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Motivation

) Dark silicon era

) Accelerator rich architectures: Customized hardware for specific applications
) Hardware design is complex and time consuming
IMany applications. Which ones to accelerate? Months of design effort.

JTemplate based design: Capture commonalities for a domain



Graph Analytics

) Model relationships between individual entities

) Emerging application areas:
Social networks, web, recommender systemes, ...

) Example applications: PageRank, Collaborative
Filtering, Loopy Belief Propagation, Betweenness
Centrality, ...

J Graph-level parallelism & iterative algorithms



Graph Accelerator Template

Targeted Graph Computation Pattern:
= Vertex-centric & Gather - Apply - Scatter (GAS)

We propose:
= Energy efficient accelerator architecture for irregular graph applications
= Well-defined template to plug in different applications
= Synthesizable SystemC models for architecture exploration & hardware generation

Design Productivity & Efficiency:
= Template code size : 39K lines, user code size 43 lines for PageRank
= PageRank: 65X better power efficiency than 24 cores of Xeon CPU
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Graph Analytics

Different than traditional HPC
= |rregular data access & communication

= Poor cache locality
= Computation-to-communication ratio very low
= |rregular topologies due to scale-free graphs

Convergent algorithms
= Throughput vs. work-efficiency
= Different implementation choices
= High throughput easier to achieve than work efficiency



Asymmetric Convergence
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Similar observation was made in: Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J.M. Hellerstein, “Distributed
Graphlab: A framework for machine learning and data mining in the cloud,” In Proc. of VLDB Endow., vol. 5, pp. 716-727, 2012



Synchronous vs. Asynchronous Execution

Jacobi iteration formula for PageRank:
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Synchronous: All vertices are updated simultaneously.

Gauss-Seidel iteration formula for PageRank:
r*H ) =0-a)+al uw

(u-v)

W
degree(u)

degree(u)

Asynchronous: Updates to a vertex are visible to others in the same iteration.
Observed to be much faster to converge! (30-50% less work)




Throughput vs. Work Efficiency

Asymmetric Convergence

Process all vertices
= Easier to implement

= High throughput

= Worse work efficiency

Process active vertices only

= Maintain worklist,
dynamic work assignment

= Lower throughput
= Better work efficiency

Iterative Execution Model

Synchronous
= Easier to implement

= High throughput

= Worse work efficiency

Asynchronous
= Fine-grain synchronization,

sequential consistency support

= Lower throughput
= Better work efficiency

Ozdal, et. al. ICCAD 2015
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Gather-Apply-Scatter Abstraction

) Abstraction proposed by Graphlab for distributed computing (Low, et. al. VLDB 2012)
) Data structures associated with each vertex and edge

JCompute operations defined for 3 stages of a vertex program:
GATHER APPLY SCATTER
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ACCELERATOR UNIT

: Gather Apply Scatter . . . L : :
Runtime Unit Unit Unit Active List Mgr: Maintains active vertices
Runtime: Schedules vertex computation
Active Sync Gather Unit: Accumulates data from
List Mgr Unit neighbors for a vertex
‘ Apply Unit: Performs main computation
Memory Request Handler DY : P
‘ for a vertex using gather results
Vertexinfo VertexData Edgelnfo EdgeData | | Activelist Scatter Unit: Distributes the new data to
Cache Cache Buffer Cache Cache neighbors; activates neighbors
Memory modules: Customized per graph
Memory Interface
‘ data type
System Memory (DRAM)




Compute Units

Gather Unit
= Neighbor vertices and edges accessed. Poor cache locality!

= Latency tolerant: Tens of vertices and hundreds of edges processed concurrently. High MLP!
= Storage for partial vertex and edge states with dynamic load balancing
= Dependency between neighboring vertices handled through Sync Unit

Apply Unit
= Computation done on local data only

Scatter Unit
= Similar to Gather Unit

= Memory writes in addition to reads
= Neighbor vertex activations




Control Units

Sync Unit
= Ensures race-free and sequentially-consistent execution of vertices

= Maintains execution states of vertices and assigns a rank for each vertex
= Guarantees the proper RAW and WAR ordering for neighboring vertices
= High-throughput processing

Active List Manager
= Active vertices stored in main memory with efficient caching

= High-throughput access mechanisms
= Race-free simultaneous accessed without explicit locks
= Coordinates with Sync Unit for asynchronous execution



Multiple Accelerator Units
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Benchmarks

Applications
= PageRank (PR)
= Single Source Shortest Path (SSSP)
= Stochastic Gradient Descent (SGD)
= Loopy Belief Propagation (LBP)

Datasets
= PR & SSSP: 6 datasets from Snap and generated with Graph500 (up to 1B edges)

= [BP: 3 images generated with GraphlLab’s synthetic image generator (up to 18M edges)
= SGD: 2 movie datasets from MovielLens (up to 10M edges)



Experimental Setup

Baseline CPU
= 2-socket 24-core lvyBridge Xeon with 30MB LLC and 132GB of main memory

= Optimized software implementations in OpenMP/C++
= Running Average Power Limit (RAPL) to estimate energy
= Projected DDR3 power (measured) to DDR4 power (in-house DDR4 model)

Proposed Accelerator
= Performance: Cycle accurate SystemC model + DRAMSIim2

= Accelerator power and area: HLS + physical-aware logic synthesis with a 22nm industrial library
= Cache power and area: CACTI models
= DRAM power: in-house DDR4 model



Performance Comparison
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Power Comparison

CPU Power / ACC Power
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Accelerator power is dominated by DRAM power. Improvements would be ~10x higher without DRAM power




Conclusions

) A template architecture for graph-analytics is proposed
= Latency tolerance for irregular accesses

= Graph-parallel execution with sequential consistency
= Asynchronous execution and active vertex set support

) Synthesizable and cycle-accurate SystemC models
= Different accelerators generated by plugging in app-specific functions
= Template code size : 39K lines, user code size 43 lines for PageRank

) Experiments with 22nm industrial libraries:
= Performance comparable with a 24-core Xeon system (except SSSP)

= Up to 65x less power



