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➢ Ph.D. degree from Department of ECE at Purdue University, West Lafayette, IN, in 2015, under supervision of

Prof. Kaushik Roy (Edward G. Tiedemann Jr. Distinguished Professor).

➢In 2019 Fall, I joined Arizona State University, Tempe, AZ as an Assistant Professor at School of ECEE.

➢Before that I was an assistant professor at ECE department, University of Central Florida, Orlando, FL. My main

research have focused on:

• Energy Efficient and High Performance Big Data Processing-In-Memory Circuit, Architecture and Algorithm (e.g. Deep

Neural Network, Data Encryption, Graph Processing, bioinformatic Processing-in-Memory)

• Hardware Aware Deep Neural Network Compression Algorithm for AI Edge/IoT Computing

• Brain-inspired (Neuromorphic) and Boolean Computing Using Emerging Nanoscale Devices like Spintronics, ReRAM

and Memristors

• AI Security

• Low Power Digital and Mixed Signal CMOS VLSI Circuit Design

➢I have published 80+ IEEE/ACM research papers in above areas; served as leading-PI for research projects from

NSF CCF, NSF FET, SRC nCore project, SCEEE research initiation grant, Cyber Florida, UCF Inhouse fund; three

best paper awards from GLSVLSI 2019, ISVLSI 2018 and 2017; one best paper candidate from ASPDAC 2019;

one Front cover paper of IEEE Transactions on Magnetics.
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➢ Motivation:

➢Power Wall in CMOS technology;

➢Memory Wall in Von-Neumann Architecture

➢ Research Objectives and Methodologies:

➢ Bottom-Up: Device & Circuits co-design for parallel and reconfigurable in-memory logic based on

Non-Volatile Memory, like STT-MRAM, SOT-MRAM, ReRAM

➢ Top-Down: Architecture & Algorithm co-optimization for data intensive processing-in-memory

acceleration: Deep Neural Network, Data Encryption, Graph Processing, DNA Alignment, etc.

➢ Summary
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Motivation: Power Wall in CMOS Device

4
D. Fan, et. al., DAC 2018/2019, ICCAD2018, DATE 2019, ICCD 2017/2018, ASPDAC 2018/2019, TCAD 2018, TMAG 2018, TNANO 2018
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Trend: Memory Static Power Trend: Logic Static Power

Trend: Memory Dynamic Power Trend: Logic Dynamic Power

Requirement: Dynamic plus Static Power 

1W SOC power constraint

5W power constraint

Mobile SoC

power road map

❖Low power design is a grand challenge!

❖Mobile devices with extremely low power

❖End of Moore’s law and Dennard Scaling

❖ Possible solutions?

Power Wall

Performance 

Improvement



Motivation: Energy Efficient In-Memory Computing

5D. Fan, et. al., DAC 2018/2019, ICCAD2018, DATE 2019, ICCD 2017/2018, ASPDAC 2018/2019, TCAD 2018, TMAG 2018, TNANO 2018

➢ Energy hungry data transfer

➢ Long memory access latency

➢ Limited memory bandwidth

✓ Parallel, local data processing

✓ Short memory access latency

✓ Ultra-low energy

✓ Programmable, Low cost

Von-Neumann Architecture

CPU
Sequential

Computation 

32-bit

ALU

Main
Memory

Instruction fetch

Data transfer

Instruction fetch

Data transfer

• Multiple instruction fetch
• Multiple data transfer

GPU
Parallel

Computation 

32-bit

GPU
Memory

Instruction fetch

Data transfer

Data transfer

• Single instruction fetch
• Multiple data transfer

Memory Wall

Moving a floating point 
number from main memory 
to CPU takes two orders 
more energy than processing 
in CPU

Controller

Von-Neumann architecture

Memory Logic

Processing-in-Memory Architecture

vs.

Controller

…

In-Memory Computing Cluster

Memory & Logic Memory & Logic

In-Memory 
Computing Unit

Multiplication: 3.1pJ

Addition: 0.1pJ

Off-chip memory: 

Energy: ~640pJ

Latency: ~100ns

On-chip cache: 

Energy: ~5pJ

Latency: ~10ns
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Ambit (Micro’17)

Pinatubo (DAC’16)

RIMPA (ISVLSI’17)

DRISA (Micro’17-18)

3T1C 1T1C-logic

2015

ComputeCache
(HPCA’17)

CMP-PIM

(DAC’18)

RADAR (DAC’18)

2018

Prime (ISCA’16)
ISAAC (ISCA’16)

MPIM (ASPDAC’17)

8T-SRAM (DAC’18)

XNOR-RRAM 
(DAC’18)

NeuralCache          

(ISCA’18)

DrAcc (DAC’18)

STT-CiM

(TVLSI’18)
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4+2TSRAM 
(IEEE JSSC’18)

Magnetic Crossbar 
(GLSVLSI’17)

In-memory classifier 

(IEEE JSSC’17)TCAM/BCAM/SRAM 

(IEEE JSSC’16)

AligneR 
(CAL’18)

3D-stacked DRAM

(ISCA’16)

NDA: Near-DRAM 

computing (HPCA’15)

1Mb CIM 
(ISSCC’18)

PipeLayer (HPCA’17)

2016 2019

DW-AES (TIFD’16)

Compute memory 
(IEEE ICASSP’14)

DRIM (arXiv’19)



Main Research Objective and Methodology
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Circuit: D. Fan, et. al., 

TNANO 2018, TMAG 
2018, TCAD 2018, DAC 

2018/2019, ASPDAC 
2018/2019, ISLPED 2018, 

Magnetic Letter

Architecture: D. Fan, et. 
al., ICCD 2018, DAC 

2018/2019, TCAD 2018, 
ASPDAC 2018/2019

Algorithm: D. Fan, et. al., 
CVPR 2019, ICCV2019, 
DAC 2018/2019, ICCAD 
2018, WACV2018/2019, 
DATE 2019, ICCD 2018, 
ISVLSI 2018, ASPDAC 
2018/2019, TCAD 2018, 
TNANO 2018, TMAG 
2018

Partial related works in 2018 and 2019

Device & Circuits: 

NVM +CMOS

Architecture:

In-Memory Computing 

Objective: Energy Efficient and Intelligent Processing-in-Memory

Bottom-Up
Device and Circuit 

Co-Design

Device & Circuit: Parallel and Reconfigurable in-Memory Logic 
based on STT-MRAM, SOT-MRAM, DWM, ReRAM, DRAM, with 
extreme low overhead.
Objective: dual mode computational memory simultaneously 
working as memory and in-memory logic

Top-Down
Algorithm and 

Architecture Co-Design

Architecture: Parallel Processing-in-Memory Accelerator 
Algorithm: Data intensive and intelligent application algorithm 
development for developed PIM platform
Developed and developing PIM applications: deep neural network, 
data encryption, image processing, graph processing 



➢Bottom Up: Device & Circuits co-design for parallel and reconfigurable in-memory logic

based on NVM

➢Memory and In-Memory Complete Boolean Logic

➢One/Two-Cycle In-Memory Full Adder leading to Fast and Parallel In-Memory Adder

➢Overcome Operand Locality Issue in Existing In-Memory Logic Designs

8
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Spintronic Devices and MRAM

9
[1] X. Fong et al., ”Spin-transfer torque devices for logic and memory: Prospects and perspectives,” IEEE TCAD, vol. 35, pp. 1-22, 2016.

[2] C.-F. Pai et al., “Spin transfer torque devices utilizing the giant spin hall effect of tungsten,” Applied Physics Letters, 2012. [3] S.W. Chung, et. al., “4Gb perpendicular STT-MRAM with compact cell structure and beyond”, IEDM, 2016

✓ ultra-low switching energy

✓ non-volatility

✓ excellent retention time

✓ high integration density

✓ CMOS compatibility

STT-MRAM

Write current 

Read current 

WL

B
L S
L

Limitations

▪ Write asymmetry

▪ Reliability-limited write speed

▪ Read write optimization 

conflicts

SOT-MRAM

Key Advantages

▪ Energy-efficient write

▪ Decoupled R/W current paths

▪ Separate optimization for 

Read and for Write

Limitations

▪ Requires two access transistors

▪ Switching PMA MTJ requires FL 

engineering that involves 

fabrication challenge

❖ Features



Dual-Mode Memory: Memory and Logic

Basic In-Memory logic – AND/NAND, OR/NOR

10
D. Fan. et. al. ASPDAC 2018



Dual-Mode IN-MEMORY Logic Design
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o Dual mode architecture that perform both memory read-write and AND/ OR logic operations.

o Memory Mode: charge current (~120 µA), 1ns switching speed

o Computing Mode:  Every two bits stored in the identical column can be selected and sensed 

simultaneously. Through selecting different reference resistances                                  , the SA can perform 

basic in-memory Boolean functions (i.e. AND and OR).
( , , )M AND OREN EN EN

Shaahin Angizi, Zhezhi He, Farhana Parveen and Deliang Fan, “IMCE: Energy-Efficient Bit-Wise In-Memory Convolution Engine for Deep Neural Network,” Asia and South Pacific 

Design Automation Conference (ASP-DAC), Jan. 22-25, 2018, Jeju Island, Korea



Dual-Mode IN-MEMORY Logic Design

12
Monte Carlo simulation result

o For AND operation,       is set at the midpoint of                           and

o For OR operation,       is set at the midpoint of              and 

o We have performed Monte-Carlo simulation with 100000 trials. A       

variation is added on the Resistance-Area product          , 

and a               process variation is added on the TMR.

o Sense Margin will be reduced by increasing the logic fan-in (i.e. number 

of parallel memory cells). 

o To avoid read failure, only two fan-in in-memory logic is used in this 

work.

refR || (1,0)AP PR R 

|| (1,1)AP APR R 

refR ||P PR R ||P APR R

5%  ( )PRA

10% 

• No XOR/XNOR Logic now, intermediate data 
write-back needed if implemented using 
AND/OR

• More logic functions needed !



More Logic Functions Supported

Reconfigurable AND/NAND, OR/NOR, XOR/XNOR, 
Majority In-Memory Logic in one design

13
D. Fan. et. al. DAC 2018, ICCAD 2018, ISVLSI 2018



Reconfigurable Complete Boolean Logic

14

• Modified row/column decoder can enable either single line (memory read) or double line (logic operation).

• SA can provide bitwise AND/NAND and OR/NOR, XOR/XNOR can be realized through combinational logic gates (AND,NOR).

• Complete Parallel Boolean Logic in one SA and one sensing cycle: AND/NAND, OR/NOR, XOR/XNOR

[1] Shaahin Angizi, Zhezhi He and Deliang Fan, “PIMA-Logic: A Novel Processing-in-Memory Architecture for Highly Flexible and Energy-Efficient Logic Computation, ” IEEE/ACM Design Automation 

Conference (DAC), June 24-28, 2018, San Francisco, CA, USA

[2] Zhezhi He, Shaahin Angizi and Deliang Fan, “Accelerating Low Bit-Width Deep Convolution Neural Network in MRAM,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI), July 9-11, 2018, Hong 

Kong, CHINA

❖ Dual mode architecture that perform both memory and in-

memory logic operations.

❖ Only two fan-in in-memory logic to avoid 

logic failure!



Recent Processing-in-Memory Platforms
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Ambit: DRAM-based [4] Pinatubo: NVM-based [5] RIMPA: DWM-based [6]

Issues:

1. Only simple 
logic (7+ 
cycles for FA, 
intermediate 
data write-
back)

2. Operand 
locality

[4] V. Seshadri et al., "Ambit: In-memory accelerator for bulk bitwise operations using commodity DRAM technology," MICRO, 2017, pp. 273-287: ACM.

[5] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memories,” in 2016 53nd DAC. IEEE, 2016.

[6] S. Angizi et al. "Rimpa: A new reconfigurable dual-mode in-memory processing architecture with spin hall effect-driven domain wall motion device," (ISVLSI), 2017, pp. 45-50: IEEE.

➢ Operand locality issue

➢ Original data overwritten

➢ Multi-cycle operations

➢ Simple logic

➢ Low area overhead

➢ Hardware-friendly

➢ Exploit the full bandwidth

➢ Operand locality issue

➢ Large area overhead

➢ Simple logic

➢ Fast MG computation

➢ Ultra-low power

➢ Operand locality issue

➢ Modified SA

➢ Simple logic

➢ Medium area overhead

➢ Support one-step multi-row 

operations

➢ General platform

our solutions



Two-Cycle In-Memory Full Adder

16D. Fan. et. al. DAC 2019, ASPDAC 2019



Reconfigurable Logic-SA
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o Dual mode architecture that performs both memory 

and in-memory logic operations.

o Up to three fan-in in-memory logic to avoid logic 

failure!
Monte Carlo simulation result

o 2-input Boolean Logic in one SA and one sensing 

cycle: AND/NAND, OR/NOR, XOR/XNOR.

o 3-input Boolean Logic in one SA and one sensing 

cycle: MAJ/MIN.

D. Fan. et. al. ASPDAC 2019
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o Carry is directly produced by ParaPIM’s MAJ function (3-

row activation).

o A Carry Latch to store intermediate Carry outputs to be 

used in summation of next bits.

o Sum output is achieved by 2-row activated XOR followed 

by a 2-input XOR gate connected to it and Carry Latch.

o Enable parallel One Computation per two Memory Cycles.

o Assume A, B and C operands, the 2- and 3-input in-

memory logic schemes generates Sum(/Difference) and 

Carry(/Borrow) bits very efficiently.

In-memory Addition



Parallel In-Memory Multi-bit Adder

20D. Fan. et. al. DAC 

2019, ASPDAC 2019

• Parallel Matrix 

Addition enabled

• 2N cycles are needed 

for N-bit adder



One Cycle In-Memory Full Adder

21D. Fan. et. al. DATE 2019, DAC 2019



Reconfigurable Logic-SA
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2-input Boolean Logic (IML2x) in one SA and one 

sensing cycle: AND2/NAND2, OR2/NOR2.

3-input Boolean Logic (IML3x) in one SA and one 

sensing cycle: AND3/NAND3, OR3/NOR3,

MAJ/MIN, XOR2/XNOR2, XOR3/XNOR3,

Addition. 22
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In-memory AND2 (IML21) In-memory XOR3 (IML35) 

XOR2/XNOR2 

based on XOR3/XNOR3

XOR3

23



In-memory Adder (IML36) 

o Carry is directly produced by MAJ function 
(IML33).

o Sum output is achieved by inverted Carry signal 
(MIN function) for 6 out of 8 possible input 
combinations.

o In two extreme cases (000 and 111), the MIN
signal is disconnected and Sum is achieved by 
NOR3 (T1:ON,   T2:OFF  Sum=0) and
NAND3 (T1:OFF, T2:ON  Sum=1).

o Enable parallel One Computation per One 
Memory Cycle.

o Assume M1, M2 and M3 operands, 3-input in-
memory logic schemes generates 
Sum(/Difference) and Carry(/Borrow) bits very 
efficiently.



Up-to-Now: Supported Parallel and Reconfigurable In-Memory 
Logic in ONE-cycle

Area Overhead

~5.8%
~7.9%

2-cycle in-memory FA and its 

application in DNN acceleration
D. Fan. et. al. DAC 2019, ASPDAC 2019

1-cycle in-memory FA and its 

application in Graph processing and 

DNA sequence analysis
D. Fan. et. al. DATE 2019, DAC 2019

Parameters Size Activation

Compute. Sub-array 512×256 depending on in-memory OP.

Sub-array per Mat 8×8 64

Mat per Bank 2×2
2/2  and  2/2  as  row  and  

column activations

Bank per Group 4×4
1/4 and 4/4 as row and 

column  activations

Configuration Table for a sample 512Mb memory

Add-on area breakdown Add-on area breakdown



Recent Processing-in-Memory Platforms
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Ambit: DRAM-based [4] Pinatubo: NVM-based [5] RIMPA: DWM-based [6]

[4] V. Seshadri et al., "Ambit: In-memory accelerator for bulk bitwise operations using commodity DRAM technology," MICRO, 2017, pp. 273-287: ACM.

[5] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memories,” in 2016 53nd DAC. IEEE, 2016.

[6] S. Angizi et al. "Rimpa: A new reconfigurable dual-mode in-memory processing architecture with spin hall effect-driven domain wall motion device," (ISVLSI), 2017, pp. 45-50: IEEE.

➢ Operand locality issue

➢ Original data overwritten

➢ Multi-cycle operations

➢ Simple logic

➢ Low area overhead

➢ Hardware-friendly

➢ Exploit the full bandwidth

➢ Operand locality issue

➢ Large area overhead

➢ Simple logic

➢ Fast MG computation

➢ Ultra-low power

➢ Operand locality issue

➢ Modified SA

➢ Simple logic

➢ Medium area overhead

➢ Support one-step multi-row 

operations

➢ General platform

our solutions:

1. Reconfigurable 
Logic-SA, one 
cycle logic

2. Operand 
locality ?

Issues:

1. Only simple 
logic (7+ 
cycles for FA, 
intermediate 
data write-
back)

2. Operand 
locality
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Approach-1: PIMA-Logic
D. Fan, et. al, DAC 2018

Approach-2: Polymorphic Logic
D. Fan, et. al, ISVLSI 2017 (best paper 

award), ASPDAC2018
In-memory logic 

for data either in 

the same word-line 

or bit-line

New non-volatile 

polymorphic logic as 

add-on to existing SA

Observation Now: 

Operand locality vs. Parallel computing 



SOT-MRAM 2T1R Device modeling and Parameters
• Area of the SOT-MRAM accelerators (in ASP-DAC 2018 [2] and DAC 2018 [3]) consists of two main components:

1- MRAM die area, and 2- Add-on digital processing unit area.
• MRAM die area:

[1] R. Zhao et al., "Accelerating binarized convolutional neural networks with software-programmable fpgas," in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2017, pp. 15-24: ACM.

[2] S. Angizi, Z. He, F. Parveen, and D. Fan, "IMCE: Energy-efficient bit-wise in-memory convolution engine for deep neural network," in Proceedings of the 23rd Asia and South Pacific Design Automation Conference, 2018, pp. 111-116: IEEE Press.

[3] S. Angizi, Z. He, A. S. Rakin, and D. Fan, "CMP-PIM: an energy-efficient comparator-based processing-in-memory neural network accelerator," in Proceedings of the 55th Annual Design Automation Conference, 2018, p. 105: ACM

✓ Device level: 1- SOT-MTJ device modeling (w.r.t. Table 1’s parameters) and 2-
calculating the amount of write and sense currents.

✓ Circuit level: 1- Calculating Access Transistor size for both read (~90nm) and 
write (~240nm) to provide such currents. 2- Developing the layout as Figure 
1; Area of each two cells was determined to be (10λ × 32λ) + (10λ × 24λ) in 
45 nm process node. 3- Designing peripheral circuitry enabling PIM 
(Modified SA, Decoder, etc.) and calculating overhead area.

✓ Architectural level: Applying the circuit-level configurations in memory scale.

• Digital processing unit area:

✓ Digital processing unit consists of different sub-component such as:
1- Activation functions, developed using lookup-table-based transformations.
2- Batch normalization (BN) unit generally performs an affine function (y = kx + h) 
[1], where y and x denote the corresponding output and input feature map pixels, 
respectively. Therefore, we employed an internal, multiplexed CMOS adder and 
multiplier to perform this computation efficiently .

34



Other memory technology device parameters used in NVSIM and CACTI
• To have a fair comparison, and to explore the area, energy, latency in different PIM platforms, we first developed an iso-

Capacity 32Mb-single Bank memory unit using SOT-MRAM, STT-MRAM, RRAM,  SRAM, and DRAM, as shown in next page.
• Notes on the designs:
✓ SOT-MRAM design is developed based on our design in [1].
✓ STT-MRAM design is developed based on our design in [1] with standard and experimentally-measured configuration available in NVSIM [2].
✓ RRAM design is developed based on [3] with standard default configuration available in NVSIM [2].
✓ SRAM design is designed based on Compute Cache [4] method with following assumptions. 
✓ DRAM design is designed based on Ambit [5].

[1] S. Angizi, Z. He, A. S. Rakin, and D. Fan, "CMP-PIM: an energy-efficient comparator-based processing-in-memory neural network accelerator," in Proceedings of the 55th Annual Design Automation Conference, 2018, p. 105: ACM.

[2] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, "Nvsim: A circuit-level performance, energy, and area model for emerging nonvolatile memory," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 7, pp. 994-1007, 2012.

[3] T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang, "Binary convolutional neural network on rram," in Design Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific, 2017, pp. 782-787: IEEE.

[4] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das, "Compute caches," in 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), 2017, pp. 481-492: IEEE.

[5] V. Seshadri et al., "Ambit: In-memory accelerator for bulk bitwise operations using commodity DRAM technology," in Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017, pp. 273-287: ACM.

-CellArea (F^2): 70
-ResistanceOn (ohm): 4612
-ResistanceOff (ohm): 15221
-ReadMode: current
-ReadVoltage (V): 0.042
-MinSenseVoltage (mV): 46.1
-ReadPower (uW): 21.49
-ResetMode: current
-ResetCurrent (uA): 130
-ResetPulse (ns): 1
-ResetEnergy (pJ): 0.0298
-SetMode: current
-SetCurrent (uA): 130
-SetPulse (ns): 1
-SetEnergy (pJ): 0.0298
-AccessType: CMOS
-VoltageDropAccessDevice (V): 0.0008

-CellArea (F^2): 54
-ResistanceOn (ohm): 3000
-ResistanceOff (ohm): 6000
-ReadMode: current
-ReadVoltage (V): 0.25
-MinSenseVoltage (mV): 25
-ReadPower (uW): 30
-ResetMode: current
-ResetCurrent (uA): 80
-ResetPulse (ns): 10
-ResetEnergy (pJ): 1
-SetMode: current
-SetCurrent (uA): 80
-SetPulse (ns): 10
-SetEnergy (pJ): 1
-AccessType: CMOS
-VoltageDropAccessDevice (V): 0.15

-CellArea (F^2): 5
-CellAspectRatio: 1
-ResistanceOnAtSetVoltage (ohm): 100000
-ResistanceOffAtSetVoltage (ohm): 10000000
-ResistanceOnAtResetVoltage (ohm): 100000
-ResistanceOffAtResetVoltage (ohm): 10000000
-ResistanceOnAtReadVoltage (ohm): 1000000
-ResistanceOffAtReadVoltage (ohm): 10000000
-ResistanceOnAtHalfResetVoltage (ohm): 500000
-CapacitanceOn (F): 1e-16
-CapacitanceOff (F): 1e-16
-ReadMode: current
-ReadVoltage (V): 0.4
-ReadPower (uW): 0.16
-ResetMode: voltage
-ResetVoltage (V): 2.0
-ResetPulse (ns): 10
-ResetEnergy (pJ): 0.6
-SetMode: voltage
-SetVoltage (V): 2.0
-SetPulse (ns): 10
-SetEnergy (pJ): 0.6
-AccessType: None

-CellArea (F^2): 146
-CellAspectRatio: 1.46
-ReadMode: voltage
-AccessType: CMOS
-AccessCMOSWidth (F): 1.31
-SRAMCellNMOSWidth (F): 2.08
-SRAMCellPMOSWidth (F): 1.23

SOT-MRAM STT-MRAM

RRAM SRAM

-CellArea (F^2): 8
-ReadMode: voltage
-AccessType: CMOS
-AccessCMOSWidth (F): 1.31

DRAM

36



Metrics SOT-MRAM STT-MRAM RRAM SRAM DRAM

Non-volatility Yes Yes Yes No No

Area (𝑚𝑚2)
Memory: 7.06

Logic:~0.3

Memory: 6.22

Logic:~0.3

Memory: 3.34

Logic: 2.5

Memory: 10.38

Logic: 0.5

Memory: 4.53

Logic: ~0.04

Read Latency (ns) 2.85 2.89 1.48 2.9 3.4 per access

Write Latency (ns) 2.59 11.55 20.9 2.7 3.4 per access

Read Dynamic Energy (nJ) 0.57 0.65 0.38 0.34 0.66 per access

Write Dynamic Energy (nJ) 0.66 1.2 2.7 0.38 0.66 per access

In-Memory Logic Energy (nJ) ~0.64 ~0.79 ~1.96 ~0.59 ~0.75

Leakage Power (mW) 550 722.4 587.6 5243 335.5

Endurance
[1,2]

~1014- 1015
[1,2]

~1014- 1015 up to 1012 [3,4] Unlimited 1015

Data over-written issue No No No No Yes

Simulation results for five different Processing-in-Memory accelerators*** 
(iso-capacity: 32Mb-single Bank, Data Width: 512-bit) 

PIM logic area overhead including the modified decoder and SA (8-bit ADC for RRAM)
***Data is extracted using device-to-architecture simulations. The architectural level tools [5] and [6] are extensively modified based on circuit level results. Obviously by 
enlarging memory size, the reported numbers change correspondingly.  Read latency parameter can be used as an estimation for computation latency.

[1] J. J. Kan, et al. 2016. Systematic validation of 2x nm diameter perpendicular MTJ arrays and MgO barrier for sub-10 nm embedded STT-MRAM with practically unlimited endurance. In IEEE International Electron Devices Meeting (IEDM)

[2] S. Tehrani, "Status and prospect for mram technology," in Hot Chips 22 Symposium (HCS), 2010 IEEE, 2010, pp. 1-23: IEEE.

[3] C.-W. Hsu et al., “Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance over 1012 cycles for 3D high-density storage-class memory,” in Proc. VLSIT, 2013.

[4] M.-J. Lee et al., “A fast, high-endurance and scalable nonvolatile memory device made from asymmetric Ta2O5- x/TaO2-x bilayer structures,” Nature Materials, vol. 10, no. 8, pp. 625–630, 2011

[5] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, "Nvsim: A circuit-level performance, energy, and area model for emerging nonvolatile memory," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 7, pp. 994-1007, 2012.

[6] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, "CACTI 5.1," Technical Report HPL-2008-20, HP Labs2008.

37

Table developed with TSMC ( published in ISVLSI 2019, “Accelerating Deep Neural Networks in Processing-in-Memory Platforms: Analog or Digital Approach?”)



Observations

• Not only suffers from the low endurance but also imposes large write latency, dynamic energy and computation energy.  
• The low endurance issue has been addressed through “Matrix Splitting” solution [1,2] by allocating excessive memory sub-arrays, 

sacrificing area and consuming extra write energy and latency to do the same task.

SOT-MRAM

• The smallest write latency while having an excellent endurance.
• The smallest write dynamic energy between other Processing in-NVM platforms.
• Medium area overhead as compared to Processing-in-RRAM platform considering the iso-capacity constraint.
• Small ON/OFF ratio

ReRAM

STT-MRAM

• Long write latency compared to SOT-MRAM that leads to much larger execution time specifically in write-intensive applications such 
as CNNs. Small ON/OFF ratio

• Large write dynamic energy compared to SOT-MRAM.

• The Largest area overhead and leakage power consumption. Volatility
• Fast write/read

SRAM

• Data over-written issue. This problem has been alleviated through the back-up process [3], sacrificing area and consuming 
extra write energy and latency to perform the same task (e.g. it takes 6 cycles to preform AND operation).

• Volatility

DRAM

[1] T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang, "Binary convolutional neural network on rram," in Design Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific, 2017, pp. 782-787: IEEE.

[2] P. Chi et al., "Prime: A novel processing-in-memory architecture for neural network computation in reram-based main memory," in ACM SIGARCH Computer Architecture News, 2016, vol. 44, no. 3, pp. 27-39: IEEE Press.

[3] V. Seshadri et al., "Ambit: In-memory accelerator for bulk bitwise operations using commodity DRAM technology," in Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017, pp. 273-287: ACM.
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Summary

40

• Non-Volatile Memory, like STT-MRAM, SOT-MRAM, ReRAM, could be 
designed to work as dual-mode memory with both functionalities of memory 
and logic using innovations in device and circuit. 

• With limited area overhead, we could design in-memory logic, including 
AND/NAND, OR/NOR, XOR/XNOR, FA in only one-cycle. It provides powerful 
logic functions for any further development of architectural level 
computational ISAs for big-data processing-in-memory accelerator designs.

• The operand locality issue in one sub-array could be solved by sacrificing the 
parallel computing ability of individual sub-array. It is a trade-off between 
specific design to choose either data rearrange to get maximal papalism or no 
operand locality issue



Processing-In-Memory Unit

41

Processing-In-Memory unit to accelerate 
memory/data – intensive applications.

1. Intrinsic efficient built-in in-memory logic
2. Parallel computing at each sub-array
3. Greatly reduce data communication 

memory In-memory logic

Challenges: 
• How to design most efficient architecture to fully utilize the 

supported in-memory logic ISA ?
• How to modify or design new computation algorithm to make it 

intrinsically match with the developed PIM hardware platform

D. Fan, et. al., DAC 2018/2019, ICCAD2018, DATE 2019, ICCD 2017/2018, ASPDAC 2018/2019, TCAD 2018, TMAG 2018, TNANO 2018



Main Research Objective and Methodology
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D. Fan, et. al., CVPR 2019, ICCV 2019, DAC 2018/2019, ICCAD 2018, DATE
2019, WACV2018/2019, ICCD 2018, ISVLSI 2018, ASPDAC 2018/2019, 
TCAD 2018, TNANO 2018, TMAG 2018

DNN-in-
Memory

Data 
Encryption -
in-Memory

Graph 
Processing -
in-Memory

Device & Circuits: 

NVM +CMOS

Architecture:

In-Memory Computing 

Objective: Energy Efficient and Intelligent Processing-in-Memory

Bottom-Up

Top-Down

Device and Circuit 

Co-Design

Algorithm and 

Architecture Co-Design

Device & Circuit: Parallel and Reconfigurable in-Memory Logic 
based on STT-MRAM, SOT-MRAM, DWM, ReRAM, DRAM, with 
extreme low overhead.
Objective: dual mode computational memory simultaneously 
working as memory and in-memory logic

Architecture: Parallel Processing-in-Memory Accelerator 
Algorithm: Data intensive and intelligent application algorithm 
development for developed PIM platform
Developed and developing PIM applications: deep neural network, 
data encryption, image processing, graph processing 



➢Top-Down: Architecture & Algorithm co-optimization for data intensive processing-in-

memory acceleration

➢Hardware Aware Deep Neural Network Compression: Binary or Ternary Network

➢Data Encryption in memory

➢Graph Processing in memory

➢DNA Alignment in memory
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Outline



Application: DNN-in-Memory
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o Deep Convolutional neural networks (CNNs) are reaching record-

breaking accuracy in image recognition on large data-sets like 

ImageNet, ResNet shows a prominent recognition accuracy (96.43%) 

even higher than humans! (94.9%).

o Following the trend, when going deeper and denser in CNNs (e.g. 

ResNet employs 18-1001 layers), memory/computational resources 

and their communication have faced inevitable limitations  called ‘‘CNN 

power and memory wall”) [1,2]. 

o Several methods have been proposed to break the wall:

A. Compressing pre-trained networks,

B. Quantizing parameters

C. Pruning

D. Convolution decomposition  

Execution time of a sample CNN for scene labeling on 

CPU and GPU [3]. Convolutional layer always takes most 

fraction of execute time and computational sources

Visualization of Inference in CNN
[1] R. Andriet al., “Yodann:  An architecture for ultra-low power binary-weight cnn acceleration,” IEEE TCAD, 2017

[2] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks,” IEEE Journal of Solid-State Circuits, vol. 52, 2017.

[3] L. Cavigelli et al., “Accelerating real-time embedded scene labeling with convolutional networks,” in DAC, 2015 52nd ACM/EDAC/IEEE. IEEE, 2015, pp. 1–6.

o Objective: Can we build a PIM hardware friendly DNN model:
o Remove multiplication, ideally with bit-wise logic or addition-only
o Hardware friendly model compression
o Without losing inference accuracy? 



Weight Ternarization

D. Fan, et. al., CVPR 2019, WACV 2019
Code to download in https://github.com/elliothe/Ternarized_Neural_Network

Ternarize all model weights from floating point number to {-1, 0, +1} states

Benefits and Challenges:
• Model size reduced by 16X from 32-bit floating point number
• Convolution computation only involves addition, and thus computing 

complexity for hardware greatly reduced
• Challenge is how to minimize the accuracy degradation as small as 

possible. no degradation ideally!
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https://github.com/elliothe/Ternarized_Neural_Network


Proposed Ternarization Method with Iterative Statistical Scaling

Network training step:

Initialize weight with pretrained model: 1) higher accuracy; 2) converges faster than training from 
scratch

Iterative weight ternarization training

Back propagate to update full precision weight. Note that, straight through estimator of 
ternarization function in the back-propagation is used to approximate gradient.

• sad

• sa

○1  

○2  

○3  

D. Fan, et. al., CVPR 2019, WACV 2019



Proposed Ternarization Method with Iterative Statistical Scaling

Scaling factors calculated by the mean of absolute values of designated 

layer’s full precision weights that are greater than the thresholds

Convolution computation converts to ternary convolution without 

multiplication and reduced model size

D. Fan, et. al., CVPR 2019, WACV 2019

+α-α



Residual Expansion to Improve Accuracy

We ternarize the whole network including the first and last layer weights

• Residual Expanded Layers (REL) are added to reduce accuracy loss while maintaining no-multiplication 
operations in DNN. 

• Original layer and residual layer are ternarized from the same full precision weights with different 
thresholds- β=(a,b)
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Experiments- ImageNet

Best accuracy achieved with the same compression rate, even with ternarized first and last layers

Resent structure and Imagenet
datasets are used here. 
14million images with 1000 output 
labels

FP: Full precision weights
Bin: Binary weights
Tern: Ternary weights
FP*: not reported if first and last 
layers are full precision

[10] C. Leng, H. Li, S. Zhu, and R. Jin. Extremely low bit neural network: Squeeze the last bit out with admm. arXiv preprint arXiv:1707.09870, 2017.
[11] F. Li, B. Zhang, and B. Liu. Ternary weight networks. arXiv preprint arXiv:1605.04711, 2016.
[12] X. Lin, C. Zhao, andW. Pan. Towards accurate binary convolutional neural network. In Advances in Neural Information Processing Systems, pages 344–352, 2017.
[13] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnornet: Imagenet classification using binary convolutional neural networks. In European Conference on Computer Vision, 2016
[18] C. Zhu et al. Trained ternary quantization. arXiv preprint arXiv:1612.01064, 2016.
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Experiments- ImageNet, with Residual layers

• Only 0.42% accuracy degradation in imagenet if with one residual layer for top1 accuracy
• The top5 accuracy even outperforms full precision weight 
• Top1 accuracy degradation reduces with more residual layers

Resent structure and Imagenet
datasets are used here
14million images with 1000 output 
labels

FP: Full precision weights
Bin: Binary weights
Tern: Ternary weights
FP*: not reported if first and last 
layers are full precision
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D. Fan, et. al., CVPR 2019, WACV 2019



BD-Net: A Multiplication-less DNN with 
Binarized Depthwise Separable Convolution

Binarize all model weights from floating point number to {-1, +1} states

Benefits and Challenges:
• Model size reduced by at least 32X (our best results: reduced by over 

64X with only 6.59% accuracy degradation in ImageNet dataset 
• Convolution computation converts to XNOR, shift and bit-counter 

bit-wise operations, which greatly matches with our PIM hardware 
platform

• Real challenge is how to minimize the accuracy degradation as small 
as possible. no degradation ideally!

D. Fan, et. al., ISVLSI 2018 (best paper award), ICCAD 2018
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Depthwise Separable Convolution

standard convolution perform the feature 
extraction and generate new presentation 
within one layer

Variant Depthwise separable convolution:
 Depthwise conv: Extract features w.r.t the depthwise conv 

kernel.
 Pointwise conv: linearly combine the extracted feature 

maps to generate new representations.

** Bias is not included in Conv. layers 

Y = 

𝑖=1

𝑝

𝐖𝑖 ⋅ 𝐗𝑖 ;

Y ∈ Rh×w×𝑞, 𝐖 = Rkh×kw, 𝐗 = Rh×w

Y = 𝐖𝑗
dw ⋅ 𝐗𝒊; G = 

𝑗=1

𝑚⋅𝑝

𝐖𝑗
𝑝𝑤
𝐅𝑗 ; 𝑖 ∈ 1, 𝑝 , 𝑗 ∈ 1,𝑚 ⋅ 𝑝 , Y ∈ Rh×w×𝑝𝑚,

𝐅 = Rh×w, 𝐖dw = Rkh×kw,𝐖pw = R𝟏×𝟏, 𝐗 = Rh×w, G ∈ Rh×w×𝑞

𝑝 ⋅ 𝑞 ⋅ 𝑘ℎ ⋅ 𝑘𝑤

Kernel size:

𝑝 ⋅ 𝑚 ⋅ 𝑘ℎ ⋅ 𝑘𝑤 + 𝑝 ⋅ 𝑚 ⋅ 𝑞

Kernel size:

Computational complexity

[1] Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).



Depthwise-Separable Convolution

 #Input channel: p, #output channel: q, kernel 
size: kh*kw, input tensor dimension: h*w*p

 Functionality: perform the feature extraction and 
combination separately.

 Hardware resource: reduce the module size of 
convolution layer.

 Drop-in replacement of Normal spatial 
Convolution layer.

 9X smaller computational cost when m=1, 
kh=kw=3 (mobilenet [1])

Normal conv. layer

Depthwise conv. Pointwise conv. 

~1/9 @ m=1 & kh=kw=3
e.g. MobileNet [1]

[1] Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).



binary
Full precision

BD-Net: structure • Depth-wise separable convolution is 
efficient, can we push even more 
with 1) no multiplication, 2) more 
compact model size, 3)no accuracy 
lose?

• Remove Multiplication from Convolution 
Operation

• model size is further reduced by weight 
binarization

• Using the bypass structure of 

Residual Network as back-bone.

• Replace the normal spatial 

convolution layer with depthwise

separable convolution.

• Introduce binary weight to 

depthwise convolution part.

• Introduce binary intermediate tensor 

to pointwise convolution part.



BD-Net: training • Using straight through estimator (STE) to approximate the 
gradient for making binarization function differentiable [1]

• We keep the gradient clipping for better performance (i.e., 
inference accuracy) [2]

[1] Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional computation." arXiv preprint arXiv:1308.3432 (2013).

[2] Courbariaux, Matthieu, et al. "Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016).

Network training step:
• Initialize the weight (may achieve better 

performance when initialize from 
pretrained model)

• Iterative binarize the weights of 
depthwise kernel

• Update the full precision weight during 
back-propagation

• sad

• sa



BD-Net: hardware cost analysis

 #Input channel: p, #output channel: q, kernel size: kh*kw, 
input tensor dimension: h*w*p, channel multiplier: m

 Nbit is the number of bits

 We use 32bit (Nbit
n=32) for pointwise layer in this work.

 Channel multiplier m is the hyperparameters to optimize in 
this work

~1/9 when kh=kw=3, m=1 >1/9 depending on bit-width 

of pointwise kernal



Experiments: Cifar and ImageNet

Framework: Pytorch (Good 
support for depthwise convolution) 
Application: Object classification

Network configuration:
MNIST: 16  input  channels,  5  basic  blocks,  

128  hidden neuron,  64  batch  size, 3×3 

kernel  size,  4  channel expansion.

SVHN: 128  input  channels,  5  basic  blocks,  

512  hidden neuron,  64  batch  size, 3×3 

kernel  size,  4  channel expansion.

CIFAR-10: 128  input  channels,  5  basic  

blocks,  512  hidden neuron,  64  batch  size, 

3×3 kernel  size,  4  channel expansion.

ImageNet: ResNet-18 structure. 14million 

iamges with 1000 output labels 64X compression rate achieved with only 6.59% 

accuracy degradation in ImageNet dataset 

D. Fan, et. al., ISVLSI2018 (best paper award), ICCAD2018



Binarized Deep Neural Network FPGA Demo
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• Our model is only 143Kb with 8 conv layers and 
1 FC layer

• DNN model completely stored in on-chip cache, 
no need to fetch model from main memory

• PYNQ-Z1 only has 4.9Mb on chip RAM and our 
model only consumes 2.61 W 

D. Fan, et. al., GLSVLSI 2019



In-Memory Convolution Engine
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o A potential solution to better address storage, computation, and 

data transfer bottlenecks of CNNs. 

o This architecture mainly consists of Image Bank, Kernel Bank, bit-

wise In-Memory Convolution Engine (IMCE), and Digital 

Processing Unit (DPU).

o Preprocessing:

✓ Assume Input fmaps (I) and Kernels (W) are stored in Image 

Banks and Kernel Banks of memory.

✓ Inputs need to be constantly quantized before mapping into 

computational sub-arrays. This step is performed using DPU’s 

Quantizer and then the results are mapped to IMCE’s sub-arrays.

✓ IMCE is realized through the proposed SOT-MRAM based 

computational sub-array. 

D. Fan, et. al., ICCD 2018



Cross-Layer Simulation Framework Development

62

Device Level:
Verilog-A model of spintronic device developed based on
micromagnetic OOMMF framework， modular spintronic
library.

Circuit Level:
SPICE simulation to verify logic design and extract power-
delay-reliability analysis

System Level:
modified self-consistent NVSim along with an in-house
developed C++ code to verify the performance， Gem5
will be used to build cycle-accurate in-memory processing
unit architecture.

Application Level:
quantized deep convolution neural network and
Advanced Encryption Standard (AES) algorithm are used
as case study applications, to show benefits of PIM in
practical applications

[12] www:eda.ncsu.edu/wiki/FreePDK45
[13] X. Dong et al., ”NVSim: A circuit-level performance, energy, and area model for emerging non-volatile memory,” Springer, 2014, pp. 15-50.

Micro-magnetic 
simulation  model for 
spin Hall effect-driven 

MTJ
(OOMMF)

Modular Spintronic 
Library
(SPICE)

Circuit Level

Device Level

A Verilog-A model for in-
memory AND/OR and XOR

Design & verification 
(SPICE)

Extracting power-delay 
and reliability analysis 

(SPICE)

System Level

Modified NVSim
(.cfg and .cell)

An in-house 
developed C-code 

Application Level

MPU array 
modeling

(SPICE)

Developing C-code for 
evaluation of Deep Neural 

Network using MPU

Torch framework (Lua)

DNN

MATLAB-code for  mapping 
and evaluation of AES 

performance using MPU

CMOS-ASIC performance 
(Synopsys  Design Compiler)  

Parameter setting

GPP performance
(McPAT/GEM5) 

Comparison

Counterparts Proposed

Data Encryption

Synthesis and 
verification 

(ABC)

FPGA 

(Xilinx virtex-7) 

FPGA-MRAM prototype as Benchmark to simulate CPU and 
MRAM only working as memory

(a)

(b)

(c)

PCB 

Computer 
Everspin s

64Mb DDR3 
STT-MRAM

FPGA 

(Xilinx virtex-7) 

Equivalent MPU 

Computer  

Everspin s
64Mb DDR3 
STT-MRAM

Interface 

Behavioral model of 
MPU function

Both memory and 
logic

FPGA-MRAM prototype to simulate CPU-MPU system

MRAM based NVM

Pytorch, TensorFlow



Comparison (iso-computation (CNN as example), Area-Energy-Latency requirement) 
• Taking LeNET to run MNIST data-set with different PIM accelerators considering 

the area/energy due to the computation by calculating the number of undertaken 
crossbars or sub-arrays.

• STT-MRAM/ReRAM/DRAM design imposes a larger latency compared with SOT-
MRAM mainly due to its long intermediate data write-back.

• ReRAM design data is taken from [1]. While the required memory area of ReRAM  
is less than magnetic counterparts, overall it imposes larger area due to matrix 
splitting and extra large add-on logic area overhead (up to ~80% ) [1,2].

• While DRAM accelerator imposes the least possible area compared to other PIMs 
with iso-capacity constraint (~1%), it needs to access multiple sub-arrays to avoid 
data-written problem as well as fitting the network at the same time that resulted 
in a larger latency and area compared to non-volatile designs.

Estimated row Performance of different PIMs without Parallelism techniques

[1] T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang, "Binary convolutional neural network on rram," in Design Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific, 2017, pp. 782-787: IEEE.

[2] P. Chi et al., "Prime: A novel processing-in-memory architecture for neural network computation in reram-based main memory," in ACM SIGARCH Computer Architecture News, 2016, vol. 44, no. 3, pp. 27-39: IEEE Press.

[3] V. Seshadri et al., "Ambit: In-memory accelerator for bulk bitwise operations using commodity DRAM technology," in Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017, pp. 273-287: ACM.
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For in-memory-logic, all operands are stored in 
memory. Unlike traditional computation, an 
extra data write-back is needed, which has a 
large effect on determining the overall energy 
and latency

Parameters SOT-MRAM STT-MRAM ReRAM SRAM DRAM

Area (𝑚𝑚2)
(memory + logic)

0.018
(0.0172+0.0008)

0.015
(0.0143+0.0007)

0.060
(0.011+0.049)

0.64
(0.608+0.032)

0.16
(0.158 + 0.002)

Energy (µJ)
(write-back+read-based Ops)

0.74
~(0.2+0.54)

1.3
~(0.55+0.75)

13.5
~(5.1+8.4)

1.6
~(0.42+1.18)

2.1
~(0.8+1.3)

Latency (ms) 0.4 2.6 5.8 0.7 13.5



Performance Evaluation

65

ICCD 2018 [9]
256×512 columns per mat

512Mb total capacity

ReRAM
A Prime-like [10] accelerator

ASIC
A YodaNN-like [11] ASIC accelerator

Vs.

GPU
NVIDIA GTX 1080Ti Pascal

[9] Adnan Siraj Rakin, Shaahin Angizi, Zhezhi He and Deliang Fan, “PIM-TGAN: A Processing-in-Memory Accelerator for Ternary Generative Adversarial Networks,” IEEE 

International Conference on Computer Design (ICCD) , Oct. 7-10, 2018, Orlando, FL, USA

[10] P. Chi et al., “Prime: A novel processing-in-memory architecture for neural network computation in reram-based main memory,” in ISCA. IEEE Press, 2016.
[11] R. Andri et al., “Yodann: An ultra-low power convolutional neural network accelerator based on binary weights,” in ISVLSI. IEEE, 2016, pp. 236–241.

Energy Efficiency

Performance

▪ 18x ASIC64

▪ 9.2x ReRAM

▪ 25.6x GPU

▪ 18x ASIC64

▪ 5.4x ReRAM

▪ 22x GPU

o PIM-TGAN and ReRAM solutions spend less than ∼20% time for 
memory access and data transfer.

o PIM-TGAN can efficiently utilize up to 55% of its resources.



Other Dimension of AI: Security 
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Software: Adversarial Input Attack Hardware: Adversarial Weight Attack?
Our first work discovering this is accepted by ICCV 2019 [3]adversarial example--a type 

of malicious inputs crafted 
by adding small and often 
imperceptible perturbations 
to legal inputs [1]. 

a major concern in many 
DNN-powered applications.

Our method to defend:
parametric noise injection 
(PNI) includes trainable 
Gaussian noise injection at 
each layer of DNN's activation 
or weight through solving a 
min-max optimization 
problem  (published in CVPR 
2019 [2])
Code in 
https://github.com/elliothe/CVPR_2019_PNI

# of random Bit flips # of our Bit flips

Method: We propose a Progressive Bit Search (PBS) method 
which combines gradient ranking and progressive search to
identify the most vulnerable bit to be flipped in DNN.

Result: 13 bit-flips out of 93 million bits to completely make 
ReseNet 18 malfunction in ImageNET (accuracy degrades from 
69.8% to 0.1%)
A working prototype based on DRAM row-hammer attack has 
been developed

Archived in https://arxiv.org/abs/1903.12269

[1] I. Goodfellow, Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572.

[2] D. Fan, et. al “Parametric Noise Injection: Trainable Randomness to Improve Deep Neural Network Robustness against Adversarial Attack” CVPR 2019. 

[3] D. Fan. et al. “Bit-Flip Attack: Crushing Neural Network with Progressive Bit Search” ICCV 2019

https://github.com/elliothe/CVPR_2019_PNI
https://arxiv.org/abs/1903.12269


Beyond DNN-in-Memory?

How about other data-intensive computing?
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Data-Intensive Processing-in-Memory: Data Encryption

68

Data Encryption -in-Memory

[1] Shaahin Angizi, Zhezhi He and Deliang Fan, “PIMA-Logic: A Novel Processing-in-

Memory Architecture for Highly Flexible and Energy-Efficient Logic Computation, 

” IEEE/ACM Design Automation Conference (DAC), June 24-28, 2018, San Francisco, 

CA, USA 

[2] Shaahin Angizi, Zhezhi He, Nader Bagherzadeh and Deliang Fan, “Design and Evaluation 

of a Spintronic In-Memory Processing Platform for Non-Volatile Data 

Encryption,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and 

Systems (TCAD), Vol. 37, no. 9, Sept. 2018. 

[3] Farhana Parveen, Zhezhi He, Shaahin Angizi and Deliang Fan, “HieIM: Highly Flexible 

In-Memory Computing using STT MRAM,” Asia and South Pacific Design Automation 

Conference (ASP-DAC), Jan. 22-25, 2018, Jeju Island, Korea

Device & Circuits: 

NVM +CMOS

Architecture:

In-Memory Computing 

Objective: Energy Efficient and Intelligent Processing-in-Memory

Bottom-Up

Top-Down

Device and Circuit 

Co-Design

Algorithm and 

Architecture Co-Design

Device & Circuit: Parallel and Reconfigurable in-Memory Logic 
based on STT-MRAM, SOT-MRAM, DWM, ReRAM, DRAM, with 
extreme low overhead.
Objective: dual mode computational memory simultaneously 
working as memory and in-memory logic

Architecture: Parallel Processing-in-Memory Accelerator 
Algorithm: Data intensive and intelligent application algorithm 
development for developed PIM platform
Developed and developing PIM applications: deep neural network, 
data encryption, image processing, graph processing 



Application: Why Energy Efficient Data Encryption ?
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• Big data:  2.5 quintillion (1018) bytes of 
data everyday.

• IOT: 17.68 billion IOT device in 2017

• Cost of a breach has risen to $4 million 
per incident.

• From Data center to personal 
electronics, data are stored everywhere. 
The demand of energy efficient and high 
performance cryptographic components 
is becoming much stronger nowadays 
and will keep growing rapidly in the 
future.

http://fortune.com/2016/06/15/data-breach-cost-study-ibm/

This chart shows the average cost of a stolen record—for 

example, personally identifiable, payment, or health information 

on an individual—as broken out by industry.



IN-MEMORY DATA ENCRYPTION ENGINE
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[5] D. Canniere et al. Katan and ktantan - a family of small and ecient hardware-oriented block ciphers. CHES, 2009.
[21] Y. Wang et al. Dw-aes: A domain-wall nanowire-based aes for high throughput and energy-ecient data encryption in non-volatile memory. IEEE Trans. Inf. 
Forensics Security, 11, 2016.

• AES is an iterative symmetric-key cipher where 
both sender and receiver units use a single key for 
encryption and decryption.

• Parallel, local data processing
• Short memory access latency
• Ultra-low energy
• Secure data where they stored
• Reduce data communication risk

In-Memory 

Data Encryption



Advanced Encryption Standard
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• AES basically works on the standard 
input length of 16 bytes (128 bits) 
data organized in a 4 x4 matrix 
(called the state matrix) while using 
three different key lengths (128, 192, 
and 256 bits)

• For 128-bit key length, AES encrypts 
the input data after 10 rounds of 
consecutive transformations.

• Four transformations:

• SubBytes : LUT

• ShiftRows: shift 

• MixColumns: XOR, shift

• AddRoundKey: XOR



Evaluation
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• In-Memory Data Encryption based on SOT-MRAM significantly improves the data encryption performance by 
having the least energy consumption and latency in comparison

• This significant improvement mainly comes from our proposed massive in-memory parallelism computing and 
intrinsic in-memory logic operations.

[1] Farhana Parveen, et. al. “HieIM: Highly Flexible In-Memory Computing using STT MRAM,” Asia and South Pacific Design Automation Conference (ASP-DAC), Jan. 22-25, 2018, Jeju Island, Korea

[2] Shaahin Angizi, et. al. “Design and Evaluation of a Spintronic In-Memory Processing Platform for Non-Volatile Data Encryption,” IEEE TCAD, Vol. 37, no. 9, Sept. 2018.

[3] Shaahin Angizi, et. al. “PIMA-Logic: A Novel Processing-in-Memory Architecture for Highly Flexible and Energy-Efficient Logic Computation, ” IEEE/ACM Design Automation Conference (DAC), 2018 

[4] Y. Wang et al. Dw-aes: a domain-wall nanowire-based aes for high throughput and energy-efficient data encryption in non-volatile memory.IEEE TIFS, 11(11):2426–2440, 2016.
[5] K Malbrain. Byte-oriented-aes: a public domain byte-oriented implementation of aes in c, 2009.
[6] S. Mathew et al. 340 mv–1.1 v, 289 gbps/w, 2090-gate nanoaes hardware accelerator with area-optimized encrypt/decrypt gf (2 4) 2 polynomials in 22 nm tri-gate cmos. IEEE JSSC, 50(4):1048–1058, 2015.
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Platforms Energy (nJ) Cycles Area (µ𝒎𝟐)

GPP [5] 460 2309 2.5e+6

ASIC [6] 6.6 336 4400

CMOL [7] 10.3 470 320

Baseline DW [4] 2.4 1022 78

Pipelined DW [4] 2.3 2652 83

Multi-issue DW [4] 2.7 1320 155

Ours: ASP-DAC 2018 [1] 3.2 1620 21.8

Ours: IEEE TCAD 2018 [2] 1.74 2168 127

Ours: DAC 2018 [3] 1.5 872 27
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D. Fan, et. al., “GraphS: A Graph Processing Accelerator 
Leveraging SOT-MRAM” published in Design, Automation and 
Test in Europe (DATE), 2019

Device & Circuits: 

NVM +CMOS

Architecture:

In-Memory Computing 

Objective: Energy Efficient and Intelligent Processing-in-Memory

Bottom-Up

Top-Down

Device and Circuit 

Co-Design

Algorithm and 

Architecture Co-Design

Device & Circuit: Parallel and Reconfigurable in-Memory Logic 
based on STT-MRAM, SOT-MRAM, DWM, ReRAM, DRAM, with 
extreme low overhead.
Objective: dual mode computational memory simultaneously 
working as memory and in-memory logic

Architecture: Parallel Processing-in-Memory Accelerator 
Algorithm: Data intensive and intelligent application algorithm 
development for developed PIM platform
Developed and developing PIM applications: deep neural network, 
data encryption, image processing, graph processing 

Graph Processing in-memory
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D. Fan, et. al., “AlignS: A Processing-In-Memory Accelerator for 
DNA Short Read Alignment Leveraging SOT-MRAM” published 
in Design Automation Conference (DAC), 2019

Device & Circuits: 

NVM +CMOS

Architecture:

In-Memory Computing 

Objective: Energy Efficient and Intelligent Processing-in-Memory

Bottom-Up

Top-Down

Device and Circuit 

Co-Design

Algorithm and 

Architecture Co-Design

Device & Circuit: Parallel and Reconfigurable in-Memory Logic 
based on STT-MRAM, SOT-MRAM, DWM, ReRAM, DRAM, with 
extreme low overhead.
Objective: dual mode computational memory simultaneously 
working as memory and in-memory logic

Architecture: Parallel Processing-in-Memory Accelerator 
Algorithm: Data intensive and intelligent application algorithm 
development for developed PIM platform
Developed and developing PIM applications: deep neural network, 
data encryption, image processing, graph processing 

DNA Alignment-in-memory
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• Non-Volatile Memory, like STT-MRAM, SOT-MRAM, ReRAM, could be designed to work as 
dual-mode memory with both functionalities of memory and logic using innovations in 
device, circuit and architecture. 

• In Device & Circuit layer, we have designed different types of in-memory logic circuit 
designs that could implement complete Boolean Logic, majority gate, full adder in only 
one cycle. These logic designs either target for highly parallel computing or to overcome 
the well known operand locality issue.

• Co-optimization of architecture & algorithm: The dual-mode computational memory could 
be utilized to accelerate data/compute-intensive applications, such as deep neural 
network, data encryption, image processing, graph processing, etc.

• The significant improvement mainly comes from our proposed optimized algorithm, 
massive in-memory parallel computing, data communication reduction and efficient in-
memory logic circuits.

• collaboration is needed, please contact me at dfan@asu.edu

mailto:dfan@asu.edu
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Deliang Fan
Assistant Professor, Ph.D.

School of Electrical, Computer and Energy Engineering 
Arizona State University, Tempe, AZ, 85287, USA

Email: dfan@asu.edu
https://dfan.engineering.asu.edu/

Thanks to my students:
Zhezhi He, Shaahin Angizi, Adnan Rakin, Li Yang
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Our Publications Discussed in this talk
• [ICCV'19] Adnan Siraj Rakin, Zhezhi He, Deliang Fan, “Bit-Flip Attack: Crushing Neural Network with Progressive Bit Search,” IEEE International Conference on Computer Vision, Korea, Oct 27 - Nov 3, 2019

• [CVPR'19] Zhezhi He*, Adnan Siraj Rakin* and Deliang Fan, “Parametric Noise Injection: Trainable Randomness to Improve Deep Neural Network Robustness against Adversarial Attack,” Conference on 
Computer Vision and Pattern Recognition (CVPR), June 16-20, 2019, Long Beach, CA, USA (* The first two authors contributed equally)

• [CVPR'19] Zhezhi He and Deliang Fan, “Simultaneously Optimizing Weight and Quantizer of Ternary Neural Network using Truncated Gaussian Approximation,”Conference on Computer Vision and Pattern 
Recognition (CVPR), June 16-20, 2019, Long Beach, CA, USA (accepted)

• [DAC'19] Shaahin Angizi, Jiao Sun, Wei Zhang and Deliang Fan, “AlignS: A Processing-In-Memory Accelerator for DNA Short Read Alignment Leveraging SOT-MRAM,” Design Automation Conference (DAC), 
June 2-6, 2019, Las Vegas, NV, USA

• [DAC'19] Zhezhi He, Jie Lin, Rickard Ewetz, Jiann-Shiun Yuan and Deliang Fan, “Noise Injection Adaption: End-to-End ReRAM Crossbar Non-ideal Effect Adaption for Neural Network Mapping,” Design 
Automation Conference (DAC), June 2-6, 2019, Las Vegas, NV, USA

• [DATE'19] Shaahin Angizi, Jiao Sun, Wei Zhang and Deliang Fan, “GraphS: A Graph Processing Accelerator Leveraging SOT-MRAM,” Design, Automation and Test in Europe (DATE), March 25-29, 2019, 
Florence, Italy

• [DAC'18] Shaahin Angizi*, Zhezhi He*, Adnan Siraj Rakin and Deliang Fan, “CMP-PIM: An Energy-Efficient Comparator-based Processing-In-Memory Neural Network Accelerator,” IEEE/ACM Design 
Automation Conference, June 24-28, 2018, San Francisco, CA, USA (* The first two authors contributed equally)

• [DAC'18] Shaahin Angizi, Zhezhi He and Deliang Fan, “PIMA-Logic: A Novel Processing-in-Memory Architecture for Highly Flexible and Energy-Efficient Logic Computation,” IEEE/ACM Design Automation 
Conference, June 24-28, 2018, San Francisco, CA, USA 

• [ICCAD'18] Shaahin Angizi, Zhezhi He and Deliang Fan, “DIMA: A Depthwise CNN In-Memory Accelerator,” IEEE/ACM International Conference on Computer Aided Design (ICCAD), Nov. 5-8, 2018, San Diego, 
CA, USA

• [ASPDAC'19] Baogang Zhang, Necati Uysal, Deliang Fan and Rickard Ewetz, “Handling Stuck-at-faults in Memristor Crossbar Arrays using Matrix Transformations,” Asia and South Pacific Design Automation 
Conference (ASP-DAC), Jan. 21-24, 2019, Tokyo, Japan (Best Paper Nomination)

• [ISVLSI'18] Zhezhi He, Shaahin Angizi, Adnan Siraj Rakin and Deliang Fan, “BD-NET: A Multiplication-less DNN with Binarized Depthwise Separable Convolution,” IEEE Computer Society Annual Symposium on 
VLSI, July 9-11, 2018, Hong Kong, CHINA (Best Paper Award)

• [ISVLSI'17] F. Parveen, Z. He, S. Angizi, and D. Fan, “Hybrid Polymorphic Logic Gate with 5-Terminal Magnetic Domain Wall Motion Device,” IEEE Computer Society Annual Symposium on VLSI, July 3-5, 2017, 
Bochum, Germany (Best Paper Award)

• [WACV'19] Zhezhi He, Boqing Gong, Deliang Fan, “Optimize Deep Convolutional Neural Network with Ternarized Weights and High Accuracy,” IEEE Winter Conference on Applications of Computer Vision, 
January 7-11, 2019, Hawaii, USA

• [ASPDAC'19] Shaahin Angizi, Zhezhi He and Deliang Fan, “ParaNN: A Parallel In-Situ Accelerator for Binary-Weight Deep Neural Networks,” Asia and South Pacific Design Automation Conference (ASP-DAC), 
Jan. 21-23, 2019, Tokyo, Japan

• [DATE'17] Z. He, D. Fan, “A Tunable Magnetic Skyrmion Neuron Cluster for Energy Efficient Artificial Neural Network,” Design, Automation and Test in Europe, Lausanne, Switzerland, 27-31, March, 2017

• [ICCD'18] Adnan Siraj Rakin, Shaahin Angizi, Zhezhi He and Deliang Fan, “DIMA: A Depthwise CNN In-Memory Accelerator,” IEEE International Conference on Computer Design (ICCD), Oct. 7-10, 2018, 
Orlando, FL, USA

• [ISLPED'18] Li Yang, Zhezhi He and Deliang Fan, “A Fully Onchip Binarized Convolutional Neural Network FPGA Implementation with Accurate Inference,” ACM/IEEE International Symposium on Low Power 
Electronics and Design, July 23-25, 2018, Bellevue, Washington, USA
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Our Other Related Publication List
• [JETC'18] Farhana Parveen, Shaahin Angizi and Deliang Fan, “IMFlexCom: Energy Efficient In-memory Flexible Computing using Dual-mode SOT-MRAM,” ACM Journal on Emerging Technologies in 

Computing Systems, vol. 14, no.3, October 2018
• [TNANO'18] Shaahin Angizi, Honglan Jiang, Ronald Demara, Jie Han and Deliang Fan, “Majority-Based Spin-CMOS Primitives for Approximate Computing,” IEEE Transactions on Nanotechnology, vol. 17, no. 

4, July 2018
• [TMSCS'18] Zhezhi He, Yang Zhang, Shaahin Angizi, Boqing Gong and Deliang Fan, “Exploring A SOT-MRAM based In-Memory Computing for Data Processing,” IEEE Transactions on Multi-Scale Computing 

Systems, 2018
• [TMAG'18] Farhana Parveen, Shaahin Angizi, Zhezhi He and Deliang Fan, “IMCS2: Novel Device-to-Architecture Co-design for Low Power In-memory Computing Platform using Coterminous Spin-Switch,” 

IEEE Transactions on Magnetics, vol. 54, no.7, July 2018
• [TMAG'18] S. Pyle, D. Fan, R. DeMara, “Compact Spintronic Muller C-Element with Near-Zero Standby Energy,” IEEE Transactions on Magnetics, vol.54, no.2, Feb. 2018 (Front Cover Paper)
• [TMSCS'17] Y. Bai, D. Fan and M. Lin, “Stochastic-Based Synapse and Soft-Limiting Neuron with Spintronic Devices for Low Power and Robust Artificial Neural Networks,” IEEE Transactions on Transactions 

on Multi-Scale Computing Systems, vol.4, no.3, pp.463-476, Dec. 2017
• [TCAD'17] S. Angizi, Z. He, N. Bagherzadeh and D. Fan, “Design and Evaluation of a Spintronic In-Memory Processing Platform for Non-Volatile Data Encryption,” IEEE Transactions on Computer-Aided Design 

of Integrated Circuits and Systems, vol.37, no.9, Sept. 2018
• [ISVLSI'18] Zhezhi He, Shaahin Angizi and Deliang Fan, “Accelerating Low Bit-Width Deep Convolution Neural Network in MRAM,” IEEE Computer Society Annual Symposium on VLSI, July 9-11, 2018, Hong 

Kong, CHINA (invited)
• [GLSVLSI'18] Shaahin Angizi, Zhezhi He, Yu Bai, Jie Han, Mingjie Lin and Deliang Fan, “Leveraging Spintronic Devices for Efficient Approximate Logic and Stochastic Neural Network,” ACM Great Lakes 

Symposium on VLSI, Chicago, IL, USA, May 23-25, 2018 (invited)
• [WACV'18] Y. Ding, L. Wang, D. Fan and B. Gong “A Semi-Supervised Two-Stage Approach to Learning from Noisy Labels,” IEEE Winter Conference on Applications of Computer Vision, March 12-14, 2018, 

Stateline, NV, USA
• [ASPDAC'18] F. Parveen, Z. He, S. Angizi and D. Fan, “HieIM: Highly Flexible In-Memory Computing using STT MRAM,” Asia and South Pacific Design Automation Conference, Jan. 22-25, 2018, Jeju Island, 

Korea
• [ASPDAC'18] S. Angizi, Z. He, F. Parveen and D. Fan, “IMCE: Energy-Efficient Bit-Wise In-Memory Convolution Engine for Deep Neural Network,” Asia and South Pacific Design Automation Conference, Jan. 

22-25, 2018, Jeju Island, Korea
• [ICCD'17] Z. He, S. Angizi and D. Fan, “Exploring STT-MRAM based In-Memory Computing Paradigm with Application of Image Edge Extraction,” IEEE International Conference on Computer Design, Nov. 5-8, 

2017, Boston, MA
• [ICCD'17] D. Fan and S. Angizi “Energy Efficient In-Memory Binary Deep Neural Network Accelerator with Dual-Mode SOT-MRAM,” IEEE International Conference on Computer Design, Nov. 5-8, 2017, 

Boston, MA
• [ICCAD'17] M. Yang, J. Hayes, D. Fan, W. Qian, “Design of Accurate Stochastic Number Generators with Noisy Emerging Devices for Stochastic Computing,” IEEE/ACM International Conference on Computer 

Aided Design, Nov 13-16, 2017, Irvin, CA
• [ISVLSI'17] D. Fan, S. Angizi, and Z. He, “In-Memory Computing with Spintronic Devices,” IEEE Computer Society Annual Symposium on VLSI, July 3-5, 2017, Bochum, Germany (invited)
• [ISVLSI'17] S. Angizi, Z. He and D. Fan, “RIMPA: A New Reconfigurable Dual-Mode In-Memory Processing Architecture with Spin Hall Effect-Driven Domain Wall Motion Device,” IEEE Computer Society 

Annual Symposium on VLSI, July 3-5, 2017, Bochum, Germany
• [ISLPED'17] F. Parveen, S. Angizi, Z. He and D. Fan “Low Power In-Memory Computing based on Dual-Mode SOT-MRAM,” IEEE/ACM International Symposium on Low Power Electronics and Design, July 24-

26, 2017, Taipei, Taiwan
• [MWSCAS'17] D. Fan, Z. He and S. Angizi, “Leveraging Spintronic Devices for Ultra-Low Power In-Memory Computing: Logic and Neural Network,” 60th IEEE International Midwest Symposium on Circuits and 

Systems, Aug. 6-9, 2017, Boston, MA, USA (invited)
• [ISCAS'17] F. Parveen, S. Angizi, Z. He and D. Fan, “Hybrid Polymorphic Logic Gate Using 6 Terminal Magnetic Domain Wall Motion Device,” IEEE International Symposium on Circuits & Systems, Baltimore, 

MD, USA, May 28-31, 2017
• [GLSVLSI'17] Z. He, S. Angizi, F. Parveen, and D. Fan, “Leveraging Dual-Mode Magnetic Crossbar for Ultra-low Energy In-Memory Data Encryption”, 27th ACM Great Lakes Symposium on VLSI, Banff, Alberta, 

Canada, May 10-12, 2017
• [GLSVLSI'17] S. Angizi, Z. He, and D. Fan, “Energy Efficient In-Memory Computing Platform Based on 4-Terminal Spin Hall Effect-Driven Domain Wall Motion Devices”, 27th ACM Great Lakes Symposium on 

VLSI, Banff, Alberta, Canada, May 10-12, 2017
• [GLSVLSI'17] Q. Alasad, J. Yuan, and D. Fan, “Leveraging All-Spin Logic to Improve Hardware Security”, 27th ACM Great Lakes Symposium on VLSI,, Banff, Alberta, Canada, May 10-12, 2017 78


