2ND WORKSHOP ON "BEST PRACTICES IN ENERGY EFFICIENCY IN CEMENT SECTOR" UNDER KEP INITIATIVE

ENERGY EFFICIENCY BENCHMARKING FOR CEMENT INDUSTRY-IMPROVEMENT OPPORTUNITIES

7th & 8th July'16, at My Home Industries Pvt. Ltd., Mellacheruvu

SEC reduction – CII Experiences

	Electrical SEC reduction range	Thermal SEC reduction range
Reduction in 2014-15 (%):	0.00 – 6.581 Average – 2-3%	0.00-4.40 Average – 1-1.5%
Average reduction % (last 3 yrs):	0.00-8.712	0.00-2.55
Average yearly reduction % (for 40+ cement plants)	2.04	0.831

PAT GTG Energy Reduction

- **♦ Escerts gain (PAT cycle -1)** 50,000 +
- Main factors for achieving target
 - > Improvement in clinker factor
 - □ From 0.741 to 0.640 in PPC
 - **□** Flyash % : From 23% to 32.5 %
 - > Reduction in energy consumption by various energy conservation measures
 - □ Clinkerization : 55.4 kWh/Mt clk to 52.3 kWh/MT clk
 - □ Cement grinding: 27.7 kWh/MT to 26.1 kWh/MT cement
 - □ Thermal: 714 kcal/kg clk to 705 kcal/kg clk
 - □ CPP heat rate: 3169 kcal/kWh to 3036 kcal/kWh
 - □ AFR utilization Increased by 4% +

Approach #1 Energy Benchmarking

Energy Benchmarking - Objective

- Awareness and identification of Best Available Technologies & Best Practices
- Assess our own energy performance
- Comparison with peers
- Identify gaps and possible solutions
- Formulate the strategies
- Monitor key parameters to maintain and sustain benefits

Energy Benchmarking for Cement Industry May 2015 Version 2.0

CII EE Benchmarking Manual contains...

- 1. Performance of Top 10 Plants : Section wise & Technology Wise
- 2. Analysis and Potential areas of improvement with cost economics
- **3.** Case studies to bridge the gap
- **4. 50** Energy Indicators Islands of Excellence
- 5. 325 Best Practices
- 6. 139 Monitoring Parameters to achieve EE

Benchmarking is Dynamic : It is highly possible that few plants may operate energy levels lower than best values mentioned in this manual !!!!!

Crusher SEC : kW / MT Material

Raw Mill SEC : kW / MT Material

Pyro Section SEC : kW / MT Material

Thermal SEC: kcal/ kg Clinker

Cement Grinding SEC : kW / MT Material

Packing SEC : kW / MT Material

Electrical Energy – Upto Clinkerisation SEC : kW / MT Clinker

Electrical Energy – Overall SEC : kW / MT cement

Overall SEC kW / MT Cement- CII Energy Award 2014-15

Best Number possible with BAT- kW / MT OPC

SL No	Section	kW / Material	kW / MT Cement	kW / Material	kW / MT Cement
		5 Stage PH		6 Sta	ge PH
1	Crusher	0.7	1.03	0.7	1.03
2	Raw Mill - VRM	13.3	18.95	13.3	18.95
3	Coal Mill – VRM	23.9	2.97	23.9	2.97
4	Pyro	16.28	15.47	18.7	16.25
	Up to Pyro		38.42		39.20
5	Cement Mill VRM	21.00	21.00	21.00	21.00
6	Packing	0.65	0.65	0.65	0.65
7	Misc.	2.00	2.00	2.00	2.00
	Overall		62.07		62.85

Islands of Excellence

- PH fan lowest SEC 3.88 kWh/MT clinker
- Lowest pressure drop in PH : 375 mmWc for 5 stage and 470 mmWc for 6 stage
- Fine coal phase density : 5.5 kg coal / kg air
- **Lowest RM Cyclone pressure drop : 50 mmwc**
- Lowest false air across RM circuit : 11%
- Lowest compressed air generation pressure for plant air requirement : 4.5 bar
- Lowest CA fan power : 1.2 kWh/Mt cement
- Lowest APC in CPP : 5.36%

Approach #2 Innovative Projects to reduce SEC

CASE STUDY: Installation of High Efficiency Separators

Seal Gap

Features: Air is blown in this gap to avoid any bypass of coarse material to get into the fine product

CASE STUDY: Improving Separator Efficiency

CASE STUDY: Improving Separator Efficiency

- Benefits Achieved:
 - **Bypass is reduced from 28 % to 7 %.**
 - Production increase by 14 %
 - **Specific energy reduced by 13.8 %**
 - Blaine reduced from 3800 cm²/gm to 3600 cm²/gm
 - Same early and final strength achieved with reduced blaine

Improving VRM classifier performance

Saving & Benefits

Without se	eal air						
Sep.speed (RPM)	Fan power (KW)	Main motor Ioad (KW)	Grinding pressure (mbar)	Vibration	Feed (TPH)	Residue (212 μ)	
80	834	1240-1260	120	3.8-4.2	170	4.6%	
With seal air							
Sep.speed I (RPM)	Fan power (KW)	Main motor Ioad (KW)	Grinding pressure (mbar)	Vibration	Feed (TPH)	Residue (212 μ)	
80	820	1230-1250	120	3.8-4.2	175	3.6%	

Through 4th Generation Classifier

- Benefits in quality of raw mill product
- Power saving in VRM main fan & main drive
- Increase output of VRM

Through study we get that power saving of **30 kW/Hr** & Increase In production by **5 TPH**

Total Annual Savings – RS. 221 Lakhs

Cooler hot gas recirculation

Recirculation of cooler stack hot air at 110-130°C inside cooler

- **Increase in steam generation**
- Increase in power generation

Recirculation duct tapping from Stack

Entry at fan inlet

Cooler hot gas recirculation- J K Lakshmi Cement

With the use of waste hot air having temperature 110-130 deg.c to the cooler through Fan no. 6,7 and 8, we are able to produce 2.5 tph more steam contributing more green power generation.

Results-:

Parameters	Without Hot Air Recirculation	With Hot Air Recirculation
Total Steam Generation (TPH)	73.05	75.55
Net power generation (Units/day)	292153	300322

Increase in WHR power generation-: 8169 units/day

Approach #3 Performance Improvement in CPPs

CPP – APC % & PLF

APC % - Captive Power Plant Scenario

SI. No	Operating Capacity, MW	APC %
Plant A	06	13.5
Plant B	15	9.82
Plant C	15	7.73
Plant D	15	7.57
Plant E	18	7.80
Plant F	25	8.15
Plant G	25	10.95
Plant H	27	7.69
Plant I	30	6.96
Plant J	33	11.0
Slide 29	© Confederation of Indian Industry	CII

Estimated potential available in Indian CPP

Captive power plants **D** APC % ranges : 5 – 12.5% Large Bandwidth Installed capacity :34444.12 MW Depending Capacity : 27555.3 MW @ 80% PLF **DAPC** power : 2342.2 MW @ 8.5% APC (average) At least 1% reduction in APC% Huge increase in the Net Power Generation Approx. 275 MW

Typical APC % Breakup

APC% Benchmarking - AFBC boilers

SI. No.	Auxiliary Name	Specific Power Consumption, kW/MW
1	Fans (PA, SA, ID & ACC fans)	17.9
2	Pumps (BFP, CEP, & ACWP)	24.6
3	BOP (WTP, CHP, ESP, Lighting, AC, CHP, Compressors & Misc.)	11.1
	Total	53.6 (APC – 5.36%)

APC% Benchmarking - CFBC boilers

SI. No.	Auxiliary Name	Specific Power Consumption, kW/MW
1	Fans (PA, SA, ID & ACC fans)	29.79
2	Pumps (BFP, CEP, & ACWP)	25.74
3	BOP (WTP, CHP, ESP, Lighting, AC, CHP, Compressors & Misc.)	9.83
	Total	65.36 (APC – 6.53%)

Approach #4 Innovative Ideas from Other Sectors

Shift-wise Energy Monitoring ...

COMMON GREASE LUBRICA	TION : Steam & Cond Totalizer	-			-			
G O 🔛 🗸 COMMON GREAS	E LUBRICATION:Str 👻 🕉 🖉 🧧	• 🖬 • 🗋 • 📑						
		ST	EAM & CONDE	NSATE TOTALIZ	ZERS			
	Input	Shift A Total	Shift B Total	Shift C Total	To Day Total	Todate	Yesterday	Specific Consumptions
LP Steam FT	19 TPH	153 Tons	32 Tons	0 Tons	185 Tons	194615 Tons	439 Tons	a 1.585 T/T
MP Steam FT	4.5 TPH	32.9 TONS	7.0 TONS	0.0 TONS	39.9 TONS	43499.9 TONS	93 Tons	6 0.370 T/T
Steam Profiler FT	O TPH	0 Tons	0 Tons	<mark>0</mark> Tons	<mark>0</mark> Tons	7338 Tons	0 Tons	
Hood & PV FT	O TPH	1 Tons	<mark>0</mark> Tons	<mark>0</mark> Tons	1 Tons	2764 Tons	2 Tons	
CONDENSATE	23.3 M3/Hr	186.1 M3	38.8 M3	0.0 MB	224.9 M3	280629.6 M3	520 m ^a	
NEW CONDENSATE	23.1 M3/hr	185.8 M3	38.8 M3	0.0 M3	224.6 M3	61297.8 M3	513 m ^s	
CONDENSATE RECOVER	RY	<mark>97.7</mark> %		Total Steam Specific Co	nsumption	1.955 T/T		
				Yesterday Production	240.0 Tons	2.216 1/1		

Detailed monitoring of minor areas ...

				2016-0	01-09 10:56:03
INSTRUMENT AIR	PRESENT VALUE	YESTERDAY AVG	SERVICE AIR	PRESENT VALUE	YESTERDAY A
CENTAC2 TOT CENTAC3 TOT CENTAC4 TOT CENTAC TOTAL	113.50 177.12 389.77	114.48 177.84 394.95	CENTAC1 Flow Service Air PM4 Service Air Cnetac TOTAL SERVICE AIR GENERATION	96.51 65.48 47.94 111.29	102.62 68.5 45.0 113.5
TOTAL INST AIR GENERATION	342.01	349.91	SERVICE AI	R CONSUMPT	ION
INST TOTAL PM1 INST AIR PM263 INST AIR PM 4 INST AIR PM5 INST AIR PM6 INST AIR NFL1 AIR NFL2 AIR SRB3 INST AIR SRB4 INST AIR CFB4,566 INST AIR GB INST AIR RO PLANT INST AIR PM465 INST AIR Total INST AIR Pressure	AIR CONST 22.06 9.67 20.02 50.00 21.72 27.29 8.07 20.00 13.84 3.24 0.00 4.00 74.64 132.96 5.80	3MPTION 21.29 9.60 8.77 50.04 21.79 27.67 8.19 20.02 14.17 2.95 0.00 4.00 75.11 129.68	PM1 SERVICE AIR PM263 SERVICE AIR PM1,263 SERVICE AIR PM 5 service AIR PM 5 SERVICE AIR SRB3 SERVICE AIR SRB4 SERVICE AIR CAUSTICIZING SERVICE AIR CFB5 AHP AIR CFB5 AHP AIR CFB7 AHP AIR GB AHP AIR Total AHP AIR PRESSURE MULL AIR PRESSURE	24.00 4.07 28.07 13.84 9.60 29.17 0.04 6.01 0.00 8.77 0.00 0.00 2.86 0.00 0.00 0.00 0.00 3.86 2.82	27.3 4,5 31.9 8.1 8.0 0.0 3.6 7.3 0.0 2.6 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0

Resource Allocation for EE ...

Campaings on EE ...

Approach #5 Major Levers to achieve PAT Targets

Levers towards PAT targets

- 1. Increasing additives in blended cement
- 2. Waste Heat Recovery
- **3. Alternate Fuel Utilization**
- 4. On-site Renewable Energy options

- Several opportunities to improve SEC
- Successful examples within this sector and beyond
- Newer innovative technologies also finding acceptance & adoption
- Energy managers play a vital role in units' performancee

Thank you!

Vaibhav Girdhar Counsellor Confederation of Indian Industry CII - Godrej Green Business Centre, India

Dir: +91 40 4418 5216

E-mail: vaibhav.girdhar@cii.in www.greenbusinesscentre.com / www.cii.in

