Energy Efficient Architecture for Graph Analytics Accelerators

ISCA'16

<u>Mustafa Ozdal</u>^{*}, Serif Yesil^{*}, Taemin Kim⁺, Andrey Ayupov⁺, John Greth⁺, Steven M. Burns⁺, Ozcan Ozturk^{*}

^{*} Bilkent University, Ankara, Turkey ⁺ Intel Corporation, Oregon, USA

Motivation

Dark silicon era

Accelerator rich architectures: Customized hardware for specific applications

□ Hardware design is complex and time consuming

□ Many applications. Which ones to accelerate? Months of design effort.

Template based design: Capture commonalities for a domain

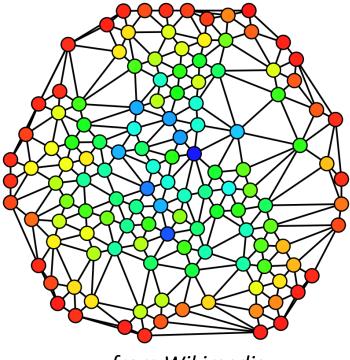
Graph Analytics

Model relationships between individual entities

Emerging application areas: Social networks, web, recommender systems, ...

Example applications: PageRank, Collaborative Filtering, Loopy Belief Propagation, Betweenness Centrality, ...

Graph-level parallelism & iterative algorithms



from Wikimedia

Graph Accelerator Template

Targeted Graph Computation Pattern:

Vertex-centric & Gather - Apply - Scatter (GAS)

We propose:

- Energy efficient accelerator architecture for irregular graph applications
- Well-defined template to plug in different applications
- Synthesizable SystemC models for architecture exploration & hardware generation

Design Productivity & Efficiency:

- Template code size : 39K lines, user code size 43 lines for PageRank
- PageRank: 65X better power efficiency than 24 cores of Xeon CPU

Outline

Targeted Application Characteristics

Graph-Parallel Abstraction

Proposed Architecture

Experimental Results

Graph Analytics

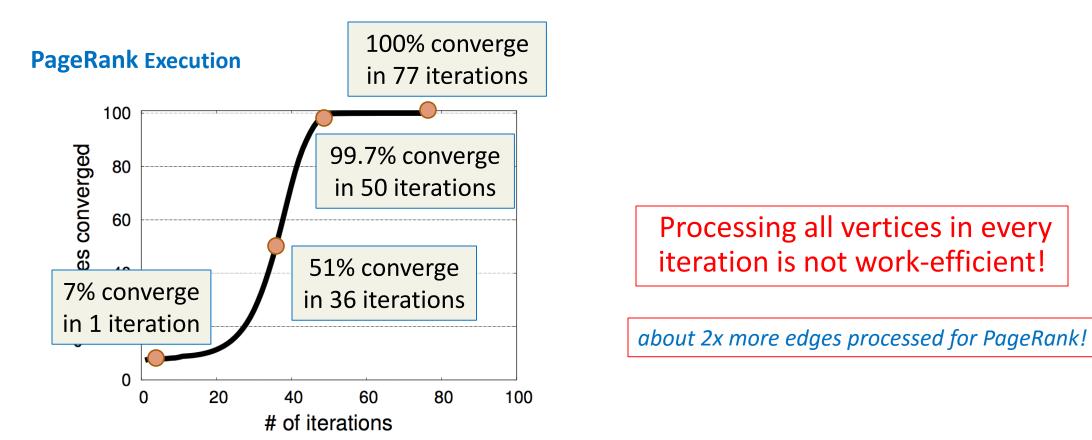
Different than traditional HPC

- Irregular data access & communication
- Poor cache locality
- Computation-to-communication ratio very low
- Irregular topologies due to scale-free graphs

Convergent algorithms

- Throughput vs. work-efficiency
- Different implementation choices
- High throughput easier to achieve than work efficiency

Asymmetric Convergence



Similar observation was made in: Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J.M. Hellerstein, "Distributed Graphlab: A framework for machine learning and data mining in the cloud," In Proc. of VLDB Endow., vol. 5, pp. 716-727, 2012

Synchronous vs. Asynchronous Execution

Jacobi iteration formula for PageRank:

$$r^{k+1}(v) = \left(\frac{1-\alpha}{N}\right) + \alpha \sum_{(u \to v)} \frac{r^k(u)}{degree(u)}$$

Synchronous: All vertices are updated simultaneously.

Gauss-Seidel iteration formula for PageRank:

$$r^{k+1}(v) = (1-\alpha) + \alpha \sum_{\substack{u < v \\ (u \to v)}} \frac{r^{k+1}(u)}{degree(u)} + \alpha \sum_{\substack{u > v \\ (u \to v)}} \frac{r^{k}(u)}{degree(u)}$$

Asynchronous: Updates to a vertex are visible to others in the same iteration. Observed to be much faster to converge! (30-50% less work)

Throughput vs. Work Efficiency

Asymmetric Convergence

Process all vertices

- Easier to implement
- High throughput
- Worse work efficiency

Process active vertices only

- Maintain worklist, dynamic work assignment
- Lower throughput
- Better work efficiency

Iterative Execution Model

Synchronous

- Easier to implement
- High throughput
- Worse work efficiency

<u>Asynchronous</u>

- Fine-grain synchronization, sequential consistency support
- Lower throughput
- Better work efficiency

Outline

□ Targeted Application Characteristics

Graph-Parallel Abstraction

Proposed Architecture

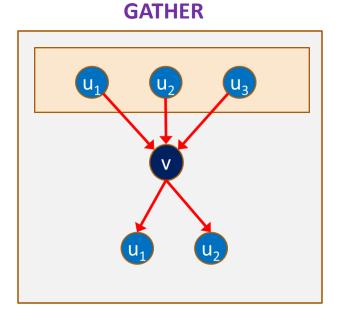
Experimental Results

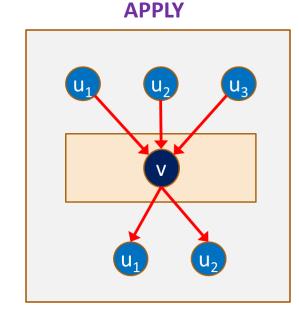
Gather-Apply-Scatter Abstraction

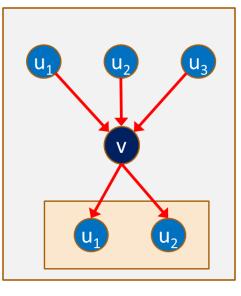
Abstraction proposed by Graphlab for distributed computing (Low, et. al. VLDB 2012)

Data structures associated with each vertex and edge

Compute operations defined for 3 stages of a vertex program:







Outline

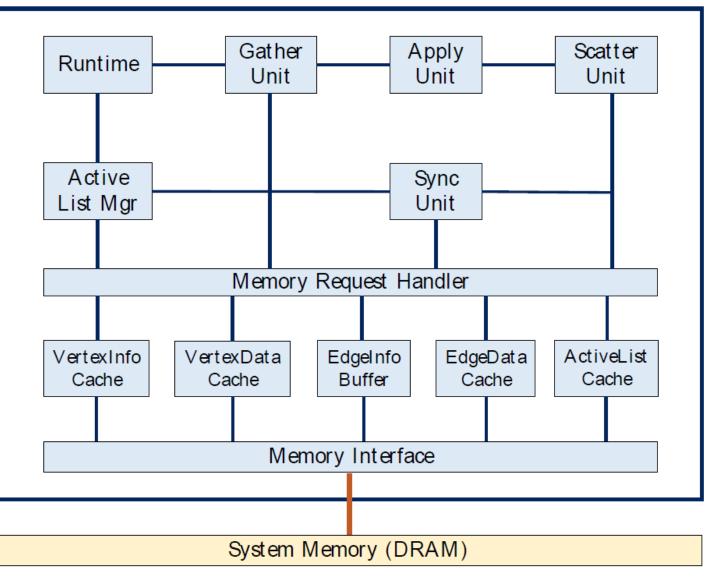
Targeted Application Characteristics

Graph-Parallel Abstraction

Proposed Architecture

Experimental Results

ACCELERATOR UNIT



Active List Mgr: Maintains active vertices

<u>Runtime</u>: Schedules vertex computation

Gather Unit: Accumulates data from neighbors for a vertex

<u>Apply Unit</u>: Performs main computation for a vertex using gather results

<u>Scatter Unit</u>: Distributes the new data to neighbors; activates neighbors

Memory modules: Customized per graph data type

Compute Units

Gather Unit

- Neighbor vertices and edges accessed. Poor cache locality!
- Latency tolerant: Tens of vertices and hundreds of edges processed concurrently. High MLP!
- Storage for partial vertex and edge states with dynamic load balancing
- Dependency between neighboring vertices handled through Sync Unit

Apply Unit

Computation done on local data only

Scatter Unit

- Similar to Gather Unit
- Memory writes in addition to reads
- Neighbor vertex activations

Control Units

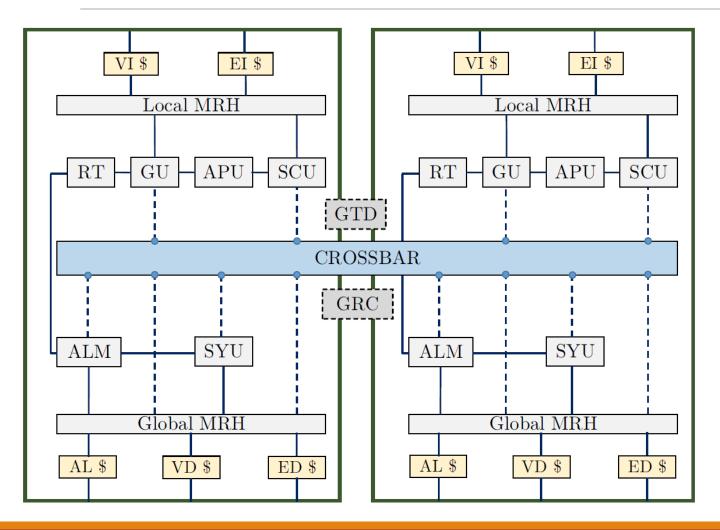
Sync Unit

- Ensures race-free and sequentially-consistent execution of vertices
- Maintains execution states of vertices and assigns a *rank* for each vertex
- Guarantees the proper RAW and WAR ordering for neighboring vertices
- High-throughput processing

Active List Manager

- Active vertices stored in main memory with efficient caching
- High-throughput access mechanisms
- Race-free simultaneous accessed without explicit locks
- Coordinates with Sync Unit for asynchronous execution

Multiple Accelerator Units



 Banked design: Each unit responsible for a static subset of vertices

- Two global light-weight modules:
 - *GTD*: Global Termination Detector
 - GRC: Global Rank Counter

Outline

Targeted Application Characteristics

Graph-Parallel Abstraction

Proposed Architecture

Experimental Results

Benchmarks

Applications

- PageRank (PR)
- Single Source Shortest Path (SSSP)
- Stochastic Gradient Descent (SGD)
- Loopy Belief Propagation (LBP)

Datasets

- PR & SSSP: 6 datasets from Snap and generated with Graph500 (up to 1B edges)
- LBP: 3 images generated with GraphLab's synthetic image generator (up to 18M edges)
- SGD: 2 movie datasets from MovieLens (up to 10M edges)

Experimental Setup

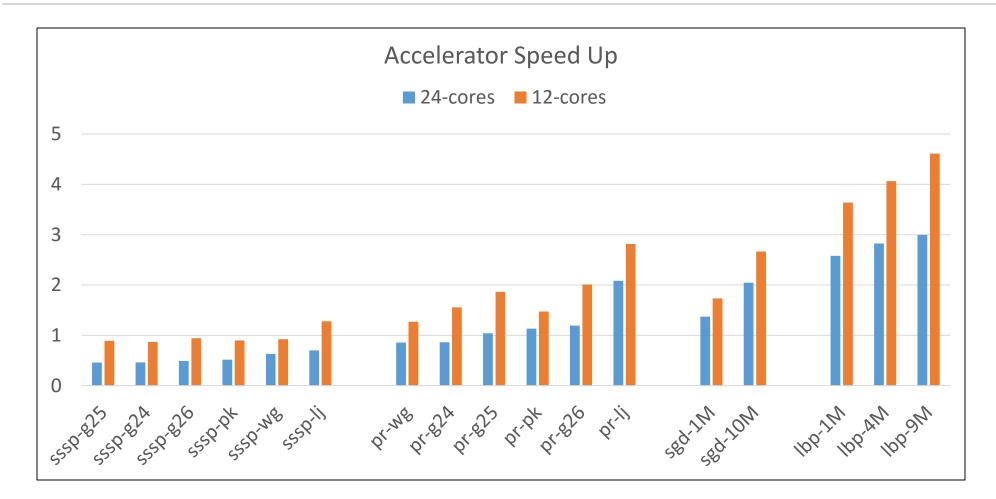
Baseline CPU

- 2-socket 24-core IvyBridge Xeon with 30MB LLC and 132GB of main memory
- Optimized software implementations in OpenMP/C++
- Running Average Power Limit (RAPL) to estimate energy
- Projected DDR3 power (measured) to DDR4 power (in-house DDR4 model)

Proposed Accelerator

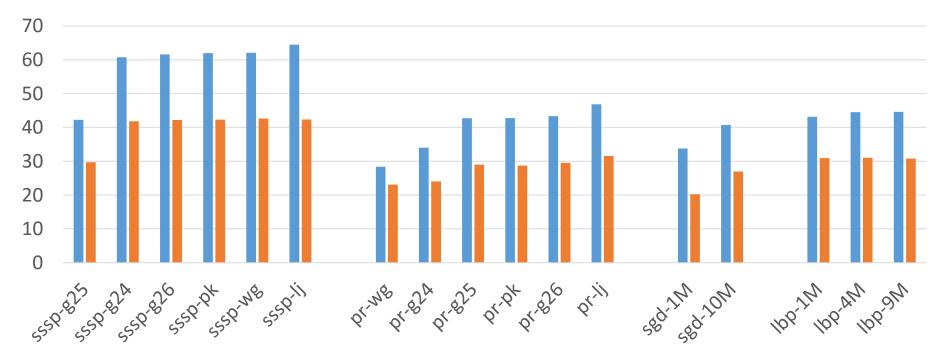
- Performance: Cycle accurate SystemC model + DRAMSim2
- Accelerator power and area: HLS + physical-aware logic synthesis with a 22nm industrial library
- Cache power and area: CACTI models
- DRAM power: in-house DDR4 model

Performance Comparison



Power Comparison

CPU Power / ACC Power



Accelerator power is dominated by DRAM power. Improvements would be ~10x higher without DRAM power

Conclusions

A template architecture for graph-analytics is proposed

- Latency tolerance for irregular accesses
- Graph-parallel execution with sequential consistency
- Asynchronous execution and active vertex set support

Synthesizable and cycle-accurate SystemC models

- Different accelerators generated by plugging in app-specific functions
- Template code size : 39K lines, user code size 43 lines for PageRank
- Experiments with 22nm industrial libraries:
- Performance comparable with a 24-core Xeon system (except SSSP)
- Up to 65x less power