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Motivation
 Dark silicon era

 Accelerator rich architectures: Customized hardware for specific applications

 Hardware design is complex and time consuming

Many applications. Which ones to accelerate? Months of design effort.

Template based design: Capture commonalities for a domain
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Graph Analytics

 Model relationships between individual entities

 Emerging application areas:
Social networks, web, recommender systems, …

 Example applications: PageRank, Collaborative 
Filtering, Loopy Belief Propagation, Betweenness 
Centrality, …

 Graph-level parallelism & iterative algorithms
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Graph Accelerator Template
Targeted Graph Computation Pattern:
 Vertex-centric & Gather - Apply - Scatter (GAS)

We propose:
 Energy efficient accelerator architecture for irregular graph applications 

 Well-defined template to plug in different applications 

 Synthesizable SystemC models for architecture exploration & hardware generation

Design Productivity & Efficiency:
 Template code size : 39K lines, user code size 43 lines for PageRank

 PageRank: 65X better power efficiency than 24 cores of Xeon CPU
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Outline

 Targeted Application Characteristics
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Experimental Results
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Graph Analytics

Different than traditional HPC 
 Irregular data access & communication

 Poor cache locality

 Computation-to-communication ratio very low

 Irregular topologies due to scale-free graphs

Convergent algorithms
 Throughput vs. work-efficiency

 Different implementation choices

 High throughput easier to achieve than work efficiency
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Asymmetric Convergence

Processing all vertices in every 
iteration is not work-efficient!
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PageRank Execution

7% converge 
in 1 iteration

51% converge 
in 36 iterations

99.7% converge 
in 50 iterations

100% converge 
in 77 iterations

Similar observation was made in: Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J.M. Hellerstein, “Distributed 
Graphlab: A framework for machine learning and data mining in the cloud,” In Proc. of VLDB Endow., vol. 5, pp. 716-727, 2012

about 2x more edges processed for PageRank!



Synchronous vs. Asynchronous Execution
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Jacobi iteration formula for PageRank:

𝑟𝑘+1 𝑣 =
1 − 𝛼

𝑁
+ 𝛼 

(𝑢→𝑣)

𝑟𝑘(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)

Synchronous: All vertices are updated simultaneously.

Gauss-Seidel iteration formula for PageRank:

𝑟𝑘+1 𝑣 = 1 − 𝛼 + 𝛼σ 𝑢<𝑣
(𝑢→𝑣)

𝑟𝑘+1(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)
+ 𝛼σ 𝑢>𝑣

(𝑢→𝑣)

𝑟𝑘(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)

Asynchronous: Updates to a vertex are visible to others in the same iteration.
Observed to be much faster to converge! (30-50% less work)



Throughput vs. Work Efficiency
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Process all vertices

 Easier to implement

 High throughput

 Worse work efficiency

Process active vertices only 

 Maintain worklist, 
dynamic work assignment

 Lower throughput

 Better work efficiency

Asymmetric Convergence

Synchronous

 Easier to implement

 High throughput

 Worse work efficiency

Asynchronous

 Fine-grain synchronization, 
sequential consistency support

 Lower throughput

 Better work efficiency

Iterative Execution Model

Ozdal, et. al. ICCAD 2015
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Gather-Apply-Scatter Abstraction
 Abstraction proposed by Graphlab for distributed computing (Low, et. al. VLDB 2012) 

 Data structures associated with each vertex and edge

Compute operations defined for 3 stages of a vertex program:
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GATHER APPLY SCATTER
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ACCELERATOR UNIT

Active List Mgr: Maintains active vertices

Runtime: Schedules vertex computation

Gather Unit: Accumulates data from 
neighbors for a vertex

Apply Unit: Performs main computation 
for a vertex using gather results

Scatter Unit: Distributes the new data to 
neighbors; activates neighbors

Memory modules: Customized per graph 
data type



Compute Units
Gather Unit
 Neighbor vertices and edges accessed. Poor cache locality!

 Latency tolerant: Tens of vertices and hundreds of edges processed concurrently. High MLP!

 Storage for partial vertex and edge states with dynamic load balancing

 Dependency between neighboring vertices handled through Sync Unit

Apply Unit
 Computation done on local data only

Scatter Unit
 Similar to Gather Unit

 Memory writes in addition to reads

 Neighbor vertex activations
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Control Units
Sync Unit
 Ensures race-free and sequentially-consistent execution of vertices

 Maintains execution states of vertices and assigns a rank for each vertex

 Guarantees the proper RAW and WAR ordering for neighboring vertices

 High-throughput processing

Active List Manager
 Active vertices stored in main memory with efficient caching

 High-throughput access mechanisms

 Race-free simultaneous accessed without explicit locks

 Coordinates with Sync Unit for asynchronous execution
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Multiple Accelerator Units

 Banked design: Each unit responsible 
for a static subset of vertices

 Two global light-weight modules:
 GTD: Global Termination Detector 

 GRC: Global Rank Counter
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Benchmarks

Applications
 PageRank (PR)

 Single Source Shortest Path (SSSP)

 Stochastic Gradient Descent (SGD)

 Loopy Belief Propagation (LBP)

Datasets
 PR & SSSP: 6 datasets from Snap and generated with Graph500 (up to 1B edges)

 LBP: 3 images generated with GraphLab’s synthetic image generator (up to 18M edges)

 SGD: 2 movie datasets from MovieLens (up to 10M edges)  
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Experimental Setup
Baseline CPU
 2-socket 24-core IvyBridge Xeon with 30MB LLC and 132GB of main memory

 Optimized software implementations in OpenMP/C++

 Running Average Power Limit (RAPL) to estimate energy

 Projected DDR3 power (measured) to DDR4 power (in-house DDR4 model) 

Proposed Accelerator
 Performance: Cycle accurate SystemC model + DRAMSim2 

 Accelerator power and area: HLS + physical-aware logic synthesis with a 22nm industrial library

 Cache power and area: CACTI models

 DRAM power: in-house DDR4 model
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Performance Comparison
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Power Comparison

Accelerator power is dominated by DRAM power. Improvements would be ~10x higher without DRAM power
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Conclusions
 A template architecture for graph-analytics is proposed

 Latency tolerance for irregular accesses

 Graph-parallel execution with sequential consistency  

 Asynchronous execution and active vertex set support

 Synthesizable and cycle-accurate SystemC models

 Different accelerators generated by plugging in app-specific functions

 Template code size : 39K lines, user code size 43 lines for PageRank

 Experiments with 22nm industrial libraries:
 Performance comparable with a 24-core Xeon system (except SSSP)

 Up to 65x less power
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