrollable mobile sink adopt the random

mobility model which means the data sink will move in a random manner, i.e., randomly

selected moving velocity (both direction and speed), or randomly selected moving trajec-

tory. Accordingly, instead of using a guaranteed coverage degree to measure the system

performance, the desired coverage probability is adopted in this type of scenario. Based

on the adopted random mobility model, the authors in [109] proposed an LP formulation

for assigning di↵erent staying periods for the mobile sink in di↵erent locations of the FoI.

In the presented work, authors assumed that the FoI was divided into multiple grids of

identical size and all nodes with the identical initial energy e0 were uniformly located on

the vertex of each grid. To maximize the system lifetime, by considering both the energy

constraints of each sensor node and the staying period constraint, the proposed LP-based

optimization function for maximizing system lifetime z is formulated as follows:

max z =
X

k2N

tk, (2.5)

s.t.
P
k2N

ck
i
tk  e0 i 2 N, (2.6)

tk � 0 k 2 N, (2.7)

where tk is the stay period at node k, ck
i
is energy consumption of the node i when the sink

stops at node k. Eq. (2.6) expresses that the consumed energy could not exceed the initial

energy for each node, and Eq. (2.7) states that the time of the sink stays at one point must

be bigger than zero. They analyzed the results of the simulation and concluded that the

energy consumption was evenly distributed among all sensors.

Contrary to the uncontrollable mobile sink approaches mentioned above, the mobile

data sink in the controllable mobility scenario moves in a deterministic manner, i.e., the

mobile data sink moves in a predetermined cruise trajectory to achieve the guaranteed

system coverage degree. This kind of approaches can achieve high e�ciency for monitoring

the FoI with the fixed event occurring probabilities in di↵erent areas, or for detecting

the static target with pre-known location information. However, for detecting mobile

targets or monitoring the FoI with random events occurring probabilities in di↵erent areas,

the e�ciency of this kind of deterministic approaches could be low, since this kind of

predetermined algorithms lack the flexibility to cope with unpredictable changes in the

system.
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Konstantopoulos et al. [5] proposed a rendezvous-based approach with a mobile sink,

which belongs to path-restricted mobility. The objectives of this protocol were to minimize

the overall network overhead and energy expenditure and balance the energy consumption

among sensors to prolong the network lifetime. The authors made several assumptions

of the protocol: 1) The location of each sensor is known in advance. 2) The mobile

sink is located on a public transportation vehicle, which travels along a fixed path. This

presented algorithm has two phases: setup phase and steady phase. In the first phase,

all sensors were divided into multiple clusters of di↵erent sizes based on the clustering

algorithm introduced in [110], which is similar to the uneven clustering algorithm adopted

in [94]. In each cluster, the CH was selected mainly depending on the residual energy of

each cluster member and its distance to the data sink’s trajectory (derived based on the

received strength of the beacon message broadcasted by the data sink with fixed power).

The cluster member with the largest residual energy has the highest probability of being

selected as the CH. Except for CHs and cluster members, the authors adopted a special

type of node: rendezvous node (RN). RN is responsible for sensing and gathering the data,

and is ready to send the data to the mobile sink once the sink appears in its communication

range. For RN selection, the candidates must be a set of nodes that can receive the beacon

message directly from the sink. Each RN candidate calculates its competence value which

is related to its residual energy and its communication probability with sinks and channel

conditions. The candidate then sends its value to its cluster heads. The cluster head

will choose several candidates with high competence value to be RNs in its cluster. After

selecting RNs, cluster heads attach to RNs and send the data to them. An example of the

network model is depicted in Fig. 2.6. In the next phase, all the sensor nodes start sending

gathered data to its CH. Each CH sends the filtered data to its neighboring cluster head

until reaching the end cluster head u that sends the collected data to the neighboring RN.

Cluster head u should distribute the data according to the transmission capability of RNs,

and then forward filtered data to its RNs. Finally, the RN forwards data to the mobile

sink once the sink enters its communication range. The advantage of the proposed scheme

is that it prolongs network lifetime while keeping a high average residual energy level.

Similarly, Liang et al. [111] developed an approach by adopting a mobile sink in WSNs.

This approach was designed based on the location-restricted mobile model in which the

mobile sink can only visit certain designated locations. The objective of this work is to

design the optimal path for the mobile sink with the constrained moving range. This

moving range constraint is used to limit the energy consumption of the mobile sink. In

addition, the presented work also aimed to avoid data loss when the sink modified its

locations and reduce the overhead of routing path construction. Relying on the proposed

mixed-integer LP method, the routing decision was derived based on an optimization func-
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Figure 2.6: The network model introduced in [5]

tion formulated to face the constraint of the mobile sink’s moving range. Furthermore, the

authors developed a staying time scheduling scheme for the mobile sink with the heuristic

algorithm.

The authors in [112] proposed another energy-e�cient path selection algorithm with the

mobile sink, called reduced k-means (RkM). They adopted k-means clustering scheme [113]

to choose a set of candidates of CHs where the mobile sink needs to visit, and then optimized

it to derive a minimum number of CHs with respect to three factors: 1) the number of

one-hop neighbors; 2) the distance to the extreme sensors that are a set of sensors closest

to the border of the FoI; and 3) the average distance to one-hop neighbors. Briefly, the

system adds all candidates into a set C, calculates their weight values based on the three

parameters mentioned above and sorts them in descending order. The candidate with the

highest value is selected to be the CH. The selected CH and its neighbors form a cluster.

Then, all the nodes within this cluster are removed from C. This process is repeated until

no candidate is left in the C. After selecting all CHs, the system uses Christofias’s heuristic

algorithm [114] to derive the path of the mobile sink for visiting all CHs. This algorithm

can be implemented easily and its computational complexity is low. However, it is not

suitable for the large-scale sparse WSNs, since the number of CHs will be large, which in

turn increases the moving distance of the mobile sink.

Mobile-data-collector-based Approaches

In addition to mobile-sink based approaches, an alternative method is using the mobile

data collector to collect data from the sensor nodes. Using the mobile data collectors is

helpful for distributing the workloads more evenly among sensors. The path of the mobile

data collector is designated by the data sink or the user in advance. There are two methods

of communication in mobile data collection schemes: one-hop communication and multi-

hop communication. For one-hop communication, the sensors only transmit the data to
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the mobile data collector directly, without any intermediate node. On the other hand, the

data from one sensor is sent to the mobile data collector through relay nodes in multi-hop

communication.

The most straightforward way to design the path for the mobile data collector is to

visit all nodes one by one with one-hop communication. However, this kind of schemes

may only be suitable for sparse networks or applications with a small number of sensors.

It is not practical for large-scale dense WSNs because the data collector needs to visit

too many sensors one-by-one, which will introduce a greater traveling distance of the

data collector, which, in turn, causes long data latency. Therefore, the cluster-based data

collection schemes with one-hop communication are developed by exploring the advantages

of wireless communication. More precisely, the sensors within a predetermined range are

grouped into a cluster. They will communicate with the mobile data collector once the

collector enters the cluster. The advantage of one-hop-based schemes is that they reduce

the transmission tra�c and energy consumption from forwarding. Here, we will introduce

some schemes designed based on one-hop communication.

Liu et al. [115] proposed an energy-e�cient data gathering scheme with a mobile data

collector in the cluster-based WSN. They developed a cluster-based genetic algorithm to

figure out the optimal path for the data collector while improving the network performance.

They determined that the network should first be divided into several clusters according to

a clustering algorithm based on Euclidean distance introduced in [116]. A virtual cluster

head point called waypoint in this work is selected in the overlapped sensing range of all

sensors in the cluster. The sensors can transmit the data to the mobile data collector with

one-hop communication once the data collector arrives at the waypoint in the cluster. The

authors applied GA to calculate the path for the data collector which is composed of all

waypoints. This scheme is highly e↵ective for data transmission. However, the average

distance of data transmission may be considerable, since the communication link between

the data collector and the sensor located far away from the waypoint could be long. In a

worst-case scenario, all the nodes located on the boundary of the cluster would have to use

the maximum transmission power to transmit data.

Xie et al. [117] introduced a heuristic tour-planning algorithm with multiple mobile data

collectors to improve the energy e�ciency of WSNs. In this algorithm, they considered

the e↵ects of the obstacles located in the FoI. The algorithm has three phases: First,

the sensors execute the clustering algorithm. Due to the obstacles, mobile data collectors

cannot stay at the position covered by obstacles and have to avoid them. Therefore, the

shape of obstacles should be regularized to plan the route for mobile data collectors in the

second phase. To find the shortest path between any given pair of sensors, the spanning

graph is constructed based on the line sweep algorithm [118]. Then, the complete graph
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for mobile data collectors is developed on the basis of the spanning graph to derive an

obstacle-avoiding shortest tour, which is similar to the traveling salesman problem. Due

to the high computational complexity for constructing the complete graph, they applied

Warshall-Floyd algorithm [119] to derive the result.

Even though the one-hop-communication-based approaches try to minimize the e↵ect of

the relatively long traveling distance to the data center, the data forwarding latency caused

by the long route of the mobile data collector is still noticeable for some delay-sensitive

applications. Additionally, in order to achieve one-hop communication, some sensors need

to enlarge their transmission range [120], which will introduce extra energy consumption in

certain nodes. To overcome this limitation, another method of communication is developed,

known as multiple-hop communication, as mentioned above. This method is more suitable

for a large-scale system with densely deployed nodes. Due to the high node density in

the FoI, it is unnecessary to visit every node. The network architecture for multiple-

hop communication is typically cluster-based. In contrast to the cluster with one-hop

communication, the size of the clusters in multi-hop communication is larger. The cluster

members need to send the data to the mobile sinks through their CHs or other relaying

nodes. It is good to achieve a short path for mobile devices so that data latency can be

decreased.

An approach using multi-hop communication was proposed by Singh et al. in [121]. In

the proposed approach, two data mules as mobile devices were applied to data collection.

Their paths of data mules are restricted to the leftmost and rightmost of the whole FoI.

Additionally, they designed an odd-even round number rule to determine the direction

of the data transmission in each round. This approach is divided into three phases: 1)

The first phase is clustering and cluster head selection. The whole network is divided into

multiple grids with an identical size. To reduce the energy consumption rate, the distance

between two sensor nodes should remain less than d0 which determined by users in advance.

In order to ensure that the distance between two cluster heads is less than d0, the width

x of grid is less than d0p
5
and the number of clusters is N = network area

x2 . The first phase

terminates once the system fulfills clustering formation. The node closest to the center

of the grid is selected as the CH. The data generated within the grid will be forwarded

to the CH. 2) The second phase is the design of the routing algorithm with odd-even

round numbers. Cluster members transmit data to their CH in a time division multiple

access (TDMA)-based manner. For the CH, the sink notifies CHs about the current round

number. If the round number is odd, each CH forwards data to its left neighboring CH.

The CHs located close to the leftmost boundary of the FoI gather data sent from other

CHs and upload them to the data mule. Otherwise, the procedure operates in the opposite

direction. 3) The last step is data collection by data mules. The data mules traverse along

31



their stipulated routes, receive the data from CHs, and then transfer to the sink as they

approach it. This step is useful for keeping a balanced workload among all CHs. However,

the energy consumption of CHs is still relatively high because they need to do a large

number of data transmissions, especially in large-scale networks. Additionally, although

the path of the data collector is fixed and short, it must wait at every stop point for the

data from all clusters. This may generate additional data latency.

Moreover, some protocols employ the UAV to collect data from sensors. In [122], a joint

node scheduling and routing scheme was proposed for the UAV-based WSN to conserve

energy within the whole network. First, the authors formulated the problem as a mixed-

integer non-convex optimization problem. The authors assumed that there are K sensors

in the network. In addition, they assumed that there is at least one route for UAV from the

start node qo to the destination qF within a predetermined time slot T with the max speed

of UAV Vmax. They also considered the node scheduling with respect to the transmission

rate of sensors, which is defined by Rk[m], where m (1  m  M) donates the m-th time

slot. The formulation with node schedule X and route of UAV Q is shown below:

min
X,Q,✓

✓ (2.8)

s .t .
MX

m=1

xk[m]ET  ✓, 8k, (2.9)

MX

m=1

xk[m]Rk[m] � rk, 8k, (2.10)

KX

k=1

xk[m]  1, xk[m] 2 {0, 1}, 8m, (2.11)

���q[m]� q[m� 1]
���  Dmax, 8m � 2 (2.12)

q[1] = q0, q[M ] = qF , (2.13)

where ✓ is the slack variable indicating the maximum energy that can be consumed in

the data transmission to be diminished. The constraint (2.9) ensures the energy consumed

by all sensors will not surpass ✓. The constraint (2.10) ensures the amount of data from

each sensor is collected. The constraint (2.11) guarantees only one sensor can be awake

and communicating with the UAV at one time slot, where xk[m] = 1 is the sensor awake

at time slot m; otherwise, xk[m] = 0. The constraints (2.12) and (2.13) represent the

speed, initial and final position constraints for UAV. However, the optimization problem is

non-convex and is hard to be solved optimally. Therefore, they used the successive convex

optimization technique [123] to derive a sub-optimal solution for this problem.
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Mobile data collection algorithms, considered an emerging method, can balance the

workload among all sensors, and relieve tra�c flow for some specific nodes. Additionally,

mobile devices can gather data consistently because they can recharge their batteries after

returning to the sink. Table 2.5 recapitulates the di↵erent data collection protocols with

mobile elements presented in this section.

Table 2.5: Mobile data collection schemes
Scheme Mobile element

Network

Architecture

Data collection

strategy

Mobility

mode
Strengths & Limitations

Wang et al. [109] Mobile sink Flat One-hop Random
Strength: simple implementation

Limitation: low time e�ciency

Konstantopoulos

et al. [5]
Mobile sink Cluster Multi-hop Fix

Strength: relatively balanced

workloads of all sensors

Limitation: long data update period

Liang et al. [111] Mobile sink Flat Multi-hop Fix
Strength: suitable for time-

sensitive systems

Kaswan et al. [112] Mobile sink Cluster Multi-hop Fix
Limitation: not suitable for

WSNs with low density of sensors

Shi et al. [124] Mobile sink Flat
One-hop &

Multi-hop
Fix

Limitation: not suitable for

large-scale WSNs

Liu et al. [115] Mobile data collector Cluster One-hop Fix
Limitation: not suitable for

sparse WSNs

Singh et al. [121]
Multiple mobile

data collectors
Cluster Multi-hop Fix

Strengths: achieve high energy

e�ciency & scalablity

Zhan et al. [122] Mobile data collector Flat Multi-hop Fix
Strengths: high energy e�ciency

& combining node scheduling

Xie et al. [117]
Multiple mobile

data collectors
Cluster One-hop Fix

Strength: considering the obstacle

Limitation: long data update period

2.3.2 Energy Harvesting-aided WSNs

Since the approaches described above (i.e., conventional methods and mobile data collec-

tion algorithms) were designed based on the battery-powered WSN, and the capacity of

the battery is limited, the system lifetime of these proposed approaches is still constrained.

Therefore, another new technology known as energy harvesting has drawn more attention

and has been introduced into WSNs in recent years. Energy transfer/harvesting is con-

sidered as one of the most e↵ective technologies to improve system energy e�ciency. It

transfers the lifetime of the system from limited to semi-permanent. The sensor can gain

energy from various sources which are classified into two categories: ambient sources and

external sources. The ambient sources (e.g., radio frequency (RF), solar power, thermal

energy, etc.) are no cost, but they are unstable due to the weather and environmental con-

ditions [46]. External sources, such as mechanical- and human-based devices (e.g., MC),
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are deployed in WSNs for energy harvesting purposes. There are two methods for trans-

ferring energy from the energy sources to deployed sensors: direct-contact charging and

wireless charging [125]. In direct-contact charging, a node recharges its battery through

physical contact. However, this may violate the definition of WSNs. Therefore, WSNs

commonly adopt wireless charging methods. In an EH-aided network, the critical problem

is how to prolong network lifetime by trading o↵ energy harvesting and data forwarding.

A number of approaches have been developed in the EH-aided WSN and can be generally

classified into three types: MAC layer control schemes, EH-aided topology control schemes

and wireless charger deployment schemes. We present these three types of approaches in

the EH-aided WSN, respectively.

MAC Layer Control Schemes

Due to the spatiotemporal fluctuation of renewable energy, the available energy of en-

ergy harvesting-nodes (EHNs) remains uncertain. Hence, improving the utilization of the

residual energy of the EHN is vital in EH-aided WSNs.

Zheng et al. [126] proposed a distributed optimization algorithm with multi-channel

and multi-access in WSNs based on game theory. Each energy harvesting sensor node

chooses one channel for its data transmission, while this channel is also used by other

sensors for data transmission. This problem is a non-cooperative game with at least one

Nash equilibrium, i.e., Pareto optimal. Additionally, they also developed a distributed

algorithm for the same objective with online learning, which can converge to the Nash

equilibrium of the formulated game. Another MAC layer control approach was proposed

in [127]. In this work, the author designed an asynchronous collision avoidance scheme

based on the hop-count information to e↵ectively exploit the available energy of EHNs.

Moreover, in [6], a resource allocation algorithm that considered the simultaneous wire-

less information and power transfer (SWIPT) technique in WSN was proposed. In this

protocol, the authors made an assumption regarding data transmission: If the nodes needed

to transmit the data through their neighbors, they would send energy to the receivers as

well. The received model of EHN is shown in Fig. 2.7. The algorithm is designed for

two scenarios which are related to minimum data rate requirements of the system and the

power limitation: 1) the received energy is distributed into a continuous set of streams with

random ratios; and 2) the received energy is distributed into a discrete set of streams with

determined ratios. The authors formulated a resource allocation problem for each scenario,

which was non-convex. Thus, the authors proposed a cross-layer resource allocation algo-

rithm. They first transformed the non-convex problem into a convex optimization problem,

based on the fractional programming [128]. Then, the formulation was solved by an it-
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erative algorithm that was designed based on Lagrange dual decomposition. Eventually,

the optimal solution for distributing and splitting energy was obtained. The advantage

of the proposed algorithm is that the relaying nodes can get energy from senders (even

interference signals and antenna noises). Furthermore, the energy-hole problem can be

avoided.

Figure 2.7: The receive model in EH-aided WSN in [6]

Energy Harvesting-aided Topology Control and Routing Schemes

As mentioned before, the ambient energy resource is unevenly distributed in the FoI. Hence,

the energy gathered by each energy harvesting sensor is di↵erent. For instance, the nodes

in direct sunshine can obtain more energy than those in the shadow. Based on the di↵erent

level of residual energy of sensors, the topology control and routing algorithm in the EH-

based WSNs are important for balancing energy consumption and harvesting of all sensors

and avoid exhausting critical sensors. A data gathering optimization algorithm in energy

harvesting WSNs was proposed in [129]. The objective was to determine the optimal data

gathering scenario by considering the energy required for data sensing and transmission.

Therefore, they developed a balanced power distribution algorithm to manage power ac-

cording to the residual energy and energy requirements of sensors. Moreover, they proposed

a distributed sensing and routing control scheme based on the proposed power distribution

algorithm with the sub-gradient method and double decomposition method [130]. This

scheme is beneficial for converging the routing problem of data gathering.

Martinez et al. [131] developed an energy-harvest-aware routing algorithm. In this

algorithm, they assumed that multiple tra�c flows are dependent. They took the battery

capacity into consideration and formulated the routing problem with the multi-commodity

to find the trade-o↵ between the maximum the total network lifetime and the maximum

minimal residual energy. The algorithm can achieve a higher average residual energy of

the whole network.
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Wireless Charger or Data Relaying Node Deployment Schemes

In order to make the sensor receive the sustained energy from the ambient surrounding,

the chargers that can transfer the energy to the sensors are commonly deployed in the FoI.

Since the harvested energy is mainly related to the distance to the chargers, the location

selection for chargers is a key issue in EH-aided WSNs. Bi et al. [132] proposed a scheme for

the simultaneous deployment of access points and wireless chargers in the same network.

The access point is a device that collects data from sensors in this work. They assumed

the sensors’ positions would be known in advance and also adopted the receiver model

as described in [6]. The energy harvesting or consumption of the sensor is related to the

distance between itself and responding devices. To achieve a long network lifetime, they

tried to find the minimal residual energy among all sensors and optimize the locations

of chargers and access points. In their work, they first designed the deployment of one

kind of devices under the premise that another type of devices had been deployed. For

charger placement optimization with a fixed access point location, they used a bi-section

search [133] to calculate the optimal location of a single charger. Then, they considered

the method for deploying multiple chargers in WSNs based on k-means clustering algo-

rithm [113] and greedy algorithm [133]. Next, they developed a multiple access points

deployment scheme based on the trial-and-error method. The solution that yields more

energy to sensors is the most optimal.

The authors of [134] presented a mobile energy charger routing problem in the cluster-

based WSN. The mobile charger designed the path independently on the basis of the

locations and the residual energy level of CHs. Furthermore, the system-wide energy

balance was further achieved by bilateral trading between cluster headers with higher

levels of residual energy and those with lower levels.

In addition to the wireless charger deployment scenarios discussed above, other related

works have focused on EH-aided data relaying node deployment strategies. For example,

in [135], a Hierarchical Two-Tier (HTT) node deployment strategy was proposed for the

sustainable WSN. In this work, the authors adopted two types of nodes in the system: 1)

the regular battery-powered sensor node (RSN), which is randomly deployed for monitoring

the FoI; and 2) the data relaying EHN, which is deployed based on a probability density

function (PDF)-based EHN deployment strategy. The latter focuses on gathering data from

RSNs located in its vicinity and forwarding the collected data to the data sink. Further, an

energy-e�cient routing scheme was presented for helping each RSN find a forwarding path

with the minimum energy consumption rate. Similar approaches can be found in [136, 137].
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2.3.3 Other Energy E�cient Algorithms with Emerging Tech-

nologies

In this section, we will introduce two popular and e↵ective methods (i.e., machine learning,

cognitive network) as follows.

Machine Learning-based Energy-e�cient Approaches

With the development of the computation ability of the CPU, machine learning (ML) has

gradually become a popular method and adopted in many fields. It has been also applied

to WSNs for energy e�ciency. Machine learning aims to obtain the solution from the

knowledge acquisition problem and improve system performances [138].

For instance, by exploiting the Deep learning (DL) models’ (e.g., deep neural networks,

etc.) ability to solve non-linear and non-convex problems [139], in [140], a novel deep

learning-based channel learning scheme was developed for channel estimation problem that

is adopted in multiple channel technique and is non-linear and non-convex. This work

aims to minimize the mean square error of channel estimation for reducing the di↵erence

between the channel estimator and the channel coe�cient. This problem mainly focuses

on the channel state so that the future data is predicted for reducing the adverse impact of

changes of deployment environment on channel conditions. Therefore, the authors used the

deep AutoEncoder to learn the channel state information based on the harvested energy

feedback. After the training procedure, the derived optimized pilot signal weight can be

used for sensors in the deployed EH-aided WSN. The strengths of the deep learning-based

channel estimation scheme are outperforming existing approaches of the channel estimation

problem in terms of harvested energy and computing complexity.

Besides the channel condition, in the real world, the deployment environment may be

a↵ected by some other unexpected exterior factors (e.g., weather conditions, etc.) and

interior factors (e.g., a varying topology caused by random node failure, etc.). Therefore,

to accommodate the dynamic environment, researchers need to design approaches that

can be self-adjusted as the environment condition changes. Accordingly, Reinforcement

learning (RL)-based method is considered a practical solution for addressing this issue,

since it can derive the appropriate policy based on the trial-and-error interactions with the

environment (considered online training process) and figure out the decision to maximize

the cumulative reward/agent’s payo↵ [141]. Q-learning is a simple and typical RL-based

method [142]. Q-value function (i.e., Q(s, a)) is formulated in the Q-learning to evaluate

the quality of the selected action a in the state s. During the learning process, the node

computes rewards based on the action in the specific state and derive the policy for selecting
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actions to maximize its long term rewards. For example, for the solar energy-powered

WSNs, a Q-learning-based node scheduling algorithm was proposed in [143] to maximum

network lifetime while maintaining the desired system coverage ratio. More precisely, at

the beginning of each scheduling interval, the deployed nodes will be grouped based on the

given clustering scheme. Every group member derives updates its Q-value function based

on its residual energy level, current solar radiation intensity, and its battery recharging

cycle. After the learning process, the node with the highest Q-value in the cluster will be

active in the current scheduling period. Similar reinforcement learning-based algorithms

for energy e�ciency can be found in [144, 145].

Cognitive Networks

Cognitive radio is a potential technology that is helpful for achieving good spectrum uti-

lization [146]. The main point is the cooperative relaying in cognitive networks [147]. Some

existing approaches have developed energy-e�cient methods in the cognitive network. This

is helpful for solving the power allocation problem and improving the performance of EH-

aided WSNs. In [32], the authors proposed a novel energy harvesting protocol in an

underlay cognitive relay network with multiple transceivers. In another related work, a

specific element is adopted in the cognitive network, i.e., spectrum sensors. Spectrum

sensors are used to cooperatively detect the licensed spectrum for available channels for

data sensors [148]. The authors in [149] presented a resource-allocation algorithm for the

EH-aided and cognitive radio network to save the energy for sensors and ensure the sus-

tainability of spectrum sensors. To sum up, the energy-e�cient approaches designed for

cognitive networks can conserve energy; meanwhile, they also improve channel utilization.

2.4 Summary

In this chapter, we summarized several kinds of state-of-the-art approaches designed for im-

proving the energy e�ciency of WSNs. The objectives of all these protocols are to prolong

the network lifetime while satisfying the system requirements (e.g., reliable communication,

delay tolerance). We first introduced the common architectures used in energy-e�cient

WSNs. Then we conducted a taxonomy for the existing energy-e�cient approaches ac-

cording to their applied technologies. The representative methods in each category were

discussed, and we further summarized the advantages and limitations of di↵erent methods.

As far as we know, adopting mobile devices to gather data and wireless charging is a

promising and practical method for improving energy e�ciency in WSNs. However, the
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biggest problem with the mobile device-assisted data collection approach is data latency.

The mobile device should gather the data from all sensors, return and forward them to the

sink. Though people have designed many strategies to reduce the length of the path for

the mobile device, e.g., clustering, it still spends considerable time visiting many sensors.

Therefore, we will design the novel path planning strategy for a single mobile device or

multiple mobile devices to reduce energy e�ciency and minimize the delay in our work.
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Chapter 3

Single Data Collector-assisted

(SDCA) Data Collection Scheme

In this chapter, we propose a novel energy-e�cient data aggregation scheme by using a

single mobile collector, named single data collector-assisted (SDCA) data collection scheme

in small-scale WSNs. The objective of this work is minimizing the energy consumed by

sensor nodes and the data collectors in WSNs. In this work, the FoI is initially divided

into multiple grids with the identical size, and the nodes in one grid form a cluster. Then

we formulate the optimization problem and figure it out with a heuristic approach, i.e.,

GA, which can derive the optimal path for the data collector with low complexity. The

content of this chapter has been published in An energy-e�cient uav-based data aggregation

protocol in wireless sensor networks.

3.1 System models and assumptions

First, we introduce the network model and the energy model of the system. The proposed

schemes in the rest chapters will be designed based on the introduced system models and

assumptions.

3.1.1 System Model

In our work, all the sensor nodes are randomly deployed with uniform distribution in a

two-dimensional rectangle-shaped area. The set S = {S1, S2, S3, ..., SN} denotes the set of

N sensor nodes. We make several assumptions for the network model, which are listed as

follows:
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Figure 3.1: Network Model

• The FoI is divided into multiple clusters. To ensure the connectivity of the deployed

system, the number of deployed nodes is derived based on the method introduced

in [150].

• The sensors are stationary and cannot change their locations after deployment. They

are homogeneous, which means that they have the identical sensing range Rs

s
, com-

munication range Rc

s
, data bu↵er size Bufs, and initial energy IniEs. We adopted

the same assumption widely-used in many existing approaches (e.g., [151, 152, 153,

154, 155, 156, 157, 158, 159, 160]), i.e., relying on the equipped GPS module, the

deployed sensor can be aware of its location information independently, and the data

sink can obtain the detailed location information of the deployed sensors in advance

by gathering their location information.

• The data sink is deployed outside of the FoI and processes the data from sensors. In

addition, it is responsible for figuring out the path for mobile devices.

• The mobile device has high mobility and transmission capacity. It can communicate

with the sensor node when it arrives at the position of the node [161].

The network model in the 2D platform is shown in Fig. 3.1.
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3.1.2 Energy Model

To evaluate the energy e�ciency of WSNs, the appropriate energy model is essential.

In our work, we adopted two types energy models, i.e., energy model of sensors on data

transmission and energy model of mobile devices on movement. We will discuss the detailed

information of these two models as follows:

Energy Model of Sensors on Data Transmission

In the WSN, the energy consumption of the deployed sensor is composed of two main

parts: data transceiving and sensing. Normally, researchers consider that the energy

consumed during data transmission is much higher than receiving and sensing. Table 3.1

shows the energy consumption rate for the well-known MICA2 mote sensor in di↵erent

working states [1]. From this example, we can see that the energy consumption of data

transmission is twice as much as that of receiving data, and forty times that of data sensing.

Therefore, we will focus on the energy consumed on data transceiving. In our work, we

utilize the energy model introduced in [66]. The energy consumption for forwarding a k-bit

message between the distance d can be measured by,

ET = Eelec ⇥ k + ✏amp ⇥ k ⇥ d2, (3.1)

where Eelec represents the energy consumption in the transmitter circuit, and ✏amp donates

the energy consumed by the transmit amplifier.

Additionally, the energy consumption for receiving a k-bit message can be derived as,

ER = Eelec ⇥ k. (3.2)

The energy model presented here indicates that the energy consumption of sensors is

primarily related to the distance from a sensor to another sensor (or to the collector).

Hence, shortening the transmission distance can e↵ectively reduce the energy consumption

on data transceiving.

To sum up, the energy consumption rate of a sensor P s

C
is defined by

P s

C
= ET ⇥Datas

T
+ ER ⇥Datas

R
, (3.3)

where Datas
T
and Datas

R
represent the transmitting data rate and the received data rate

of the sensor, respectively.
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Table 3.1: Energy consumption rate of a MICA2 mote sensor [1]

Working State Energy Consumption Rate (mW)

Transmit 81

Receive 30

Idle 30

Sleep 0.003

Sense 2

Energy Model of Mobile Devices on Movement

The energy Emove consumed of the mobile devices to move distance D is

Emove = Pmove ⇥
D

V
, (3.4)

where Pmove and V are the movement power rate and the velocity of the mobile device,

respectively.

3.2 Problem Formulation

In this section, we fomulate the problem in this work. We only consider the energy con-

sumption of data transmission (i.e., ET ) in this work. Recall that; the energy consumption

for transmitting a k-bit message for a given distance d is given in Eq. (3.1). Therefore,

in each cluster, cluster members send the sensed data to CH. Hence, the total energy

consumption in the cluster j when each cluster member forwards one packet to CH is

Ej

T
=

X

u2Cj

Eelec ⇥ k + ✏amp ⇥ k ⇥ d2(CH,u), (3.5)

where CH is the cluster head of cluster j, u is the cluster member in cluster j.

For the mobile data collector, the energy is mainly consumed by movement. According

to the dynamics, the energy EDC required for data collector to move form current position

to next CH in cluster j is

Ej

DC
= PDC ⇥

D(current,CHj)

vDC

, (3.6)

where PDC and vDC represent the power rate and the speed of the data collector, respec-

tively. D(current,CHj) is the distance between the current location of the data collector and

next CH.
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In order to balance the energy expenditure between the sensor nodes and the data

collector, we introduce a user-configurable coe�cient �. The coe�cient can be adjusted

based on the network requirements. For example, when the sensor nodes are deployed

in some remote and hazardous areas, it is hard to change their batteries. In this case,

compared to the energy consumption of the data collector, the energy consumption of

sensor nodes is more critical. Therefore, the value of the coe�cient should be higher. On

the other hand, if the system requires a short data update period or less energy consumption

of the data collector, the value of the coe�cient should be lower. Therefore, the coe�cient

of energy consumption for sensor nodes should be higher. Moreover, we need normalize Ej

T

and Ej

DC
to make these two values on di↵erent scales to a common scale. Ej

T
is normalized

by Emax

T
which is the maximum value of Ej

T
among all clusters in the deployed WSN.

Because PDC and vDC in (3.6) are constants, Ej

DC
is proportional to the moving distance

of the data collector. Thus, Ej

DC
is normalized by Emax

DC
which is the energy consumed by

the data collector when it travels between the pair of CHs with the longest distance.

In general, the objective of our work is to minimize the energy consumption of the whole

network. The corresponding optimization functions for the overall energy consumption are

given by,

min Etotal (3.7)

Etotal =
MX

j=1

(� ⇥ Ej

T

Emax

T

+ (1� �)⇥ Ej

DC

Emax

DC

) (3.8)

where M is the number of clusters, and Etotal is the total energy consumption of the

entire system.

3.3 The Proposed Scheme

As mentioned previously, the data collector has to visit the sink and CHs of all clusters.

In each cluster, a CH has to be chosen among all nodes according to the total energy

consumption of all nodes in its cluster calculated by Eq. (3.5) and the distance that the

data collector needs to move to it. However, the computational complexity for solving the

aforementioned formulation to achieve global optimization could be huge. Moreover, it is

important to decrease the computing complexity for solving optimization problem [162].

To reduce complexity, we design a novel protocol based on heuristic algorithm. GA as a

heuristic algorithm is an applicable method to derive the local optimum, and it is more

suitable for optimization problems in a large-scale WSN [163, 164] than other heurstic

algorithms (e.g., greedy algorithm). GA firstly generates the initial population (i.e., initial
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solutions) and stores the population in a list based on their fitness value. In each iteration,

on the basis of the initial population or the subsequent population generated by the previous

iteration, new solutions would be generated through three main operations, i.e., selection,

crossover, and mutation. After executing the operations with the predetermined number

of iterations, the solution with the best fitness value is selected to be the final solution. To

define an appropriate fitness function to measure the quality of the solution is essential to

implement GA. In what follows, we will introduce the proposed scheme in detail.

3.3.1 Topology Construction Phase

Initially, sensor nodes are deployed randomly in the FoI. The FoI is divided into multiple

grids with an identical size. The sensors in each grid form a cluster. Recall that; the global

position information is known by the sink, and every node knows its location information.

Every node is the candidate of CH in the beginning. For each CH, it gathers data from

all nodes in the same cluster and then forwards gathered data to the data collector. In

each cluster, to reduce overall energy consumed by sensor nodes for transmitting data to

the CH, the aggregated length of the path from cluster members to the CH has to be

shortened. Accordingly, the CH in each cluster is chosen by the data sink based on the

sum of energy consumed by other nodes in its cluster when these nodes transmit data to

it, and we introduce Ei

T
to represent it.

3.3.2 Initial Population Generation

After Ei

T
of all sensors is calculated, the data sink begins to figure out the path of the data

collector by using GA. GA uses chromosomes to encode the solution of data [165]. In this

work, each unique chromosome represents an optional path of the data collector. Every

gene in the chromosome is denoted by the sink or a sensor node in the system, which is

encoded by ID of each node or the sink. In this work, we use a new designed random initial

algorithm to generate the initial population. To generate a new chromosome, the system

randomly chooses candidate genes and adds them to the chromosome. In our design, for

each chromosome, only one sensor node can be selected from each cluster. Let H be the

population size. The value of H should be set large enough, which is based on the size

of FoI. Assuming that there are M clusters in the area, and each cluster has at least n

sensors, the number of optional trajectories for the data collector is nM ⇥M !. Thus, the

probability that we can obtain the optimal solution increases as the value of H increases.
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3.3.3 Fitness

The fitness function evaluates the quality of each solution for deriving the optimum. The

better chromosome with higher fitness value should be chosen. As the mentioned in [166],

for the minimization problem, the fitness function is set to be the reciprocal of the objective

function. Therefore, the fitness value of our work is defined as

F =
MX

j=1

(
1

�
⇥ Emax

T

Ej

T

+
1

(1� �)
⇥ Emax

DC

Ej

DC

), (3.9)

where Emax

T
and Emax

DC
is calculated by the data sink in advance.

3.3.4 Selection and Crossover

Based on the generated initial population, chromosomes are sorted according to their fitness

value. The new chromosome is generated by two steps: 1) Selection operation: Two chro-

mosomes randomly are chosen from the population as two parents; 2) Crossover operation:

Based on the chosen parents, one o↵spring is produced through crossover operation.

In GA, the crossover is an essential operation. The search space of GA is improved by

crossover because new o↵springs are generated constantly. Thus, the crossover probability

PC should be set high. Similar to [167], we also adopt sequential constructive crossover

(SCX) [166] as a crossover operator, which guarantees that the quality of the o↵spring

generated by SCX is higher than its parents. In other words, the o↵spring is closer to the

optimal solution.

Let’s introduce the SCX through an example which is based on the assumption in our

scheme. The pair of chromosomes as parents are chosen by selection operation among

the population, which are shown in Fig. 3.2(a) and Fig. 3.2(b), respectively. Here, the

node is defined by i j, where i indicates the cluster number, and j is the serial number of

nodes in its cluster. We set � = 0.8 in this example. The candidate gene with a smaller

value derived by Eq. (3.8) should be added to the o↵spring. Recall that, it is necessary to

guarantee that only one sensor in each cluster has to be visited by the data collector. The

o↵spring is empty at first. Since the data aggregation procedure always starts from the

sink, the sink has to be the initial point of all chromosomes. Starting from the sink, the

candidate of the next node of the o↵spring in parent 1 is node 3 4, and the candidate in

parent 2 is node 6 0. The value of node 3 4 is smaller than node 6 0, which are 0.3614 and

0.483, respectively. So, node 3 4 is added to the o↵spring and set to be the current node

now. Furthermore, cluster 3 which has been visited need to be recorded. In the next step,

the candidate is 2 13 in the parent 1, and the current node is not existing in the parent 2.
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But node 3 3 in the parent 2 is from cluster 3, so the candidate for the parent 2 is node

7 7 which is the next node of node 3 3 in its path. At the end of this step, node 2 13 with

small value is added to the o↵spring. To ensure only one node in each cluster should be

visited, all nodes in the visited cluster will not be considered as candidate genes anymore.

In the parent, the candidate genes can only be selected from one of the unvisited clusters.

For example, the current node is node 0 8. For parent 2, the sink which is the next node

of node 0 4 that is from cluster 0 should be chosen for the candidate. However, it has been

visited in the beginning, and there are some clusters that have not been visited yet. Hence,

according to the order of unvisited clusters (i.e., cluster 1, cluster 2, cluster 4, cluster 5,

cluster 6, cluster 7, cluster 8), the candidate in parent 2 is node 1 6. After the o↵spring is

generated, its fitness value should be calculated. In this example, the o↵spring (Fig. 3.2(c))

has a higher fitness value than its parents, which means the solution represented by the

o↵spring is better than its parents. Then, the parents with the lower fitness value will be

replaced by the o↵spring.

(a) Parent1: Fitness=0.214751 (b) Parent2: Fitness=0.21253 (c) O↵spring: Fitness=0.262065

Figure 3.2: An example of the o↵spring generated by SCX with the pair of parents chro-

mosomes

3.3.5 Mutation

The mutation is another important operation of GA by which, new chromosomes can be

generated by replacing some genes in original chromosomes. Consequently, it is helpful to

improve the diversity of the population and search space. The mutation probability PM

would be set low in case the optimal search is broken. In this paper, we adopt the Gaussian

mutation introduced in [168]. In detail, the i-th gene is mutated on the basis of an o↵set

generated by the Gaussian distribution N(µ, �2) with the mean µ and the variance �2.

Furthermore, the new gene has to be selected from the cluster of the replaced gene. The

gaussian mutation is e↵ective for GA to converge towards a better solution.
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Figure 3.3: An example of the steady phase in the SDCA scheme

3.3.6 Steady Phase

By running GA in a predetermined number of generations, the chromosome with the

highest fitness value is chosen as the final solution, which is the optimal path for the data

collector. The data sink forwards a message which contains the information about the path

and topology of each cluster to the data collector. Then, the data collector goes along the

given route to initialize the deployed system. The data collector visits CHs and informs

them about corresponding topology information. Once a CH receives the message from the

data collector, it broadcasts this message to its cluster members. When cluster members

receive the message from the CH, they start to transmit the sensed data to the CH. The

CH aggregates the data and forwards the data to the data collector once the data collector

enters its transmission range. From the second round, the data collector visits all CHs

to gather data and forwards to the data sink at the end of each round. We provide an

example of the steady phase in Fig. 3.3. The solid line demonstrates the path of the data

collector.
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3.4 Performance Evaluation

This section will present the simulation setup and the simulation results of the SDCA data

collection scheme.

3.4.1 Experiment Setup

To evaluate the proposed protocol, we implemented a set of experiments on the OMNeT++

simulator. The FoI was divided into multiple grids with the identical size 250m⇥250m, and

we varied the size of the FoI by increasing the number of clusters M from 3⇥3 to 6⇥6. The
speed and power rate of the data collector were set to 20m/s and 178W [169]. The value

of Eelec and ✏amp were introduced in [66]. The parameters of Gaussian mutation were set

according to [63], while the mean and the variance of the Gaussian number were changed

based on the size of the FoI. To mainly evaluate the performance on energy e�ciency of

our proposed work, we set the value of � to be 0.8. The simulation parameters are listed

in Table 3.2.

Table 3.2: Simulation settings of SDCA Data Collection Scheme

Parameter Description Value

Rc
s Communication range 50m [170]

Eelec Energy cost on the transceiver 50nJ/bit [66]

circuit

✏amp Energy cost on the transmit 100pJ/bit/m2
[66]

amplifier

vDC Speed of the mobile data 20m/s [169]

collector

PDC Power of the mobile data 178W [169]

collector

� The coe�cient for energy 0.8

consumption of sensor nodes in Eq. (3.8)

µ The mean in the Gaussian distribution 0 [63]

�2
The variance in the Gaussian distribution 1 [63]

PC Crossover probability 0.8

PM Mutation probability 0.2

K Packet size 4000 bits [136]
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3.4.2 Simulation Results of SDCA Data Collection Scheme

In this section, we compared our work with three other di↵erent schemes with a single data

collector, i.e., centre-based, greedy-based, clustering-based genetic algorithm (CBGA) [167],

regarding moving distance of the data collector (meter), data update period (second), sys-

tem throughput (Mbps) and system-wide energy consumption (nJ/bit). In the centre-based

scheme, the node located closest to the centroid of each cluster is chosen to be the CH.

In this scenario, the data collector visits all CHs according to an S-shaped route that is

top-to-bottom and left-to-right. In addition, we developed a greedy-based algorithm as

a heuristic algorithm for the data collector routing problem. The CBGA is implemented

based on the one-hop data collection scheme [167]. We will analyze the experiment results

in the following.

The first experiment compared the data update period of di↵erent schemes, which

contains two main components, i.e., moving delay of the data collector, data forwarding

latency. Due to the limited speed of the data collector, the moving delay is the dominated

factor of the update period, which is mainly related to the moving distance of the data

collector. This criterion is essential for data aggregation by using the data collector. The

objective of deployed WSNs is monitoring the FoI or detecting the intruder. Therefore, the

update period should be as short as possible in order to track the target. The results of the

moving distance of the data collector and the data update period in di↵erent protocols are

shown in Table 3.3 and Fig. 3.4, respectively. We can see that the SDCA data collection

scheme has a much shorter update period than contrast approaches. The results for the

first three schemes are similar. But CBGA has the longest update period among them

because the number of waypoints is nearly six times more than other works in the same

size as the FoI. It causes much longer moving distance in CBGA. Although the limitation

of the operation time of the data collector is not considered in our experiment, if the

operation time is too long, the data collector would run out of its energy before returning

to the data sink. Consequently, the shorter update period of the system is an advantage

for the SDCA scheme.

In the second experiment, we compared the system throughput. Fig. 3.5 shows the

results of the system throughput with unit Mbps. It depicts that the system throughput

increases as the number of sensor nodes increases in all schemes. This is because the

amount of data generated by deployed sensors monotonically increases as the increasing

size of the FoI.

The last experiment was conducted to compare the performance in terms of system-

wide energy consumption, which measures the energy consumed by all sensors per bit.

As shown in Fig. 3.6, the SDCA data collection scheme provided 1%-28.4% improvement
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Table 3.3: The moving distance of the data collector in di↵erent size of the FoI

The number of nodes

SCHEMES 150 260 410 590

SDCA scheme 2310 m 3987 m 6661 m 8465 m

Centre-based scheme 3029 m 4775 m 7653 m 10120 m

Greedy-based scheme 3264 m 5548 m 9878 m 13716 m

CBGA 4673 m 8024 m 12461 m 22892 m
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Figure 3.4: Comparison of data update period of the SDCA data collection scheme and

the control group
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compared with other three schemes. The reason is that the energy consumed by sensors in

each cluster is taken into consideration as the objective function in our work. The sum of

energy consumed by cluster members is less than centre-based protocol and greedy-based

one. For CBGA, it is based on one-hop and without forwarding data by intermediate

nodes, but the distance between the waypoint and its sensor nodes might be longer, which

introduces extra energy consumption in each sensor. On the contrary, in our work, the

transmission distance for each node was minimized. Hence, the energy consumption of each

node is lower, and the system-wide energy consumption decreases by 1% to 8% comparing

with CBGA.

3.5 Summary

In this chapter, we introduced the SDCA data collection scheme to improve the system-

wide energy e�ciency of small-scale WSNs. We applied a single data collector to gather the

data from sensors. We formalized an optimization problem for minimizing the total energy

consumption of the entire system. Due to the high computing complexity of this problem,

a GA-based optimization approach has developed to derive the optimal solution. Our

scheme has three phases. First, we constructed the topology of the network. Second, the

data sink selected the CHs of each cluster and calculated the route for the data collector

by executing GA. Third, the system entered the steady phase, and the data collector

traversed the designated path and gathered data from each cluster. The simulation results

showed that the proposed protocol could achieve a shorter data update period and much

less energy consumption in WSNs.

53



Chapter 4

Improved Single Data

Collector-assisted (SDCA) Data

Collection Scheme

We introduced the SDCA data collection in the last chapter. The SDCA data collection

scheme is helpful to enhance the energy e�ciency of the entire system, however, the energy

consumed by the intermediate nodes on forwarding is still considerable, which can be

improved by reducing the size of clusters or the number of intermediate nodes. Therefore,

relying on the energy model discussed in Chapter 3, we design a two-phase data gathering

strategy with the mobile data collector in cluster-based WSNs, called improved SDCA data

collection scheme, to enhance energy e�ciency based on SDCA data collection scheme.

The sensors are initially divided into clusters on the basis of the newly proposed clustering

algorithm in the first phase. Then, we use GA to derive the shortest path of the mobile data

collector. The path of the data collector would eventually be obtained and ensure lower

data latency. We introduce the improved SDCA data collection scheme in the following.

The content of this chapter has been published in A novel data collector path optimization

method for lifetime prolonging in wireless sensor networks.

4.1 Cluster-based Topology Construction Algorithm

The first phase in the improved SDCA data collection scheme is cluster formation. To

ensure low data latency, we adopt multi-hop communication between the sensors and the

collector. The sensors are grouped into a set of clusters. The size of clusters is a crucial

factor that a↵ects the performance on energy e�ciency and system delay. We propose a ↵-
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hop clustering algorithm. The value of ↵ is determined based on the system requirements.

If the system only focuses on improving energy e�ciency, the value of ↵ would be small.

It is helpful to decrease the energy consumption on data forwarding by relay nodes. On

the other hand, if the application is delay sensitive, the number of clusters should be small

in order to minimize the tour length. Therefore, the value of ↵ should be relatively large.

The CH in each cluster is selected based on the weight with respect to two parameters: the

number of neighbors Mi and the average distance from neighbors Di. The Di represents

the average distance of the node to its one-hop neighbors, which is defined as

Di =

P
Mi

j=1 d(i, nj)

Mi

, (4.1)

where nj is the one-hop neighbor of the sensor, and d(i, nj) is the distance between the

sensor to its neighbor nj. We set a weight function for sensors based on the number of

neighbors and the average one-hop distance. The CH will be chosen on the basis of the

weight value from all sensors. The weight function is defined as follows,

Weighti = Mi ⇥
1

Di

. (4.2)

Because of the di↵erent range of values for the parameters, i.e., Mi and Di, we need

to normalize the values between the range of 0 to 1. Therefore, the weight function is

converted to

Weighti =
Mi

Mmax

⇥ Dmax

Di

, (4.3)

where Mmax and Dmax is the maximum of Mi and Di among all sensors in the system.

The node information is known in advance, and the neighborhood information of each

node is obtained by the method proposed in [171]. At first, all sensors are candidates of

the CH, and their weights need to be calculated by Eq. (4.3). Then the sensor with the

largest weight will be inserted into the list of CH. All nodes within its ↵ hops could be

found in the neighbor table and are removed from the candidate list. Next, the rest of

the sensors in the candidate list will recalculate their weights. The iteration continues to

choose other CHs until the candidate list is empty. Consequently, the list of CH will be

obtained. The ↵-hop clustering algorithm is shown in Alg. 1.

4.2 Path Optimization Method for The Mobile Data

Collector

After constructing the topology of the WSN, the path of the data collector which consists of

all CHs will be generated. To obtain the optimal path with the low time complexity, we also
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Algorithm 1 ↵-hop clustering algorithm
Require: Set of nodes N , neighbor table nb of N , the hop count in each cluster ↵

Ensure: Cluster head list CH, the set of sensor in cluster m Clusterm
Candidate N

CH  Ø

m 0

Calculate weight Wi for all sensors based on Eq. (4.3) in Candidate

Sort Candidate in descending order according to Wi

while Candidate is not empty do

Obtain the first node in the Candidate and add into CH

Add the first node and its ↵-hop neighbors from the neighbor table nb into Clusterm
Remove all nodes in the Clusterm from Candidate

m m+ 1

end while

apply GA as the heuristic algorithm in the improved SDCA data collection scheme. The

process of GA is similar to that in the SDCA data collection scheme, which is introduced

in Section 3.3, and is modified according to the requirements in the improved SDCA data

collection scheme. Here, we introduce the modified GA briefly. GA applies the chromosome

to represent each solution which is the path for the data collector in this work. Each

chromosome consists of a set of genes which are denoted by all positions that the collector

needs to visit. Additionally, the chromosomes should not be duplicated. Since the goal of

the proposed algorithm is to find the shortest path, the fitness function is reciprocal of the

path length of each solution.

The data sink first derives the initial solutions and sorts them based on the fitness value

in descending order. Then it starts the GA loop which includes three main operations

of GA, i.e., selection, crossover, mutation. Here, we primarily introduce the modified

SCX. Since the data collector starts from the data sink, the sink is initially added into

the o↵spring and is set to be the current node. The parent chromosomes figure out the

candidates for the next node of the o↵spring. The candidates in both chromosomes are the

next node of the current node. However, if the candidate already exists in the o↵spring,

the node from the unvisited cluster with the smallest sequent number will replace it. One

of the candidates with a small distance from the current node is selected as the next node

of the o↵spring. SCX will terminate once the o↵spring is constructed. Then the fitness

value of the o↵spring is calculated. The chromosome with worse fitness value would be

removed among two parents and their o↵spring. Fig. 4.1 depicts the complete process flow

of the proposed path planning algorithm.
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Figure 4.1: The path planning algorithm for the single device workflow

The optimal path of the data collector is finally obtained by GA. The collector receives

the path and cluster information from the sink and then begins to collect data. Once

the collector arrives at the CH, it will notify the CH. Then the CH broadcasts its cluster

members to gather data from them and forwards the data to the collector. Once the

collector visits all CHs, it will return to the sink and transmit all collected data. Finally,

it recharges its batteries and starts the next tour. We present an example to illustrate the

process of data collection in Fig. 4.2.

4.3 Performance Evaluation

The experiment setup and results of the improved SDCA data collection scheme are shown

in this section. The improved SDCA data collection scheme has been ported to the OM-

NeT++ simulator. The simulation parameters are similar to the settings in the experiments

of the SDCA data collection scheme, which are listed in Table 3.2.

We first demonstrate the e↵ect of the value of ↵ on the proposed clustering algorithm

by the simulation experiments. Fig. 4.3 shows the changing trend of the data update

period versus the di↵erent value of ↵. Recall that; the update period is mainly a↵ected by

the journey length of the data collector. Additionally, the tour length will be elongated
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X

Y

Figure 4.2: The path planning for the mobile data collector in the improved SDCA scheme

as the number of clusters in the FoI increases. In Fig. 4.3, we can see that the update

period becomes shorter as the value of ↵ increases. The reason for this result is that the

size of clusters will be large when the ↵ is large, and then the number of clusters will be

decreased. Therefore, the tour length of the data collector would be shortened when the

value of ↵ is set to be large.

On the other hand, the system-wide energy consumption is also be a↵ected by the

value of the ↵. As shown in Fig. 4.4, the energy consumption shows a growing trend with

the increasing of the value of ↵. Because of the big size of clusters introduced by a large

value of ↵, more data should be transmitted to the CH by relaying nodes. Therefore,

the energy consumed by sensors as relaying nodes on data transmission increases, which

renders relatively higher system-wide energy consumption as the ↵ increases. Thus, the

system should balance the number and the size of the clusters and set the value of ↵ based

on the system requirements. For a fair comparison, the value of ↵ is set to be 2 in the

following experiments.

Next, we conducted a set of experiments to compare the improved SDCA data collection

scheme with the other three schemes using mobile elements, i.e., the SDCA data collection

scheme, CBGA, and reduced k-means (RkM) [112]. The primary di↵erence among these

four schemes is the clustering strategy which a↵ects the system performance. In the im-

proved SDCA data collection scheme, the sensors are divided into clusters based on the
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Figure 4.3: Comparison of data update period under di↵erent values of ↵
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Figure 4.4: Comparison of wide-system energy consumption under di↵erent values of ↵
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↵-hop clustering algorithm. While, in the SDCA data collection scheme, the FoI is initially

divided into several grids with identical size, and the sensors in one grid are grouped into a

cluster. CBGA is a data collection scheme with the one-hop communication strategy which

means the sensors can communicate with the data collector directly. The sensors, whose

transmission disks are overlapped, constitute a cluster. In RkM, the single mobile sink is

applied to gather data from sensors. This scheme applied k-means clustering algorithm to

select a minimal number of CHs and divide the sensors into the clusters according to the

distance to the CHs. Then, the authors utilized Christofides’s heuristic algorithm [172]

to plan the trajectory of the mobile sink. Here, we compare the performance of improved

SDCA data collection scheme with the schemes in the control group regarding data up-

date period (second), system throughput (Mbps) and the system-wide energy consumption

(nJ/bit).

Fig. 4.5 compares the data update period of these four algorithms. The results are

shown in Fig. 4.5 and prove our proposed two SDCA data collection algorithms achieve a

shorter data update period because of the reasonable clustering algorithm. This criterion

is important for delay-sensitive applications in WSNs given that the urgent data can be

transmitted to the data sink within the tolerant period.
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Figure 4.5: Comparison of data update period of the improved SDCA data collection

scheme and the control group

In the second experiment, we compare the system throughput from the di↵erent algo-

rithms. It evaluates the sum of the data rates which are sent to the data sink in WSNs.

Fig. 4.6 presents the results of these four data collection schemes. The di↵erence among the
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Figure 4.6: Comparison of the system throughput of the improved SDCA data collection

scheme and the control group
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collection scheme and the control group
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four schemes is not substantial. The reason is the system throughput is mainly associated

with the size of the FoI and is improved by increasing the number of deployed sensors in

the WSN.

The third experiment is conducted to evaluate the algorithms in terms of the system-

wide energy consumption rate. Recall that the major source of energy consumption by

sensors is transceiving. Therefore, this metric represents the energy required for the node

to send each bit. The results of energy consumption rates for the four algorithms are

shown in Fig. 4.7. The improved SDCA data collection scheme achieves higher energy

e�ciency than other algorithms since we take the distance of transceiving and the hop

count in the clusters into consideration. The energy consumption on sending or forwarding

data is minimized. In RkM and CBGA, the communication strategy between the sensor

and collector is one-hop. Though the sensor does not need to forward data from others,

the distance between the collector and the sensor might be large. It may lead to more

energy consumption on transmission than the schemes with multi-hop communication.

Additionally, the size of clusters generated in SDCA data collection scheme is big, which

means that the average number of hops to CH for each sensor is large, and causes more

energy consumed on data forwarding by intermediate nodes. Therefore, the improved

SDCA data collection scheme can e↵ectively reduce the system-wide energy consumption.

4.4 Summary

To enhance the energy e�ciency of WSNs, we proposed an improved SDCA data collection

scheme for balancing the energy e�ciency and the delay of data based on the proposed

scheme introduced in Chapter 3. The contributions are twofold: we developed a cluster

formation algorithm to generate the cluster with the appropriate size and select the CH in

each cluster. Moreover, the path of the data collector was obtained by the modified GA

with lower complexity. After deriving the optimal path, the data collector started to go

through the optimal path and collect the data from sensors. The results from experiments

demonstrated that our protocol improved energy e�ciency and achieved lower data latency

compared to other existing protocols using a single data collector.

62



Chapter 5

Two-mode Multiple Data

Collector-assisted (MDCA) Data

Collection Scheme

In large-scale WSNs, the SDCA data collection schemes are not e↵ective because the path

length for the single data collector is too long. To shorten the path of the data collector,

an alternative approach is to decrease the number of clusters, which could be achieved by

increasing the value of ↵ in the ↵-hop clustering algorithm. However, this approach leads to

huge energy consumption on data forwarding and high workloads for CHs. In this chapter,

we propose a two-mode multiple data collector-assisted (MDCA) data collection scheme in

cluster-based WSNs by adopting multiple data collectors in the large-scale FoI. The content

of this chapter has been published in Unmanned aerial vehicle-assisted energy-e�cient data

collection scheme for sustainable wireless sensor networks.

5.1 Problem Statement

In the MDCA data gathering scheme, the entire network is partitioned into a set of sub-

networks. Each collector is responsible for collecting data from sensors in a designated

subnetwork by traversing a planned path, called subtour. There are two data collection

modes for MDCA data collection scheme. One is that data collectors transmit the col-

lected data to the sink directly, called gathering-and-carrying mode. In detail, the starting

point of all subtours is the data sink. The collector visits a set of CHs to collect data

from their clusters. Then it goes back and forwards the aggregated data to the data sink

directly. This mode is suitable for the delay-sensitive applications because the urgent data
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can arrive at the sink in time. However, the collectors that need to collect data from more

distant clusters have to su↵er from the longer flight time and more energy consumption for

returning to the data sink. Therefore, for these collectors, the path length for each data

collector should be constrainted to avoid extremely long subtours.

The other mode for multiple collectors is that data collectors transmit the gathered

data to the sink relying on other intermediate collectors, called data-relaying mode. In

this mode, the collectors gathering data in the remote area will forward data to their

neighboring collector once the distance between them is less than their communication

range. It is helpful to reduce much energy on moving between the area and the sink. The

drawback of this mode is that two neighboring collectors may meet each other after a long

period due to their di↵erent motion characteristics, e.g., speed, trajectory, etc. Hence, the

data from further clusters cannot arrive at the sink under the time constraints. There is

another reason causing long data latency. When a mobile collector receives the gathered

data from its neighboring collector, it has to finish its data collection task first, and then

forwards the data that it collects and receives from other collectors. As such, the data from

the remote area have to su↵er from the long forwarding latency before being received and

processed by the data sink. Although it is not suitable for the delay-sensitive applications,

it can save the energy of the data collectors on moving. Accordingly, the applications

need to determine the data collection mode on the basis of their requirements. Besides,

the length of subtour should be constrained for avoiding the bu↵er overflows in sensors or

exceeding the maximum operation time of the data collector. The reason for the bu↵er

overflow is the limited data bu↵er of sensors. Once the bu↵er is full, the sensed data

cannot be saved into the bu↵er and have to be dropped. Therefore, the tour length of the

collector should be predetermined to avoid the bu↵er overflow problem, which is defined

as the limited maximum moving length Llimit in our work. In the MDCA data collection

scheme, we propose two modes of schemes to meet di↵erent system requirements. These

two schemes are described in the following.

5.2 Delay-Aware MDCA Data collection Scheme

We first introduce the MDCA data collection scheme with the gathering-and-carrying mode

in cluster-based WSNs for delay-sensitive applications. The network is initially divided into

a set of clusters by the ↵-hop clustering algorithm introduced in Section 4.1. Then, the

topology of the WSN is constructed. The limited length of the path L(i)
limit

in this scheme

is considered to be related to the bu↵er size Bufs, the data generated rate of sensors

DataRates and the moving speed of mobile collectors vDC . The upper bound of journey
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time in each round is set based on the bu↵er size of the sensor to avoid the potential bu↵er

overflow. Therefore, the L(i)
limit

of colletor i is given by,

L(i)
limit

=
Bufs

DataRates
⇥ vDC , (5.1)

where the subscript s denotes the ID of the sensor.

To further decrease the data forwarding latency, a heuristic algorithm is a pragmatic

method to solve the problem under consideration, since it can obtain the optimal solution

with low computing complexity [132]. Accordingly, we develop a delay-aware heuristic

MDCA (DA-MDCA) data collection scheme. The subtours for the minimum number of

UAVs are derived by the proposed algorithm, which ensures that the lengths of subtours

are below the upper bound and as average as possible. Initially, all CHs are set to be

unvisited. The start point for each subtour should be the data sink. Thus, the data sink is

added into the subtour and is set to be the Current Node. The data sink should calculate

L(i)
limit

based on Eq. (5.1) for each collector. Then, it tests the node which is closest to

the Current Node. If the length of subtour by adding this neighboring node is not over

L(i)
limit

, the node will be added into the subtour and will be set as the new Current Node.

Then, the data sink looks for the next node for the subtour. The searching procedure

keeps continuously until the accumulated path length exceeds L(i)
limit

. Then the subtour is

obtained and the data sink will start to find the next subtour. The algorithm will terminate

until all CHs have been visited. The details of the proposed DA-MDCA data collection

scheme are shown in Alg. 2.

5.3 Delay-Tolerent MDCA Data Collection Scheme

The DA-MDCA data collection scheme we proposed above is more suitable for delay-

aware applications. However, the energy consumption of the data collector on movement

is relatively high because the data collector needs to commute frequently to and from

the data sink and the corresponding subnetwork. To improve the system e�ciency for

the delay-tolerant applications, our MDCA scheme can switch its working status to the

newly designed data-relaying mode, called delay-tolerant MDCA (DT-MDCA) data col-

lection scheme. Some related works have been proposed by adopting the data-relaying

working mode, such as [173]. However, these existing approaches lead to a long time for

data delivery, especially from the remote subnetworks, because the data collector needs

to complete its own data collection task before sending the collected data (including data

from other data collectors) to the next relay collector. To address this problem, a new

data-relaying method for the MDCA scheme is designed. Di↵erent from the path planning
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Algorithm 2 DA-MDCA Data Collection Scheme
Require: Set of nodes CH and their positions

Ensure: The path for each data collector Pi

Unvisited CH

current sink

i 0

while Unvisited is not empty do

L 0

Pi  current

isfinished ture

while isfinished == true do

Calculate the L(i)
limit

in this round by Eq. (5.1)

Sort Unvisited in ascending order according to the distance to current

candidate the first node in Unvisited

if L+ distance from current to candidate+ distance from candidate to the sink

 L(i)
limit

then

L L+ distance from current to candidate

Pi  candidate

current candidate

Remove current from Unvisited

else

i i++

current sink

isfinished false

end if

end while

end while
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in the DA-MDCA scheme, the length of subtours is defined based on the distance from the

sink to clusters needed to be visited. In our design, we adopt a similar idea of the unequal

clustering algorithm introduced in [110] to balance the workloads between data collectors.

More precisely, the data collector closer to the data center will be responsible for smaller

subnetworks (i.e., the subtour length is shorter) because it also needs to do data relay

for the distant data collectors. Accordingly, the limited maximum moving length for each

collector L(i)
limit

is given by

L(i)
limit

=

✓
1� � ⇥

dmax � d(si,sink)
dmax � dmin

◆
⇥ Bufs ⇥ vDC

DataRates
, (5.2)

where dmin and dmax are the distance from the sink to the closest node and the farthest

node, respectively. The d(si,sink) is the distance between the start point of subtour i and

the sink. The parameter, � 2 [0, 1], is a user-defined control parameter. By choosing a

di↵erent value of �, the user can adjust the limited maximum moving length according to

the system requirements (e.g., the number of mobile data collectors deployed in the WSN).

In this scheme, the sensors are grouped into clusters by our proposed clustering algo-

rithm introduced in Section 4.1 and all CHs are selected. Then, the data sink begins to

derive the subtours for each collector. Unlike the DA-MDCA scheme that the subtour

construction procedure starts from the data sink, here, the farthest node from the data

sink is selected as the Source Node of current subtour. The purpose of selecting the far-

thest node as the Source Node first is to achieve a large amount of clusters on the tour

of the collectors which are distant to the data sink and a small amount of clusters on the

tour of the collectors which are closer to the data sink. Then, the Source Node calculates

L(i)
limit

based on Eq. (5.2) and set itself as the Current Node. The node which is closest

to the Current Node is selected. If the length of the subtour does not exceed L(i)
limit

after

adding this node into the subtour, the node will be added into the current subtour and

is converted to Current Node. After that, the next node in the current node will be de-

rived. The subtour is derived until no node can be added into the subtour due to the tour

length limitation. Similar to the previously mentioned DA-MDCA scheme, the subtour

construction procedure terminates when all CHs have been visited. After constructing

the subtours for collectors, the collectors begin to gather data from their corresponding

subnetworks. The collector working in the distant area will transmit its collected data to

one of its neighboring collectors which is closer to the sink when the neighboring collector

enters its communication disk. We show the DT-MDCA scheme in Alg. 3.
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Algorithm 3 DT-MDCA Data Collection Scheme
Require: Set of nodes CH and their positions

Ensure: The path for each data collector Pi

Unvisited CH

i 0

while Unvisited is not empty do

L 0

Sort Unvisited in descending order according to the distance to the sink

source the first node in Unvisited

current source

Pi  current

Remove current from Unvisited

Calculate the L(i)
limit

in this round by Eq. (5.2)

isfinished ture

while isfinished == true do

Sort Unvisited in ascending order according to the distance to current

candidate the first node in Unvisited

if L+ distance from current to candidate distance from candidate to source L(i)
limit

then

L L+ distance from current to candidate

Pi  candidate

current candidate

Remove current from Unvisited

else

i i++

isfinished false

end if

end while

end while
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5.4 Performance Evaluation

This section will present the experiment setup and simulation results of the two-mode

MDCA data collection schemes and the control group. To evaluate the performance of

MDCA data collection schemes, we also adopted OMNet++ simulator to conduct the

simulation experiments. Except for simulation parameters are shown in Table 3.2, other

settings are summarized in Table 5.1.

Table 5.1: Simulation settings of MDCA data collection schemes

Parameter Description Value

Bufs Bu↵er size of the sensor 64KB/512KB [174]

IniEs Initial energy of sensor 15J [15]

DataRates Data generation rate 2000 bits/s [175]

We evaluate the newly proposed two-mode MDCA data collection scheme and adopt

the tour planning algorithm with the spanning covering tree algorithm (SCTA) proposed

in [173] as the control group in the simulations. Recall that; the tour planning algorithm

with SCTA runs in the data-relaying mode, and it utilizes the clustering algorithm which

is similar to CBGA. A virtual point, called the polling point in [173], is initially set in

each cluster, and the data collectors will gather data from the sensors in each cluster at

the polling point. Then, the minimum spanning tree composed of all polling points is

constructed by the SCTA. The optimal subtours of multiple data collectors are derived

from the spanning tree by limiting their tour length. The main di↵erences of our proposed

MDCA schemes and the tour planning with SCTA are the workloads of data collectors

and the path planning method for collectors. We compare these MDCA data collection

schemes regarding system-wide energy e�ciency (nJ/bit), network lifetime (second), en-

ergy consumption of the data collector (kJ/round) and packet delay (second).

Fig. 5.1 illustrates the comparison of the system-wide energy consumption from these

three MDCA data collection schemes. The results from the experiments depict that our

proposed MDCA schemes achieve higher system-wide energy e�ciency. Moreover, Fig. 5.2

shows the comparison results of the network lifetime from these three schemes. The results

present the network lifetime in our proposed MDCA schemes is much longer than that of

the tour planning algorithm with SCTA (approximately 25%). The achievement is mainly

because of the adoption of the newly proposed clustering algorithm based on the multi-hop

communication strategy. It e↵ectively reduces the transmission distance from a sensor to

another sensor (or to the collector) by selecting the optimal CH. Additionally, it minimizes

energy consumption for the sensors on data forwarding by limiting the hop counts in each
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cluster. On the other hand, with the one-hop communication strategy in the tour planning

with SCTA, the transmission distance between the sensor and the polling point is likely

to be long, which causes significant energy consumption by the sensors on transmission.

Therefore, the newly proposed MDCA data collection schemes significantly improve the

system-wide energy e�ciency in large-scale WSNs.
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Figure 5.1: Comparison of system-wide energy consumption of MDCA data collection

schemes and the control group

In the next experiment, we compare the energy consumption of the data collector, which

is denoted as the total energy consumption by all collectors finishing the collection task

in each round. The number of data collectors deployed in the WSN with the di↵erent

size is listed in Table 5.2, and the results of the energy consumption by all sensors are

shown in Fig. 5.3. The results demonstrate that both the DT-MDCA scheme and the tour

planning with the SCTA have better performance than the DA-MDCA scheme in terms

of the number of data collectors used and the energy e�ciency for the data collectors.

In general, the energy is mainly consumed by data collectors on data transceiving and

movement. Compared to the energy consumed by data collectors on data transceiving,

energy consumed by movement is tremendously dominant in these data collection schemes.

Due to the di↵erent modes adopted in the schemes, the proportions of the number of

the deployed collectors and energy consumption by collectors in di↵erent schemes vary.

Given that the DA-MDCA scheme runs the gathering-and-carrying mode, the collectors can

transmit their gathered data to the data sink directly, which reduces energy consumption
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Figure 5.2: Comparison of network lifetime of MDCA data collection schemes and the

control group

on data transmission. However, more collectors should be deployed in the FoI to achieve

the data collection tasks in delay-sensitive applications due to the relatively short tour

length for each collector with the predetermined Llimit. Therefore, the collectors in this

mode need to consume more energy on movement. On the other hand, the DT-MDCA

scheme and the tour planning with SCTA run in data-relaying mode. They consume more

energy on data transceiving with the sensors and relaying collectors than the schemes with

the gathering-and-carrying mode, however, the number of data collectors is less and they

consume less energy on movement. Therefore, the total energy consumption by collectors

in these two schemes is less than the energy consumed by collectors in the DA-MDCA

scheme.

Table 5.2: The number of data collectors deployed by di↵erent MDCA data collection

schemes
The number of collectors in each scheme

Number of deployed sensors DA-MDCA DT-MDCA Tour planning with SCTA

490 11 6 8

660 15 10 12

900 22 15 16

1200 29 22 23
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Figure 5.3: Comparison of the total energy consumption of data collectors of MDCA data

collection schemes and the control group
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Figure 5.4: Comparison of the average delay of MDCA data collection schemes and the

control group
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Fig. 5.4 is given to show the average delay in di↵erent scale WSNs with the di↵erent

schemes. The delay is defined as the time period from the moment a sensor sends the data

to the moment the data sink receives the data. The delay of data enlarges by increasing

the number of deployed sensors in the WSNs, which is triggered by the increased average

distance from the sensor to the data sink and more generated data messages in the WSNs.

In the tour planning with SCTA, the data collector that gathers the data from the distant

subnetwork can only transmit its aggregated data to the data sink by its neighboring

collector. However, if the tour length of its neighboring collector is long, the delay will

be extended. Compared with tour planning with SCTA, the improvement of our proposed

DT-MDCA scheme is that the tour length for each collector is planned according to the

distance from the clusters needed to be visited the data sink. It can decrease the tour

length for the intermediate collectors. Thus, the average delay of the DT-MDCA scheme

is shorter than that of the tour planning with SCTA. However, in the data-relaying mode,

the data collector might wait for a long time period to communicate with the neighboring

collector until its neighboring collector enters its communication range. It will cause a long

data latency. In the DA-MDCA scheme, each data collector will return to the data sink

after finishing its collection task, which is helpful to reduce the data latency, especially

for the data from the distant subnetworks. Because the collectors gathering data from

the remote area may only visit a small number of clusters under the length limitation,

the data can be transmitted to the data sink within the specified period. Therefore, the

average delay of data in the DA-MDCA scheme is reduced significantly compared with

other schemes.

5.5 Summary

In order to improve the energy e�ciency in large-scale WSNs, we developed a two-mode of

data gathering mechanism by adopting multiple collectors, which could switch its status

between the delay-aware mode and the delay-tolerant mode. The DA-MDCA data col-

lection scheme ran in the gathering-and-carrying mode in which all collectors transmitted

their gathered data to the data sink directly. It was helpful to shorten the data latency.

On the other hand, the DT-MDCA data collection scheme ran in the data-relaying mode

in which the collectors gathering data from the distant subnetworks transmitted data to

the data sink by intermediate collectors. It was beneficial to enhance the energy e�ciency

of the collectors. Therefore, our proposed two-mode MDCA data collection scheme could

satisfy the requirements in di↵erent systems. The simulation results demonstrated that

the MDCA data collection schemes improved the system-wide energy e�ciency and en-

hanced the system performance in di↵erent aspects. The DA-MDCA gathering scheme

73



could shorten the data latency. On the other hand, the DT-MDCA collection scheme was

helpful to reduce the budget and energy consumption for multiple data collectors.
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Chapter 6

Joint Data Collection and Wireless

Charging Scheme

Data gathering using the mobile data collector can save more energy consumed by the

sensors on data transmission and address the energy-hole problem of WSNs. However, the

network lifetime is still limited. As stated before, sensors are able to receive the energy

by the wireless charging, which is e↵ective to prolong the system lifetime, even make the

WSN semi-permanent. In this chapter, we discuss the proposed joint data collection and

wireless charging schemes in detail. Here, we assume that mobile chargers (MCs) as the

high-mobility device to collect data from CHs. Moreover, MCs would replenish energy

to sensors in each cluster simultaneously. In this chapter, we first propose an improved

clustering algorithm. Then, the scheduling schemes of MCs are proposed. In what follows,

the joint data collection and wireless charging scheme will be introduced in detail. The

content of this chapter has been published in A novel two-mode QoS-aware mobile charger

scheduling method for achieving sustainable wireless sensor networks.

6.1 Syetem models and assumptions

In the joint design, we follow the same assumptions of network model and the energy

model on data transmission of the sensor and movement of the mobile device introduced

in Section 3.1. Moreover, the energy model in terms of wireless charging should also be

taken into account in the joint data collection and wireless charging scheme. In our works,

we use the charging model introduced in [176]. Let PMC

t
denote the charging power of

the MC. Then, the energy receiving rate of a sensor P s

r
in the charging range RMC

c
can be
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denoted by

P s

r
=

GsGr⌘

Lp

(
�

4⇡(d+ �)
)2PMC

t
, (6.1)

whereGs andGr are the antenna gain of transmitter and receiver, respectively. ⌘ represents

the rectifier e�ciency, Lp is the polarity loss, � is the amplitude, and � is the coe�cient

for adjusting the Friis’ free space equation. As shown in Eq. (6.1), P s

r
is mainly related to

the distance between the sensor and the MC. To simplify the description, Eq. (6.1) can be

modified to

P s

r
=

↵

(d+ �)2
PMC

t
, (6.2)

where ↵ = GsGr⌘�
2

Lp(4⇡)2
. Therefore, the energy Es

H
received by the sensor si from the MC within

a time period t is

Es

H
= P s

r
⇥ t =

↵

(d(si,MC) + �)2
PMC

t
⇥ t. (6.3)

6.2 The Improved Clustering Algorithm

In this section, we introduce an improved clustering algorithm based on the ↵-hop clus-

tering algorithm proposed in 4.1. Except for the number of neighbors Mi and the average

distance from neighbors Di introduced in the ↵-hop clustering algorithm, the residual en-

ergy of the sensor Ei

Res
is taken into consideration in the improved clustering algorithm.

The sensor with high residual energy has a high probability to be the CH. Therefore, the

weight function is modified as follows,

Weight = �
Mi

Mmax

+ (1� �)


µ
Ei

Res

Ei
cap

+ (1� µ)
Dmax

Di

�
, (6.4)

where �, µ are two coe�cients between 0 to 1 to adjust the weight of the three parameters

in the weight function. Ei

cap
denotes the energy capacity of the sensor.

After sorting all sensors according to their weights, the cluster construction would be

executed. The process of the cluster construction in the improved clustering algorithm is

similar to the ↵-hop clustering algorithm. The main di↵erence from the ↵-hop clustering

algorithm is the size of clusters. In the ↵-hop clustering algorithm, the size of clusters is

determined by the value of ↵. However, in the joint design, considering that the MC needs

to replenish energy to all sensors in each cluster, the size of each cluster should be no bigger

than the charging range of the MC while decreasing the number of clusters. Initially, all

sensors are candidates of the CH. The sensor with the highest weight is selected as the CH

currently. Then, the sensors whose distance to the current CH is less than the charging

range need to attach to the CH. Next, the sensors in the formed cluster are removed from
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the table of CH candidates, and the current iteration ends. In the next iteration, the

rest of the candidates will calculate their weight again and repeat the process of cluster

formation. Once the table of CH candidates is empty, all clusters are formed in the WSN.

An illustration that the clusters are generated by the improved clustering algorithm is

shown in Fig. 6.1.

Figure 6.1: Example of the clusters generated by the improved clustering algorithm

6.3 Problem Statement

The scheduling scheme of MCs focuses on addressing two subproblems: the path planning

and the sojourn period calculation in the cluster. To face the diverse system requirements,

we design the scheduling scheme for two scenarios, i.e., delay-tolerant scenario and delay-

aware scenario. Additionally, the cost of the MC is also considered in our work, in other

words, the number of MCs deployed in the WSN is as few as possible. In this section, we

will present the charging problems in these two scenarios.
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6.3.1 Problem Statement for the Delay-tolerant Scenario

In the delay-tolerant scenario, we assume that the MC stays the location of the CH in each

cluster until the energy of the CH and its cluster members is fully charged to make the WSN

semi-permanent. For the delay-tolerant scenario, the charging utility which measures the

quality of sensor charging plays a vital role [177, 178, 179, 180]. Accordingly, the objective

of the delay-tolerant charging scheme is maximizing the charging utility of sensors while

minimizing the energy consumption by the MC on movement. In this work, we adopt

the charging utility metric introduced in [180] to evaluate derived potential paths. The

charging utility for the path P of the MC is the sum of the energy provided to the sensors

si in the cluster ki in the path P , which can be formulated by

UP =
X

ki2P

X

si2ki

Esi
H
. (6.5)

Therefore, we define the delay-tolerant charging problem of the MC as follows:

Problem 1 Given a set of sensor nodes S = {s1, s2, ..., sN}, and a set of CHs (CH ✓ S)

for K clusters which are sojourn locations of MCs in each cluster, we assume that there

are two MCs, that work corporately, in the deployed WSN, and they traverse the given path

in the opposite directions. The delay-tolerant charging scheduling problem is constructing

a path p including all CHs for two MCs such that the charging utility of all sensors is

maximized while the length of the path is minimized. The objective function and constraints

of the problem are formulated as follows:

max UP � EMC

move
, (6.6)

s.t. ⌧k+1 � ⌧k + tk
c
+

D(k,k+1)

vMC , 8k 2 P (6.7)

where ⌧k is the arrival time of the MC at the cluster k, and tk
c
is the time period of charging

in the cluster k. Constraint (6.7) ensures that each sensor node should be charged before

depleting its battery.

6.3.2 Problem Statement for the Delay-aware Scenario

Di↵erent from the delay-tolerant scenario, the data latency is a main factor for the delay-

aware scenario. To decrease the data latency, multiple MCs are deployed in the FoI, and

each one has responsibility for energy replenishment and data collection in the specified

area where a collection of clusters locate. Therefore, multiple paths of the MCs should be

constructed. For the delay-aware scheduling scheme, it not only focuses on the charging
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utility but also the data update period and the number of the MCs. Due to the requirements

of the delay-aware scenario, the objectives of the scheduling scheme are stated in the

following:

• Charging utility maximization: Due to the multiple paths of the MCs in the WSN,

the system-wide charging utility in the delay-aware charging problem is formulated

by

U =
X

pi2P

Upi . (6.8)

• Delay minimization: There are two factors a↵ecting the delay in the system, i.e.,

sojourn time/charging time of the MC in each round TMC

c
and the traveling time

of the MC in each round TMC

move
. Therefore, the formulation representing the data

latency is given by

TMC

delay
=

KX

k=1

TMC

c
+ TMC

move
, (6.9)

where K denotes the number of the clusters in the path of the MC.

• The number of MCs minimization: It is necessary to deploy the minimum number

of MCs to cover all sensors in the WSN. However, the confined energy capacity of

the MC is a critical constraint in the scheme. The less the MCs are adopted in the

WSN, the heavier the workload of each one is responsible for. It is unwise for the

MC return to the sink to replenish its battery before visiting all clusters in its given

path, which causes an additional delay in the delay-aware system.

Problem 2 Given a set of sensor nodes S = {s1, s2, ..., sN}, a set of CHs (CH ✓ S) for

K clusters, and M MCs, the delay-aware charging scheduling problem aims to obtain M

paths P={p1,p2,. . . ,pM} for M MCs whose start point and end point are the data sink.

The objective of the problem is to maximize the charging utility while minimizing the data

latency and cost of the WSN, subject to the energy capacity of the MCs and sensors. We

formulate the delay-aware problem in the following:

max
MX

i=1

Upi �
MX

i=1

TMCi
delay
�M, (6.10)

s.t. ⌧k+1 � ⌧k + tk
c
+

D(k,k+1)

V MC , 8k 2 pi, i = 1, . . . ,M (6.11)

EMCi
cap
� EMCi

c
+ EMCi

move
. i = 1, ...,M (6.12)

Same as Constraint (6.7), Constraint (6.11) prevents all sensors from exhausting their

energy. Moreover, Constraint (6.12) guarantees that each MC has su�cient energy for

energy replenishment and movement in each round.
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6.3.3 Problem Hardness Analysis

Recall that; the objective of Problem 1 is maximizing the charging utility while minimizing

the energy consumption of the MC. However, the charging utility maximization problem

can be proved by a reduction from the orienteering problem [180], and the orienteering

problem is a well-known NP-hard problem [181]. Hence, Problem 1 is NP-hard.

On the other hand, Problem 2 aims to derive multiple paths for M MCs, which is in

the form of a multiple travel salesman problem. However, the multiple travel salesman

problem is also a well-known NP-hard problem [173]. Due to the NP-hardness of these

two optimization problems, it is infeasible to derive optimal solutions with brute force

or traditional optimization methods. Therefore, we will address these proposed problems

with heuristic algorithms.

6.4 Delay-tolerant Scheduling Scheme

In the delay-tolerant system, the charging utility and energy consumption of MCs are cru-

cial factors to a↵ect the charging e�ciency in the WSN. As proved above, the delay-tolerant

charging problem is NP-hard. Therefore, we design a heuristic algorithm to address the

delay-tolerant charging, named single-path scheduling scheme (SPSS). In the scheme, we

assume that SPSS implements the full charge to make the WSN semi-permanent. Besides,

two MCs are assigned to traverse a single path simultaneously in the opposite directions

in order to avoid the sensors exhausting their energy before the MC visits their clusters.

In this scheme, we adopt GA to derive the near-optimal path for the deployed two MCs.

In the SPSS, the fitness function is defined based on the objectives of the scheme, i.e., the

charging utility and the energy consumed by the MC. Based on the fitness function rule

in [166], the fitness function for SPSS is formulated by

F =
UP

EMC
move

=

P
ki2P

P
si2ki E

si
H

EMC
move

. (6.13)

Here, we assume that sensors should receive the energy to make up the energy consumed

on data transceiving. Therefore, the fitness function can be expanded in the following

form, i.e., Eq. (6.14).

F =

P
ki2P

P
si2ki E

si
T

EMC
move

=

P
ki2P

P
si2ki P

si
C
⇥

P
K

k=1(T
MC

c
+ TMC

move
)

PMC
move
⇥

P
K

k=1 T
MC
move

(6.14)

In our work, the sum of energy consumption rate of all sensors
P

ki2P
P

si2ki P
si
C

and the

movement power rate of the MC PMC

move
are invariable. To simply the fitness function, it is
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rewritten as follows:

F = ! ⇥
P

K

k=1 T
MC

cP
K

k=1 T
MC
move

, (6.15)

where the value of ! is setting based on
P

ki2P
P

si2ki P
si
C

and PMC

move
.

Recall that; chromosomes are adopted to represent the solutions in GA, and each one is

comprised of a set of genes. In SPSS, the chromosome denotes the path of MCs, and each

gene in the chromosome represents a CH selected by the proposed clustering algorithm

or the data sink. In order to generate new solutions, the initial population should be

generated firstly. The process of the initial population generation is the same as the

process in the improved SDCA data collection scheme. The first gene and the last gene

in each chromosome are the sink because the MC should start to traverse the path from

the sink and return to the sink at the end of each round. All CHs are randomly arranged

into a chromosome for many times to create the initial population. The repetition of

chromosomes should be prohibited. The fitness values of the initial population will be

calculated, and chromosomes are sorted by the fitness value in descending order. After

generating the initial population, new solutions will be derived by the main operations of

GA, i.e., selection, crossover, mutation. In the SPSS, we utilize methods of GA operations

di↵erent from the improved SDCA data collection scheme to generate the path of MCs.

The main operations in the SPSS are introduced as follows.

1. Selection: In order to derive a new chromosome with high fitness value, the better

chromosomes should be selected as parents with high probability. In the SPSS, we ap-

ply the roulette wheel selection approach [182]. The probability for each chromosome

with fitness value fi is calculated by

P =
fi

⌃H

j=1fj
, (6.16)

where H is the size of the population. Two chromosomes with higher fitness values

are selected by the roulette wheel selection.

2. Crossover: The improved heuristic crossover operator in [183] is advantageous to

generate a better o↵spring with high probability and is employed as the crossover

operation. Two parents are selected by the selection operation, and the o↵spring

will be created by crossover operation. Because the sink is the start point of the

chromosome, the sink is the first gene in the o↵spring and is set to be the current

gene. The candidates of the next gene are selected from the two parents. In each

loop, the ratio of the charging time in the candidate of the next gene to the moving

time from the current gene to the candidate gene in two parents will be compared.
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The gene with a bigger ratio will be added into o↵spring. The current gene is removed

from both two parents, and the selected gene will be the current gene in the next

loop. The parent whose gene is not selected needs to right-circumvolve until the first

gene is the new current gene and enter the next loop. The o↵spring will be generated

once all CHs have been added into it. Then, the fitness value of the o↵spring will

be calculated. The chromosome with the lowest fitness value among the parents and

the o↵spring should be replaced.

3. Mutation: In the SPSS, the exchange mutation approach [184] is used as a mutation

operation. Two random selected genes swap their locations in the chromosome.

Then, its fitness value should be recalculated.

After the predetermined generations, the chromosome with the highest fitness value

will be selected as the path of MCs. Then, the information regarding the path and the

clusters is sent to the MCs. They start to go along the path in opposite directions and visit

each cluster. Once the MC arrives at the CH in each cluster, it will sojourn and charge

all sensors in the cluster. Additionally, the MC will communicate with the CH for data

collection. Once the MC has passed by the half of distance of the given road, it will return

to the sink, which can prevent the data latency. Due to the finite energy capacity of the

MC, when it is ready to move to the next cluster, it needs to check its residual energy in

case it will run out of its energy before returning to the data sink. If its residual energy

is su�cient to move to the next CH and return to the sink, it will continue executing its

tasks until it completes its tour and goes back to the sink; otherwise, it should return to

the data sink immediately, forward the gathered data to the sink and charge its battery.

Because of the long charging period of the MC, the sink will arrange a new one to take over

its work. The new MC first goes back to the last cluster that the original one visits and

keeps on traversing the given path, collecting data and charging energy to the sensors. At

the end of each tour, the MC returns to the sink, forward the data and charge its battery.

To avoid waiting for the charging period of the MC, a new MC with full energy will replace

the origin one to go on the next round.

6.5 Delay-aware Scheduling Scheme

From the formulations of the multiple objective problem presented above, we can see

that three main components a↵ect the performance of the scheduling scheme, i.e., the

sojourn time in each cluster, the path of MCs and the number of MCs. To achieve an

e↵ective schedule with low time complexity, we proposed a multiple-path scheduling scheme

(MPSS).
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6.5.1 Sojourn Period in Each Cluster

For the delay-aware systems, it is infeasible to recharge the sensors fully when the MC

arrives and sojourns in each cluster, which is implemented in the SPSS. In the WSN with

wireless charging, the energy received by sensors is proportion to the sojourn period for MC

in the cluster, which is presented in Eq. (6.3). If the sensors need to receive more energy

from the MC, the MC should stay in the cluster for a longer period. However, once the

sojourn time in the cluster is too short, the sensors cannot receive su�cient energy from

the MC. The sensors might drain their energy before accomplishing the data collection

task. To achieve a longer operational time while reducing the data latency and charging

delay, we assume that the residual energy of each sensor in the cluster should come up to

the predetermined threshold Es

th
= �Es

cap
during the energy charging process, where � is

a ratio between 0 and 1 to determine the Es

th
and defined by users. Once the MC arrives

in the cluster, all sensors in the cluster will be charged until their residual energy is up to

Es

th
. Additionally, the MC collects the data in the meanwhile. The MC will depart from

the current cluster after fulfilling the data collection and energy charging tasks.

6.5.2 Path Planning of the MCs

To plan the multiple paths for MCs with low complexity, we develop a heuristic algorithm

combined the minimum spanning tree and the 2-approximation algorithm. In the proposed

scheme, each MC sets out from the data sink and return to the sink at the end of each

round so that the MC can transmit the collected data timely and replenish its battery.

Moreover, the energy consumed by the MC for each tour should not exceed the energy

capacity of the MC EMC

cap
. Due to the limited energy capacity, the MCs far away from

the data sink should be responsible for fewer clusters, because they need to spend more

energy on movement. In [173], the authors designed the data gathering algorithm with

multiple data collectors. The proposed algorithm is inspired by the covering salesman

problem [185] including two subproblems, i.e., obtaining a minimum sojourn point set and

planning the shortest path for visiting all sojourn points. In our work, all CHs are assigned

as the sojourn points. Therefore, the MPSS is designed by improving the shortest path

planning method introduced in [173]. The improved path planning algorithm under the

assumptions of MPSS is described in the following. To avoid draining the MC’s energy,

EMC

cap
is set to be the upper bound of the energy consumed by the MC in each round. First,

each CH calculates the maximum energy Ek

max
that needs to be replenished by the MC

in each cluster, where Ek

max
=

P|V |
u✏Vi

�EVi
cap

. Next, the minimum spanning tree T (V,E) on

all CHs is constructed. Each node in T calculates its weight Weightv which is the sum
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costs in the subtree whose root is v. The sum costs are comprised of the needed charging

energy of each node in the subtree, and the energy consumed on movement between each

node and its children. After generating the topology of T , a set of subtrees will be built.

Initially, the deepest node u in T is found, and it is assigned as the root of current subtree t

which is denoted by Roott. Recall that the start point and the end point in each round are

the sink. The energy consumed on movement between the data sink and the subnetwork

should be cut. Therefore, the upper bound on energy consumption EMC

Res
in the current

subtree is calculated by

EMC

Res
= EMC

cap
� 2 ⇤

D(u,sink)

V MC
PMC

move
. (6.17)

To extend the subtree t, the parent of the root of subtree t in T becomes the candidate, and

its weight WeightParent(Roott) should be checked if it satisfies WeightParent(Roott) 
E

MC
Res
2 . If

the parent node meets the requirement, it becomes the root of the current subtree t, and

repeat the process of subtree extension; otherwise, the process of subtree extension stops,

and the subtree whose root is Roott in T becomes the current subtree t. After that, the

subtree t is removed from T . Due to the changes of the children of the nodes, each node

should recalculate its weight, and the new subtree would be built from the remaining T

in the next loop. All subtrees are generated until there is no node in T . Then, the path

of each subtree can be planned by executing the 2-approximation algorithm for TSP [50].

Besides, the sink should be added into the path, and the CH which is the closest to the

sink among all CHs in the path is selected as the adjacent sojourn point with the sink.

Fig. 6.2 depicts the workflow of the proposed path planning algorithm in MPSS.

Figure 6.2: The workflow of the proposed path planning algorithm in MPSS
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6.6 Performance Evaluation

In this section, we evaluate the performance of our proposed schemes by extensive experi-

ments conducted on the OMNeT++ simulator. Moreover, the result analysis is provided,

which can make a better understanding of our proposed schemes.

6.6.1 Simulation Setup

Di↵erent from the experiments in other algorithms introduced above, we also should focus

on the settings of MCs. In these experiments, we deployed 100 to 300 sensors with uniform

distribution in the FoI. All sensors transmit the message within their fixed transmission

range Rs

t
that was set to be 25m, and the energy consumption on data transmission was

based on the energy model proposed in [66]. The initial energy of the sensor was 2J .

Moreover, the velocity and the power rate of the MC were 5m/s and 5W , respectively.

Considering that the MC has finite energy, we set the energy capacity of the MC to be

10800J . Additionally, the charging range of the MC RMC

c
was set to be 50m, which means

that all sensors in the charging range can be recharged by the mobile charger based on the

charging model introduced in [176]. All simulation settings are listed in Table 6.1.

Table 6.1: Simulation settings of joint data gathering and wireless charging schemes
Parameter Description Value

Es
cap Energy capacity of sensor 2J [186]

EMC
cap Energy capacity of the MC 10800J [186]

PMC
t Charging power rate of the MC 5W [177]

PMC
move Movement power rate of the MC 180W [186]

V MC
Velocity of the MC 18m/s [186]

↵ The parameter of the charging model 0.864⇥10�4
[176]

� The parameter of the charging model 0.2316 [176]

6.6.2 Results Analysis

We conducted a collection of simulations to evaluate the performance of the proposed

schemes and compared them with another joint energy charging and data collection algo-

rithms, i.e., a joint energy replenish and data collection algorithm [186]. All schemes are

cluster-based and multi-hop communication. The di↵erences of these algorithms are the

clustering algorithms and the scheduling schemes for the MC. In our proposed scheduling
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schemes, we adopt the proposed clustering algorithm to select the CHs based on the at-

tributes of sensors and form the clusters in the WSN. Then the schedule for the MCs is

designed by SPSS or MPSS on the basis of the delay requirement of the system. In the joint

algorithm proposed in [186], the K-means clustering algorithm is used to divide the sensors

into a set of clusters, and the CHs are selected according to their residual energy and the

distance from them to the center of their own clusters. Two MCs works simultaneously

and walk along the shortest Hamiltonian cycle for energy charging and data collection.

Considering the size of the WSN and the battery capacities of the sensor and the MC in

our experiments, we set the value of � is 0.9. In the following, we will present and analyze

the simulation results from extensive experiments.

The first experiment evaluated the average delay in di↵erent schemes. In Fig. 6.3, the

result shows the data latency in MPSS is the lowest among all schemes. The average

delay is a↵ected by two parameters, i.e., charging time in each cluster, the journey time in

each round. The charging time depends on the size of the cluster and the charging energy

threshold. Because of the partial charging, the charging time of the MPSS is shorter than

the others. In our experiments, compared with the charging time, the delay is mainly

a↵ected by the journey time. The journey time is related to the length of paths of MCs.

Fig. 6.4 presents the journey length in these charging schemes. Due to the similar objectives

proposed in SPSS and the scheme in [186], the result on average delay and the journey

length is approximate. The reason for the slight di↵erence in the result is the di↵erent

clustering algorithms in two schemes. The length of paths generated by the MPSS is

relatively shorter. In the MPSS, the data latency should be diminished. Therefore, more

MCs are deployed in the WSN for task splitting regarding data collection and energy

replenishment, and the length of the tour for each MC is average and short. Except for the

short paths of the MCs, another reason for the low data update period of the MPSS is that

the length of paths for the MCs is limited based on the energy capacity of the MC. It ensures

that each MC can complete its tasks in each round and avoids that the MC returns to the

data sink before visiting all clusters. On the contrary, though the SPSS and the algorithm

in [186] adopt two MCs to co-operate the tasks while minimizing the energy consumption

of MCs on movement, the energy capacity of the MC is not considered. In these cases, the

energy consumed on movement and charging may exceed its energy capacity, especially

in the large-scale WSN. It causes that the MC needs to return to the sink in advance.

Therefore, the MC wastes an amount of time and energy on the movement between the

sink and the clusters. Consequently, the MPSS achieves the shortest data update period

compared with other schemes.

In the second experiment, we compared the average residual energy. Fig. 6.5 shows the

results of the residual energy among all sensors after a period of time. It depicts that the
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Figure 6.3: Comparison of the average delay of joint data gathering and wireless charging

schemes
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Figure 6.4: The average length of journey paths for MCs
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results of the SPSS and the algorithm in [186] are approximate, and the residual energy in

both schemes is high. It verifies that these two methods can prolong the network lifetime,

even remain sensors alive permanently. The residual energy in the MPSS is lower than the

other two schemes, which is determined by the predetermined energy threshold. However,

the ratio between the residual energy and the threshold of energy capacity in the MPSS is

relatively higher than the other two schemes. The average ratio of the SPSS, the MPSS,

and the algorithm in [186] are 0.982, 0.993, 0.978, respectively. Because of the short path of

each MC, the charging frequency for each cluster is high. On the other hand, the traveling

distance of MCs in the algorithm in [186] is longer than others, which may render a long

charging delay, especially in the large-scale WSN.
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Figure 6.5: Comparison of the average residual energy of joint data gathering and wireless

charging schemes

The last experiment was conducted to compare the performance on the charging utility

in the di↵erent schemes. As shown in Fig. 6.6, the charging utility gain by the SPSS is the

highest among all schemes. The reason is that the ratio of the sum of the energy received

by sensors to the energy consumed by MCs on movement is set as the fitness function

to assess the solutions. It leads to that the MCs in the SPSS consume more energy and

time on sensor charging instead of movement. On the contrary, the algorithm in [186] only

considers the movement distance of the MCs, and the path distance of MCs is relatively

longer than SPSS. Therefore, the MCs will spend more energy on movement. Due to the

partial charging, the MCs begin to replenish the sensors when their residual energy is

below the energy threshold. Hence, the SPSS achieves high charging utility and charging
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e�ciency.
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Figure 6.6: Comparison of the charging utility of joint data gathering and wireless charging

schemes

6.7 Summary

In this chapter, we studied the problem of the joint data collection and energy replenish-

ment scheme for solving the energy constraint issue in WSNs. Except for energy e�ciency,

the data latency is also considered in the joint design. Therefore, we proposed a two-

mode joint design for facing di↵erent system requirements. Due to the NP-hardness of

the proposed charging problems, we designed heuristic charging schemes to solve charging

problems with low complexity, i.e., SPSS and MPSS. First, the network topology was con-

structed, and the CHs were selected by the improved clustering algorithm. Second, two

modes of scheduling schemes were designed by heuristic algorithms based on their objec-

tives under di↵erent scenarios. For the SPSS, the sensors were fully charged to make them

alive permanently while improving the charging utility. On the other hand, the MPSS

implemented partial charging to decrease the data latency while prolonging the network

lifetime. The simulation results showed that the SPSS achieved high charging utility and

charging e�ciency, and the MPSS can reduce the data latency significantly.
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Chapter 7

Conclusion and Future Work

In this section, we conclude the proposed energy e�cient algorithms and provide the di-

rection of future work.

7.1 Conclusion

In this thesis, we mainly discussed the energy-e�cient issue in WSNs. It is crucial since it

a↵ects the network lifetime and system performance in WSNs because of the finite energy

capacity of sensors. The delay issue is also critical in WSNs, especially in the delay-sensitive

applications. To improve energy e�ciency and reduce the data latency, we proposed mobile

device-assisted energy-e�cient algorithms in WSNs. There are four proposed works in our

work: an SDCA data collection scheme, an improved SDCA data collection scheme for the

small-scale WSN, a two-mode MDCA data collection mechanism for the large-scale WSN

and a joint data collection and energy charging scheme.

In the SDCA data collection scheme, the FoI was divided into the square-shaped grids

with the same size, and the sensors in one grid formed a cluster. The optimal path for the

data collector was generated by GA with low complexity to reduce the energy consumption

of sensors and the data collector. In the improved SDCA scheme, the sensors initially were

grouped into clusters based on our newly proposed clustering algorithm. Then, the path

for the single collector was derived by modified GA.

For the MDCA data collection scheme, we developed a two-mode data gathering mecha-

nism by adopting multiple collectors, which could switch its status between the delay-aware

mode and the delay-tolerant mode. The delay-aware MDCA scheme ran in the gathering-

and-carrying mode in which all collectors transmitted their gathered data to the data sink

directly. It could help to shorten the data latency. The delay-tolerant MDCA schemes ran
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in the data-relaying mode in which the collectors gathered data from the distant subnet-

works and transmitted data to the data sink by intermediate collectors. It was helpful to

enhance the energy e�ciency of the collectors.

Similar to the MDCA data collection scheme, two types of MC scheduling schemes in

the joint data collection and energy charging design based on di↵erent delay requirements

of systems. In the delay-tolerant scenario, SPSS is developed by adopting two MCs to

traverse a single derived path by the heuristic algorithm in order to execute the data

collection and wireless charging cooperatively. On the other hand, the MPSS implements

a minimal number of MCs to operate the data gathering and wireless charging. Each MC

is responsible for a set of designated clusters, which ensures that the MC fulfills its task

before running out of its battery and does not need to return to the sink in advance.

7.2 Future Work

There are several aspects of our proposed works that can be extended to further improve the

system performance regarding energy e�ciency, data latency and other practical problems.

Though our work has designed many methods to reduce the traveling length of the

mobile device (such as clustering, heuristic-based the optimal path planning for the mobile

device), they still spend considerable time visiting many sensors. WSNs are sometimes used

for event detection or target tracking, and the sensors need not work or will not generate

any sensed data all the time. Therefore, the mobile device doesn’t have to visit these

sensors in each round. For this situation, we can combine the proposed energy-e�cient

schemes and the node scheduling approach to design a new path planning algorithm by

considering the event prediction [187, 188, 189]. The mobile data collector will traverse

some specific locations where the target will appear with a high probability, which can

significantly shorten the data update period.

In real life, the nodes usually are deployed in diverse environments where conditions are

very complex [190]. For example, there are many obstacles in the FoI [117, 191, 192, 193,

194], and the mobile device cannot traverse the region of the obstacle. Therefore, we need

to improve our scheme and take these regions that cannot be passed through by devices

into consideration. Besides, we can implement the proposed energy e�cient algorithms

in other situations by considering di↵erent assumptions, which makes our schemes more

practical, e.g. underwater networks [195, 196, 197, 198, 199], smart dust networks [200].
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