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Motivation
 Dark silicon era

 Accelerator rich architectures: Customized hardware for specific applications

 Hardware design is complex and time consuming

Many applications. Which ones to accelerate? Months of design effort.

Template based design: Capture commonalities for a domain

2



Graph Analytics

 Model relationships between individual entities

 Emerging application areas:
Social networks, web, recommender systems, …

 Example applications: PageRank, Collaborative 
Filtering, Loopy Belief Propagation, Betweenness 
Centrality, …

 Graph-level parallelism & iterative algorithms
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Graph Accelerator Template
Targeted Graph Computation Pattern:
 Vertex-centric & Gather - Apply - Scatter (GAS)

We propose:
 Energy efficient accelerator architecture for irregular graph applications 

 Well-defined template to plug in different applications 

 Synthesizable SystemC models for architecture exploration & hardware generation

Design Productivity & Efficiency:
 Template code size : 39K lines, user code size 43 lines for PageRank

 PageRank: 65X better power efficiency than 24 cores of Xeon CPU
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Outline

 Targeted Application Characteristics

Graph-Parallel Abstraction

Proposed Architecture

Experimental Results
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Graph Analytics

Different than traditional HPC 
 Irregular data access & communication

 Poor cache locality

 Computation-to-communication ratio very low

 Irregular topologies due to scale-free graphs

Convergent algorithms
 Throughput vs. work-efficiency

 Different implementation choices

 High throughput easier to achieve than work efficiency
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Asymmetric Convergence

Processing all vertices in every 
iteration is not work-efficient!
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PageRank Execution

7% converge 
in 1 iteration

51% converge 
in 36 iterations

99.7% converge 
in 50 iterations

100% converge 
in 77 iterations

Similar observation was made in: Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J.M. Hellerstein, “Distributed 
Graphlab: A framework for machine learning and data mining in the cloud,” In Proc. of VLDB Endow., vol. 5, pp. 716-727, 2012

about 2x more edges processed for PageRank!



Synchronous vs. Asynchronous Execution

8

Jacobi iteration formula for PageRank:

𝑟𝑘+1 𝑣 =
1 − 𝛼

𝑁
+ 𝛼 ෍

(𝑢→𝑣)

𝑟𝑘(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)

Synchronous: All vertices are updated simultaneously.

Gauss-Seidel iteration formula for PageRank:

𝑟𝑘+1 𝑣 = 1 − 𝛼 + 𝛼σ 𝑢<𝑣
(𝑢→𝑣)
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Asynchronous: Updates to a vertex are visible to others in the same iteration.
Observed to be much faster to converge! (30-50% less work)



Throughput vs. Work Efficiency
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Process all vertices

 Easier to implement

 High throughput

 Worse work efficiency

Process active vertices only 

 Maintain worklist, 
dynamic work assignment

 Lower throughput

 Better work efficiency

Asymmetric Convergence

Synchronous

 Easier to implement

 High throughput

 Worse work efficiency

Asynchronous

 Fine-grain synchronization, 
sequential consistency support

 Lower throughput

 Better work efficiency

Iterative Execution Model

Ozdal, et. al. ICCAD 2015
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Gather-Apply-Scatter Abstraction
 Abstraction proposed by Graphlab for distributed computing (Low, et. al. VLDB 2012) 

 Data structures associated with each vertex and edge

Compute operations defined for 3 stages of a vertex program:
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GATHER APPLY SCATTER
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ACCELERATOR UNIT

Active List Mgr: Maintains active vertices

Runtime: Schedules vertex computation

Gather Unit: Accumulates data from 
neighbors for a vertex

Apply Unit: Performs main computation 
for a vertex using gather results

Scatter Unit: Distributes the new data to 
neighbors; activates neighbors

Memory modules: Customized per graph 
data type



Compute Units
Gather Unit
 Neighbor vertices and edges accessed. Poor cache locality!

 Latency tolerant: Tens of vertices and hundreds of edges processed concurrently. High MLP!

 Storage for partial vertex and edge states with dynamic load balancing

 Dependency between neighboring vertices handled through Sync Unit

Apply Unit
 Computation done on local data only

Scatter Unit
 Similar to Gather Unit

 Memory writes in addition to reads

 Neighbor vertex activations

14



Control Units
Sync Unit
 Ensures race-free and sequentially-consistent execution of vertices

 Maintains execution states of vertices and assigns a rank for each vertex

 Guarantees the proper RAW and WAR ordering for neighboring vertices

 High-throughput processing

Active List Manager
 Active vertices stored in main memory with efficient caching

 High-throughput access mechanisms

 Race-free simultaneous accessed without explicit locks

 Coordinates with Sync Unit for asynchronous execution
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Multiple Accelerator Units

 Banked design: Each unit responsible 
for a static subset of vertices

 Two global light-weight modules:
 GTD: Global Termination Detector 

 GRC: Global Rank Counter
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Benchmarks

Applications
 PageRank (PR)

 Single Source Shortest Path (SSSP)

 Stochastic Gradient Descent (SGD)

 Loopy Belief Propagation (LBP)

Datasets
 PR & SSSP: 6 datasets from Snap and generated with Graph500 (up to 1B edges)

 LBP: 3 images generated with GraphLab’s synthetic image generator (up to 18M edges)

 SGD: 2 movie datasets from MovieLens (up to 10M edges)  
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Experimental Setup
Baseline CPU
 2-socket 24-core IvyBridge Xeon with 30MB LLC and 132GB of main memory

 Optimized software implementations in OpenMP/C++

 Running Average Power Limit (RAPL) to estimate energy

 Projected DDR3 power (measured) to DDR4 power (in-house DDR4 model) 

Proposed Accelerator
 Performance: Cycle accurate SystemC model + DRAMSim2 

 Accelerator power and area: HLS + physical-aware logic synthesis with a 22nm industrial library

 Cache power and area: CACTI models

 DRAM power: in-house DDR4 model
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Performance Comparison
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Power Comparison

Accelerator power is dominated by DRAM power. Improvements would be ~10x higher without DRAM power
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Conclusions
 A template architecture for graph-analytics is proposed

 Latency tolerance for irregular accesses

 Graph-parallel execution with sequential consistency  

 Asynchronous execution and active vertex set support

 Synthesizable and cycle-accurate SystemC models

 Different accelerators generated by plugging in app-specific functions

 Template code size : 39K lines, user code size 43 lines for PageRank

 Experiments with 22nm industrial libraries:
 Performance comparable with a 24-core Xeon system (except SSSP)

 Up to 65x less power
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