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Abstract: Hybrid Electric Vehicles (HEVs) have been proven to be a promising solution to
environmental pollution and fuel savings. The benefit of the solution is generally realized as
the amount of fuel consumption saved, which by itself represents a challenge to develop the right
energy management strategies (EMSs) for HEVs. Moreover, meeting the design requirements are
essential for optimal power distribution at the price of conflicting objectives. To this end, a significant
number of EMSs have been proposed in the literature, which require a categorization method to better
classify the design and control contributions, with an emphasis on fuel economy, providing power
demand, and real-time applicability. The presented review targets two main headlines: (a) offline
EMSs wherein global optimization-based EMSs and rule-based EMSs are presented; and (b) online
EMSs, under which instantaneous optimization-based EMSs, predictive EMSs, and learning-based
EMSs are put forward. Numerous methods are introduced, given the main focus on the presented
scheme, and the basic principle of each approach is elaborated and compared along with its advantages
and disadvantages in all aspects. In this sequel, a comprehensive literature review is provided.
Finally, research gaps requiring more attention are identified and future important trends are discussed
from different perspectives. The main contributions of this work are twofold. Firstly, state-of-the-art
methods are introduced under a unified framework for the first time, with an extensive overview of
existing EMSs for HEVs. Secondly, this paper aims to guide researchers and scholars to better choose
the right EMS method to fill in the gaps for the development of future-generation HEVs.

Keywords: Hybrid Electric Vehicles (HEVs); energy management strategies (EMSs); driving cycle
prediction; optimization

1. Introduction

Hybrid Electric Vehicles (HEVs) are composed of different types of energy sources and power
converters, which generally refer to vehicles consisting of an internal combustion engine (ICE) with an
electric motor. HEVs seem to be the most economically viable solution so far and probably for the
upcoming decades. The general goal to develop HEVs is to reduce fuel consumption and emissions
while ensuring drivers’ power demands by investigating the appropriate energy management strategies
(EMSs). Energy management aims to obtain an optimal power split in view of complex driving
conditions, as well as to minimize fuel consumption and emissions. It is commonly acknowledged
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that improvements in the fuel economy of HEVs, and thus the consequent reduction in emissions,
depend crucially on their energy management strategies (EMSs) [1]. The complex configuration and
behavior of multi-source hybrid energy systems introduce challenges to the performance of EMSs.
Regardless of the topology of the powertrain, the EMS aim is to instantaneously manage the power
flows from the energy converters to achieve the control objectives [2]. The optimal control algorithms
employed under a given driving cycle are therefore the representative research outline in the field of
energy management strategies.

Various EMSs for HEVs have been conducted in recent years. In the existing literature reviews,
a number of classifications for the energy management strategy are reported [3–7]. Generally, EMSs can
be divided into three categories: rule-based EMSs, local optimization-based EMSs, and global
optimization-based EMSs [3]. An overview of EMSs for plug-in Hybrid Electric Vehicles is
presented in [4]. The classification of energy management, such as rule-based control strategies
and optimization-based control strategies, are introduced according to their mathematical models
and the approach commonly used. In [5], EMSs are divided into two categories as rule-based and
optimization-based methods for parallel Hybrid Electric Vehicles, and the pros and cons of each
approach are compared. Finally, some real-time implementation issues are discussed from different
aspects (e.g., computational burden and optimality). The different classifications for hybrid vehicles
focusing on hydraulic drives is introduced and discussed in [6]. Different kinds of approaches like offline
and online strategies are classified and compared. As intelligent transportation system (ITS) technology
has emerged and machine learning methods have been widely used, some new EMSs have been
developed to improve the performance requirements (e.g., adaptability and real-time implementation).
However, there is still a need for a comprehensive review of the EMSs to better elucidate the
state-of-the-art approaches and potential future research directions. To this end, the present review,
different from the aforementioned review papers in EMSs, proposes a comprehensive hierarchical
classification scheme for the first time. In the first category, offline EMSs are presented based on the
level of driving information under global optimization-based EMSs and rule-based EMSs. In the
second category, online EMSs are layered as instantaneous optimization-based EMSs, predictive EMSs,
and learning-based EMSs. Since the presented scheme covers various approaches in terms of targeted
solution objectives, optimality, and real-time implementation, an important number of literature
studies are extensively overviewed. The principle of each approach along with its pros and cons are
illustrated and compared within the design and operational characterization of the proposed scheme.
Finally, a good number of emerging innovative EMSs and recent literature that have not been covered
in previous review papers are summarized and important future trends for HEVs are highlighted.
This study is intended to serve as a comprehensive reference for researchers in the field of development
and optimization of EMSs.

The remainder of the paper is organized as follows. Different powertrain topologies of Hybrid
Electric Vehicles are briefly discussed and compared in Section 2. In Section 3, a hierarchical classification
scheme of EMSs is presented. In the following Sections 4 and 5, offline and online EMSs categories are
stated in more detail. Each approach is elaborated and compared according to its principles, as well as
pros and cons. Some important future trends of EMSs are discussed in Section 6.

2. The Powertrain Topologies of Hybrid Electric Vehicles

It is well known that there are mainly three kinds of topologies for Hybrid Electric Vehicles:
series, parallel, and power-split. A series hybrid powertrain is regarded as a simple extension of
a battery-powered electric vehicle that is propelled only by motor. The engine drives a generator,
producing electrical power, which can be summed to the electrical power coming from the energy
storage system and then transmitted, via an electric bus, to the electric motor(s) driving the wheels [8].
In principle, the advantage of the series hybrid powertrain is that only electrical connections between
the main power conversion devices are required. Thus, vehicle packaging and design are simplified.
Meanwhile, the engine that is completely off the wheels offers great freedom in selecting speed and
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load, thus allowing the engine to operate at a high-efficiency region. On the other hand, the series
hybrid powertrain requires two energy conversions (i.e., from mechanical to electrical in the generator,
and from electrical to mechanical in the motor), which result in a loss of efficiency, even when there is a
direct mechanical connection between the engine and the wheels in the existing configuration. As a
result, in some cases, a series hybrid electric vehicle consumes more fuel than a traditional vehicle,
especially in highway driving. Furthermore, one of the two electromechanical energy converters
must be sized to meet the maximum power demand of the vehicle, as it is the primary source of
propulsion [2,8]. The series topology is shown in Figure 1.
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the overall efficiency under complex driving conditions. Although the series path is generally 
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As for the parallel topology, the engine is connected to the powertrain by a mechanical coupling
device while the motor propels the vehicle. Either engine or motor could propel the vehicle according
to different load conditions, which makes it possible to greatly increase the fuel economy. The motor
provides the power when the vehicle operates at lower speed to reduce fuel consumption. Thus, this
configuration is capable of maintaining a higher efficiency and better fuel economy. The power
summation is mechanical rather than electrical, and the engine and the electric machines (one or more)
are connected with a gear set, a chain, or a belt; thus, their torques are summed and transmitted to
the wheels [8]. In this configuration, there is no need to size one of the two electromechanical energy
converters to meet the maximum power demand for parallel hybrid powertrain; however, unless it is
significant oversize, the electric motors have less power than those used in a series hybrid powertrain
(since not all the mechanical power goes through them), thus reducing the possibility of regenerative
braking. Meanwhile, the engine operating conditions cannot be regulated as freely as in a series
hybrid powertrain, since the engine speed is mechanically related (via the transmission system) to the
vehicular velocity [2,8]. The parallel topology is illustrated in Figure 2.
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As for the power-split topology, the most important improvement is the ability to operate as
either a series or parallel topology, which provides more operation modes to substantially improve the
overall efficiency under complex driving conditions. Although the series path is generally avoided



Energies 2020, 13, 3352 4 of 36

because it is less efficient, the main feature of this design is that the engine, generator, and motor speed
are decoupled, allowing additional freedom in control. The engine and two electric machines are
connected to a power split device (usually a planetary gear set), so that the power from the engine and
the electric machines can be merged through both a mechanical and an electrical path, allowing series
and parallel operations [8].Compared to the parallel hybrid powertrain, the power-split architecture
is the most flexible and represents a higher control ability on the engine operating conditions while
adopting the double energy conversion, which is typical of a series operation only in a small portion of
the total power demand, thus decreasing overall losses [2,8]. The power-split topology is presented
in Figure 3.
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3. The Classification of EMSs

In this paper, we propose a new hierarchical classification scheme of EMSs for all kinds of Hybrid
Electric Vehicles via two main headlines: (1) offline EMSs are categorized according to the information
level of the driving conditions utilized, including global optimization based-EMSs and rule-based
EMSs; and (2) online EMSs are represented as instantaneous optimization-based EMSs, predictive
EMSs, and learning-based EMSs. The classification of the EMSs is illustrated in Figure 4. It is noted that
a flexible EMS can include a mixture of various techniques (offline and online) to form an integrated
EMS for improving the fuel economy and performance. Thus, in this paper, these combinations with
other techniques may be included while providing a particular EMS classification. For offline EMSs,
two categorizations are illustrated: the global optimization-based and rule-based EMSs. The main goal
of global optimization-based EMSs is to achieve a global optimal power split under a given driving
cycle and provide modified online EMSs. They are not directly applicable in real-time control due
to their computational complexity and the requirement of a priori knowledge of the entire driving
cycle. However, it can be used as a benchmark to adjust the control parameters. Typical methods,
such as dynamic programming, can implement global optimization over given driving cycles, but
it cannot be directly employed in a real vehicle. Therefore, this method can be used to evaluate
the performance of other optimization methods to extract the control rules. Rule-based EMSs are
considered as an offline method since the rules are derived from pre-production tests. Rule-based
EMSs are based on pre-defining a series of control rules to determine the power split while it cannot
achieve optimal allocation of power as compared to offline globally optimized energy management.
Online EMSs, however, are based on local optimization and causal with the potential of being applied
in real-time control. Among these strategies, Instantaneous optimization EMSs can minimize the
instantaneous fuel consumption at each instant without a priori knowledge of the entire driving
cycle and only obtain local optimal results. The instantaneous optimization-based EMSs are (1) the
equivalent consumption minimization strategy (ECMS); (2) adaptive-ECMS (A-ECMS); and (3) robust
control (RC). As a fundamental method, ECMS can be used for real-time implementation due to
its adjustability, which is related to the equivalent factor (EF). It is realized that the performance of
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ECMS is closely tied to the equivalent factor. The next question on how to select an appropriate
equivalent factor remains a key issue for ECMS. Therefore, different methods are proposed to adjust
the equivalent factor online and split the power on the basis of ECMS, for example A-ECMS. Next, the
discussion continues for the predictive EMSs, whereby the main idea is to optimize the power split
based on the predicted velocity over a certain horizon. The future power demand over the horizon is
calculated via the traffic information received through ITS and GPS. As the intelligent transportation
system technologies are increasingly utilized in traffic management systems, useful information of the
preceding vehicle through communication channels among the vehicles lead to an implementation
of predictive control that distributes the power by maximizing the fuel economy over a certain time
window. Thus, the driving cycle prediction is significant for predictive EMSs. As a common solution
method, model predictive control (MPC), which depends on the accuracy of a vehicle model for
prediction, can be implementable in predictive control for HEVs. Learning-based EMSs mainly update
the control parameters by training data to improve the adaptability to the changing driving conditions.
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4. Offline EMSs

4.1. Global Optimization-Based EMSs

These types of methods are non-causal and seek global optimal solutions since they need a prior
knowledge of the typical driving cycle. Because of the non-casual solution, they cannot directly be
employed in real-time problems; however, non-causal optimal solutions can be obtained offline under
a given driving cycle, which can provide a benchmark for other algorithms or modified online EMSs.
Thus, as a benchmark, these methods can be adopted to obtain globally optimal results under a specific
driving cycle. The commonly methods, such as dynamic programming (DP), stochastic dynamic
programming (SDP), genetic algorithm (GA), game theory (GT), robust control (RC), pseudospectral
method, and convex optimization, are illustrated and compared in this section. To clearly illustrate
the pros and cons of each approach, a comparison of different approaches is shown in Table 1.
The “computational complexity” requires low computational burden to score well since this is desirable
for fast operation and efficiency. The “adaptability” refers to the flexibility of the EMSs adapted in
different driving cycles. It scores well when the control parameters are easy to adjust to different driving
cycles for fuel economy. The SDP can provide the best adaptability in comparison with other methods.
The “priori knowledge of driving cycle” denotes the amount of driving future information required for
calibration and formulation. For these methods, the DP requires the most a priori knowledge of the
future information of the driving cycle and obtains the best fuel economy.

Table 1. Comparison of different approaches.

Approaches Main Advantages Main Disadvantages Literature

DP

• achieves global optimal results
• benchmark for other EMSs

• less adaptability to changeable
driving cycles

• highest computational complexity
(3-level)

• prior knowledge of entire
driving cycle

[9–22]

SDP
• more adaptability
• achieves near-optimal

fuel economy

• highest computational complexity
(3-level)

• requires driving cycle database

[23–28]

GA
• global optimality
• good global

search performance

• higher computational complexity
(2-level)

• less adaptability

[29–33]

GT

• trade off among
conflicting objectives

• consider driver behaviors
in EMSs

• highest computational complexity
(3-level)

• poor adaptability

[34–45]

Pseudospectral
method

• global optimality
• more accurate

numerical computation

• higher computational complexity
(2-level)

• requires analytic expressions for
vehicle models

[46–49]

Convex
optimization

• fast computation
• easy to implement

• requires convex models
• limited applications

[50–54]

PMP
• achieve near-optimal results
• lower computational burden

• complex mathematical models
• require co-state estimation

[55–68]

Note: The computational complexity of other algorithms refers to the computation time compared to dynamic
programming (DP). The smaller of the level represents less computation burden compared to DP.
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4.1.1. Dynamic Programming (DP)

Dynamic programming, as an offline optimization approach, can realize a global optimal solution
for a given driving cycle; however, it cannot directly be used in a real vehicle EMS because it is impossible
to know the future driving conditions (speed, road slope as well as traffic dynamics). DP also suffers
from considerable computing time for solving the optimal problem of the backward duration of the trip
from the future state to find the initial control input in a feasible region. Especially, the computation
burden increases as the dimension of the system states raise. However, as a benchmark, it can be used
to determine the operating conditions that yield a globally optimal fuel consumption, which is then
further used to evaluate the performance of other energy management algorithms and extract some
heuristic rules. Moreover, it can be employed to obtain an optimal solution over a prediction horizon
for model predictive control, such as in [9].

The basic principle of DP is illustrated as shown in Figure 5. The optimal process is formulated as
to find the best cost function from A to F. Firstly, the feasible region is discretized and cast into the grid
to calculate all possible paths from A to F. Then, starting from F and proceeding backwards, the best
path is computed from F to E at time t. Similarly, the global optimal solution is calculated step-by-step
starting from E and to an ending at the initial state. The shortest path is A-B-J-H-E-F and the minimum
cost is 1.2 + 0.6 + 0.7 + 0.6 + 0.8 = 3.9. The general optimal objective function is defined as follows

J =
N−1∑
k=0

[L(x(k), u(k))] + G(x(N)) =
N−1∑
k=0

[
.

m f uel(k) + µ ·NOx(k) + α · PM(k)] + β(SOC(N) − SOC f )
2 (1)

where N is the driving cycle time; L is the cost function, including fuel consumption; NOx is
emissions, etc.; and G is the constraint of the state-of-charge (SOC) and gear shifting.
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Guzzella et al. [10] put forward an energy management strategy with DP for parallel Hybrid
Electric Vehicles. Dynamic programming is used to design an optimal gear shift strategy in [11].
A cost function representing a combination of fuel consumption and emissions over a driving cycle
is defined to sustain battery SOC. The optimal gear shifting schedule that can be implemented to a
real vehicle is extracted from DP by splitting the power between the engine and the motor. To reduce
the computational complexity and implement easily, Patil et al. [12] proposed a novel dynamic
programming that is calculated by a backward simulation model for a series hybrid electric vehicle.
This approach evaluates state constraints before choosing the optimal paths rather than using penalty
functions, which can avoid the requirement interpolation by considering transitions to only the finely
discretized nodes of the state space.
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A novel dynamic programming, on the basis of machine learning, is proposed in [13]. An EMS for
a power-split HEV with an on-line trained neural network is developed to predict traffic congestion and
road types. DP is adopted to split the power between engine and motor over a specific driving cycle.
The neural network is utilized to predict the traffic conditions and road type with vehicle historical data.
This is called an on-line intelligent energy management strategy by combining a machine self-learning
algorithm and dynamic programming. In [14], a gear shifting strategy and a power allocation strategy
for a hydraulic hybrid vehicle were obtained by dynamic programming, which is utilized in a real-time
controller by extracting the control rules. Simulation results show that fuel savings can be improved by
47% over a conventional vehicle. Kutter et al. [15] combined dynamic programming with an equivalent
consumption minimization strategy to solve the conflict between global optimality and real-time
capability, which is performed by an independent calculation of the main control parameters using
dynamic programming, and the power split is optimized online by the ECMS. In [16], a weighted,
improved dynamic programming technique is proposed to allocate the power for a hybrid fuel cell
vehicle, proving that it converges faster than the traditional dynamic programming methods that
suffer from a dimensionality problem. Simulation results reveal that, when compared to the rule-based
EMSs, lower costs and a lower hydrogen consumption are achieved using the weighted, improved
dynamic programming. To improve the computation efficiency, Zhuang et al. [17] extracted a mode
shift map for a multi-mode hybrid powertrain with the DP optimal results using the support vector
machine. This can be combined with ECMS to implement real-time control. More works can be viewed
in related studies [18–21].

It is well known that DP is a numerical method to solve a dynamic optimal control problem.
However, it may lead to optimization inaccuracy when the continuous states are implemented in a
discrete framework. To address this issue, Berkel et al. [22] proposed a new implementation method by
extending the discrete method by storing the quantization residual after the nearest neighbor, rounding
of the continuous state at each node. This can avoid the implementation difficulty of the interpolation
method and the inaccuracy of the discrete method.

4.1.2. Stochastic Dynamic Programming (SDP)

Although DP is regarded as a useful tool to obtain a global optimal solution, it is impossible to
know exactly the whole driving cycle conditions (speed, road slope, etc.) in advance. To address this
issue, stochastic dynamic programming is proposed by researchers. The basic principle of stochastic
dynamic programming is that assuming that the sequence of values can be modeled using Markov
chain power, the state transition matrix map of the future driver’s power demand is generated to
estimate the driver’s power demand. The power sequence demand is calculated by discretizing the
historical driving data at a certain step, and the determination of the current power demand is made
in terms of the vehicular speed. The maximum likelihood estimation method is utilized to obtain
the state transition probability from the current state to the next one by distributing the total power
using discrete dynamic programming. It has been successfully applied as a promising approach for
obtaining a quasi-optimal policy that is implementable on-line and in real time, since only historical
driving data is needed without a priori knowledge of the driving cycle. However, there are differences
between the power demand using the Markov chain model and actual driver power demand, leading
to poor adaptability to different driving cycles because of the complexity and randomness of the actual
driving cycles. Moreover, the computation process for solving the SDP is still time consuming due to
the policy iterations. The future discounted costs are chosen based on the mathematical expediency,
leading to difficulties in validation on engineering applications.

The state transition probability is described as in Formula (2).

pi, j,a = P
{
Pdem(k + 1) = i

∣∣∣Pdem(k) = j, v(k) = a
}

(2)

where I and j is the power demand at state k+1 and k, respectively, and a is the velocity at state k.
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In [23], a stochastic dynamic programming algorithm for a power-split hybrid vehicle is proposed,
which is performed by establishing drive power sequence demand over different driving cycles based
on the Markov process to obtain a state transfer matrix of the driver’s power demand. The optimal
problem is formulated to maximize the fuel and electricity economy as the objective function in a
constraint domain, on the condition of the torque of the engine and motor, as well as the battery charging
and discharging power. The energy price was introduced into the objective function. The simulation
results are compared with that of the charge-depleting and charge sustainability (CD-CS) strategy in
terms of fuel consumption, engine control principle, engine start-stop control, and energy price.

Researchers mainly focus on minimizing the fuel consumption by using SDP. To incorporate
the drivability, Opila et al. [24] formulated a stochastic dynamic programming to gain a trade-off

between fuel economy and drivability, including engine start–stop and gear shifting time. The driving
cycle is modeled by the Markov process considering driver power demand as a stochastic process.
The simulation results in FTP and NEDC demonstrate that fuel savings of the proposed EMSs improve
by 11%. The influence of engine start–stop and gear shifting time on fuel economy is also investigated
and compared with baseline EMSs. In [25], an optimal energy management for a series hybrid
electric vehicle is presented on the basis of SDP and considering the fuel consumption and emissions.
However, the computational burden is intractable for SDP due to the large state space in this problem.
Thus, a new neurodynamic programming (NDP) is proposed to solve the issue. Finally, an SDP
controller and NDP controller are compared with a baseline one, indicating that both SDP and NDP
can achieve significant fuel economy compared to rule-based EMSs. References [26–28] can be referred
to for more information on the subject.

4.1.3. Genetic Algorithm (GA)

The genetic algorithm (GA) in evolutionary computing has become one of the most popular
algorithms among modern optimization algorithms due to its good global search performance and
low algorithm complexity [29]. As a random search method, the genetic algorithm is performed
by global searching to converge to an optimal solution based on the law of biological evolution.
These advantages are well suited to optimizing the rules, parameters, or evaluation criteria in EMS for
better performance [29]. The optimization problem is solved by simulating biological phenomena,
such as genetic variation. GA can be applied in EMSs to obtain global optimal solutions; however, the
computational load is heavy, especially for more variables due to the repeated searches, and can be
regarded as an offline optimization method, which guides researchers to select the optimal parameters
(e.g., engine size and battery size) for an HEV. Zhou et al. [30] obtained the optimal parameters by GA
and analyzed the energy management for fuel cell Hybrid Electric Vehicles. Figure 6 shows the basic
flow of the genetic algorithm. The main steps to implement the GA are as follows:

(1) Initial population: Select an initial population in a feasible solution domain.
(2) Genetic operation: A new population is generated by the selection, crossover and variation of the

initial population to converge to the global optimal solution.
(3) Decide if the population meets the ending criteria, referring to the iterations of the intelligent

optimal algorithm.

Piccolo et al. [31] put forward an energy management strategy using the genetic algorithm to
implement global optimization, which can be performed by adjusting the control parameters to
minimize fuel consumption and emissions. This method can obtain the global optimal solution
and yield better robustness; however, the computational complexity is higher than the other EMSs.
To improve the optimal performance of a genetic algorithm, Liu et al. [32] proposed a hybrid genetic
algorithm for a series hybrid electric vehicle, with faster convergence and better adaptability compared
to the traditional GA that performs the global search randomly. The proposed algorithm can acquire
fast convergence to a global solution using the quadratic programming algorithm. In addition, the
GA is combined with other algorithms to address the energy management optimization problem.
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In [33], an energy management strategy is proposed based on fuzzy logic and genetic algorithm
optimization. The membership function of a fuzzy logic controller is optimized using the genetic
algorithm. The simulation results show that the presented EMSs are clearly capable of improving
the fuel economy and reducing the gas emissions as compared to the deterministic rules without
adjustment by the GA.
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4.1.4. Game Theory (GT)

As a branch of operational research, game theory is commonly used in multi-subject optimization
problems by taking into account the forecast and actual behavior of individuals in a game. In the 1950s,
cooperative game theory enjoyed its peak and non-cooperative game theory began to develop [34].
During this time, a legendary figure, John F. Nash, deserves special mention for his two essays in
1950 [35] and 1951 [36], firstly using rigorous mathematical language and then simple words to
accurately define the Nash Equilibrium, which was a significant milestone in game theory history.
The basic idea of game theory is to determine, through formal reasoning alone, what strategies the
players ought to choose in order to pursue their own interests rationally, and what outcomes will result
if they do so [37]. In recent years, game theory-based EMSs, which are sensitive to the variations in
vehicle parameters, have been developed.

Gielniak et al. [38] proposed an integrated system approach based on game theory for automotive
electrical power and energy management systems. The objective of the players is to maximize their
payoff that is a function of vehicle performance and powertrain efficiency. Yin et al. [39] formulated the
energy management problem as a non-cooperative current control game. The Nash equilibrium
is analytically derived as a balanced solution that compromises the different preferences of the
independent devices. Dexireit et al. [40,41] designed a controller for a parallel hybrid electric vehicle
using game theory with the objectives of fuel economy and emission. First, the vehicle operating
conditions and the powertrain are viewed as two players in a finite-horizon non-cooperative game.
A cost function of this game is formed by weighting the fuel consumption, NOx emissions, and the
deviation of the battery SOC from the setpoint, as well as the deviation from the vehicle operating
conditions. The policy is established as a function of wheel speed, torque, and battery SOC to decide
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the control mode of the engine, motors, and battery. Compared to traditional EMSs, this control policy
is independent of the time and driving cycle. Therefore, it can achieve better performance under
different driving cycles. Test results validate that the game theory controller substantially outperforms
the baseline controller under NEDC. Xu et al. [42] proposed a game-theoretic energy management
strategy with velocity prediction for a hybrid electric vehicle. A recurrent neural network structure was
realized to predict the future velocities and Nash equilibrium of game-theoretic energy management,
and was implemented through the best response functions. Chen et al. [43] developed a game-theoretic
approach for solving the complete vehicle energy management problem of a hybrid heavy-duty truck
with a high-voltage battery and an electric refrigerated semi-trailer. The solution concept is based
on a two-level single-leader multi-follower game model. The game-theoretic approach presented
the optimal performance in the simulation. Chen et al. [44] introduced an adaptive game-theoretic
approach for solving the complete vehicle energy management problem of a hybrid heavy-duty truck
with a high-voltage battery and an electric refrigerated semi-trailer. The proposed method enhances
the game-theoretic approach, such that the strategy is able to adapt to real driving behavior. The fuel
reduction results are compared and the adaptive game-theoretic approach shows improved and more
robust performance over different drive-cycles compared to the non-adaptive one. A game-theoretic
solution concept for solving the complete vehicle energy management (CVEM) of a hybrid heavy-duty
truck can be found in [45].

4.1.5. Pseudospectral Method

Pseudospectral method, also known as the discrete variable representation method [46], is a direct
numerical algorithm for optimal control problems. In the energy management problem, the optimal
control theory is utilized to optimize the energy distribution. The pseudo spectral method can be
used as a direct numerical method to obtain the optimal energy distribution. The continuous energy
management optimization problem can be solved by discretizing and transforming it into a nonlinear
programming problem. Hu et al. [47] proposed a double objective charging optimization strategy for
two kinds of lithium-ion batteries, by considering the influence of battery charging time and charging
energy loss on HEV energy management. A multi-objective optimal charging control problem was
constructed, and then solved by using the Radua pseudospectral method. Zhou et al. [48] utilized the
pseudospectral method to solve an HEV energy management problem and optimized the energy
management and co-state trajectory simultaneously. The results showed that the computation efficiency
of the pseudospectral method is higher than that of DP, while the optimization performance is close to
DP. Wu et al. [49] developed a hierarchical EMS with the pseudospectral method for Hybrid Electric
Vehicles, which incorporates velocity planning, with a tradeoff between fuel consumption and path
tracking accuracy.

4.1.6. Convex Optimization

As an optimization algorithm, convex optimization is utilized for solving convex problems [3],
whose objective function and constraints are convex. In convex optimization problems, the results
of local optimization and global optimization are consistent, which greatly simplifies the solution
process [50]. As compared to other global optimization algorithms, it is easy to obtain optimal solutions
with a higher computation efficiency. The optimization of HEV energy management can be regarded
as a nonlinear programming problem, which can be transformed into a semi convex problem by using
a convex optimization method that offers a simplified calculation process and better optimization effect.
Murgovski et al. [51] presented an EMS with convex optimization for a plug-in hybrid electric bus.
The influence of battery size, gearshift, and engine on/off on energy management was investigated
by transforming these problems into semi convex problems with a convex optimization method.
In addition, the optimal results obtained from the convex optimization were compared with dynamic
programming. Nafisi et al. [52] considered the influence of the power grid on the energy management
of plug-in HEVs, and proposed a two-level optimization method based on convex optimization to
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reduce the energy loss. However, the disadvantage of convex optimization is that the objective function
and inequality constraint must be convex [53], and it yields limited applications. Especially for a
parallel HEV, the gearshift strategy should be devised separately, instead of optimizing the gearshift
and power split simultaneously, such as in [54].

4.1.7. Pontryagin’s Minimum Principle (PMP)

PMP is an analytical optimization method to solve optimal control problems to provide a
necessary condition. PMP transforms a global optimization problem into an instantaneous Hamiltonian
optimization problem, derived from DP through a variational approach. Thus, an optimal solution can
be obtained by minimizing the instantaneous Hamiltonian that includes fuel consumption and battery
SOC. Similar to ECMS, an optimal co-state is a key factor that needs to be determined appropriately.
A shooting method is commonly adopted to calculate the optimal co-state λ, for example in [55].
More works can be found in [56–59]. The form of instantaneous optimization shown in PMP makes it
possible to implement real-time control. The basic principle is generally formulated as Equations (3)–(7).
It is obvious that a differentiable objective function is required for deriving the optimal solution;
however, it is difficult to obtain a continuous Hamiltonian for Hybrid Electric Vehicles, especially for a
parallel HEV. To this end, a simplified PMP is proposed in [60] to avoid the adaptation mechanism
of the co-state for real-time applications. The main drawback of the control concept is that the
PMP-based EMS will not guarantee optimality if no information regarding the future driving condition
is provided [61].

The augmented cost function for a general problem can be given as Equation (3):

Q = ϕ(x f , t f , υ) +
∫ t f

t0

L(x, u, t)dt (3)

where L(x, u, t) is the cost function and ϕ
(
x f , t f , v

)
is presented as Equation (4):

ϕ(x f , t f , υ) = ϕ(x f , t f ) + υTψ(x f , t f ) (4)

The state dynamic is described as Equation (5) and x(t0) = x0 is also satisfied:

.
x = g(x, u, t) (5)

Thus, the Hamiltonian function can be formulated as Equation (6):

H(x, u, t) = L(x, u, t) + λT g(x, u, t) (6)

where λT is the co-state. Given the problem settings in Equations (3)–(6) and assuming the problem is
convex, the necessary condition that minimize Equation (3) are given as Equation (7).

.
λ= −HT

x and ϕx f = λT(t f )
.
x = g(x, u, t) and x(t0) = x0

Hu = 0

(ϕt + H)
∣∣∣∣t f = 0

ψ(x f ,t f ) = 0

(7)

In [62], three kinds of EMSs, namely DP, PMP, and ECMS, are conducted and compared.
By comparing ECMS and PMP, it is found that they are similar in terms of equivalent factor and
co-state. The author suggested that the ECMS becomes the implementation of the optimal solution of
PMP, which also obtains results close to the DP optimal solution, with an improvement in comparison
to the traditional ECMS. To adjust the control parameters, adaptive PMP is proposed using the total
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trip length and the average cycle speed in [63]. The results demonstrate that improvement in fuel
consumption can reach 20% compared to an on-board controller. Kim et al. [64] proposed an EMS-based
on PMP considering the battery efficiency of the plug-in Hybrid Electric Vehicles (PHEVs) and derived
an additional condition for the inequality state constraints. The results prove that the PMP can achieve
similar performance to the global optimal results obtained by DP. In [65], PMP is introduced by solving
the Hamiltonian function to find the battery current command, and the simulated annealing algorithm
is used to calculate the engine-on power and the maximum current coefficient. The simulation
results demonstrate that the proposed algorithm can reduce the fuel consumption as compared with
charge-depleting and charge-sustaining EMS. Although PMP is utilized to solve the optimal control
problems for the energy management by simplifying the engine fuel map, engine on/off control is
not considered. To address this issue, the approximate PMP is proposed in [66]. A piecewise linear
approximation to fit the fuel rate map for a plug-in HEV has been developed based on PMP to avoid
distortion in the fuel map. The results show that the engine state switching frequency is reduced by
43.40% with engine on/off optimal EMSs.

Previous works mainly focus on the determination of an optimal co-state with future driving
cycles or a prior knowledge of the driving cycles, such as [67]. Kim et al. [61] presented an adaptive
energy management strategy with PMP by analyzing the past driving patterns and updating the
control parameters with an assumption that vehicles operate under repeated driving conditions
(e.g., commuting buses). In real conditions, the driving cycle is affected by numerous factors,
for example, driver behaviors and traffic conditions. To this end, Park et al. [68] investigated a
PMP-based energy management strategy for plug-in HEVs incorporating the driver’s characteristics to
improve the adaptability of PMP.

4.2. Rule-Based EMSs

Generally, rule-based EMSs can be performed by predefining the logical rules according to the
HEV system characteristics and operation mode. The rules are determined based on the battery SOC,
driver power demand, and vehicle velocity through an “if–then” structure. Given these rules, the
power split can be performed to meet the driver power demand and maintain the SOC at a certain range.
Instead of a prior knowledge of the driving cycle, this method mainly depends on logical rules and local
constraints. The control parameters cannot be tuned due to a lack of future information on the driving
cycle, making it less adaptable to varying driving conditions. The typical methods, like deterministic
rule-based control and fuzzy rule-based methods, are introduced in the following sequel.

4.2.1. Deterministic Rule-Based EMSs

In this method, based on the engine map and motor efficiency map, a series of logical rules are
predefined to split the power between the engine and motor, considering the efficiency of the motor and
engine and battery SOC simultaneously. The control rules are easy to implement on-line by a look-up
table due to its simplicity. Thus, it is widely utilized in the commercial application of vehicle controllers.
The rules are commonly devised based on specific driving cycles (e.g., ECE). However, the varying
traffic conditions make it less adaptable to different driving cycles. Peng et al. [69] present a rule-based
EMSs for a parallel hybrid electric vehicle. Thus, conventional rule-based power management is not
optimal for real driving cycles since a unique approach to design the logical rules does not exist. In most
cases, this depends on the engineer’s experiences and driving cycles. In the following subsections,
rule-based strategies, including on/off and power follower EMSs, are discussed in more detail.

(1) on/off EMSs

As for this strategy, a battery SOC is always maintained between its preset minimum and
maximum thresholds by turning the engine on/off. The basic control rules are as follows:

1O The engine starts to work at the highest efficiency region or sub-optimal emissions area and
supplies constant power when the battery SOC is lower than the preset minimum threshold.
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A portion of the engine power is provided to the motor to satisfy the power requirement while
the rest is used on charging the battery.

2O The engine is shut off when the battery SOC increases to the pre-set maximum threshold and
only the battery provides the driving power.

In some cases, a surge of instantaneous power may be supplied from the battery with this
EMSs, which makes battery charge and discharge period shorter and the engine start–stop frequently.
The main advantage is that the average efficiency of the engine is higher and the battery charging
and discharging period became shorter, but leads to negative effects, such as more power loss due
to frequent engine start–stop, less total energy efficiency, and shorter battery life [70]. Although this
method is simple relative to the optimal EMSs, it cannot satisfy the vehicle power demand at all
operating conditions.

(2) The power follower EMSs

Based on the battery SOC and vehicle load, the output engine power as well as the moment to
start or shut off the engine are determined to satisfy the driver power demand. The control rules are
as follows:

1O If the power demand is less than the maximum engine power at its operating speed, the operation
point is adjusted to work at the minimum output power line.

2O If the battery SOC is higher than the preset minimum value and lower than maximum value
while driver power demand is less than the battery capacity and greater than the maximum
engine power at the operating speed, the engine operates at the maximum output power line and
the rest of the power demand is supplied by the battery.

3O If only the battery SOC is higher than the preset maximum value and able to satisfy the power
demand, the engine should be shut off.

The main advantage of this strategy is that it can reduce the frequency of battery charging and
discharging and lower the system energy loss to extend the battery life. This method yields better
adjustability for engine output power to the power demand, but the engine operation region becomes
wider to lower the overall efficiency.

The rule-based EMSs is easy to implement on-line; however, it is not optimal and cannot guarantee
the optimality for different driving cycles. It is also not capable of adjusting the control parameters to
achieve the best fuel economy due to the complexity of the driving conditions.

4.2.2. Fuzzy Logic-Based EMSs

Fuzzy logic control theory is composed of fuzzy set theory and fuzzy logic. The former is an
extension of TRUE and FALSE (1 and 0) set theory and the latter is an extension of conventional
logic in how the system determines the output [71]. Fuzzy relations depend largely on the similarity
or the degree of similarity between data sets, and fuzzy reasoning is represented by the IF–THEN
format, giving birth to some popular reasoning approaches, for example, the Mamdani method [72]
and Takagi–Sugeno method [73]. Fuzzy logic-based EMSs have been conducted throughout the years
in the literature [74–77]. Fuzzy logic-based EMSs aim to split the power with fuzzy rules. In this
method, the fuzzy logic rules are usually developed according to the driver power demand and SOC.
A fuzzy logic controller consists of a set of linguistic rules and each of them includes one antecedent
and two consequents. Looking into a hybrid system as a nonlinear and time-varying plant, fuzzy
logic controllers are adjustable to implement in real-time with sub-optimal control by a set of fuzzy
logical rules. Moreover, it is important to devise a membership function in optimizing the power split.
Thus, GA is adopted to optimize the membership function in the reference [78]. Some other forms of
modified fuzzy logic-based EMSs can be referred to in [79–81].

In [82], a fuzzy logic controller (FLC) for parallel Hybrid Electric Vehicles is designed. In [83],
a multi-input fuzzy logic controller for a power-split hybrid vehicle is presented and compared to
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rule-based EMSs in terms of fuel economy and emissions. Given the desired driver torque, vehicle
speed, and battery SOC, the power is distributed using the FLC method. This method achieves a better
fuel economy with good adjustability compared to the conventional rule-based EMSs. Lee et al. [84]
presented a fuzzy logic-based energy management strategy to minimize the NOx emissions while
meeting the driver power demand. The proposed fuzzy logic controller uses an electrical motor speed
as well as an acceleration pedal stroke as the control inputs. It is claimed that the proposed fuzzy
logic controller could reduce about 20% of the NOx emissions compared with the conventional vehicle.
However, the main challenge of this method is that it cannot guarantee the SOC charge-sustainability
of the battery. To address this problem, Lee et al. [85] proposed a more sophisticated fuzzy logic
controller that includes a power balance controller and a driver’s intention predictor for the energy
management. Baumann et al. [86] developed an inclusive fuzzy logic controller based on road load
estimation to compensate for the difference between the actual engine torque and the required torque.
To enhance the adaptability of the fuzzy-based EMS, Tian et al. [87] presented an EMS for a plug-in
hybrid electric bus using adaptive fuzzy logic-based with an optimal SOC reference generated by a
neural network and followed by a fuzzy logic controller.

In principle, the fuzzy rule-based EMSs can be utilized to adjust the control parameters to a
limited extend by predefining a set of fuzzy rules. However, this approach yields less adaptability due
to the difficulty in selecting a proper membership function based on different inputs.

5. Online EMSs

Online EMSs are causal and local optimization-based since they generally do not require a
priori knowledge of the whole driving cycle. They can be implemented in real-time with a limited
computational burden by converting the global optimization problem of off-line EMSs into an
instantaneous optimization problem. Due to less computational effort, on-line EMSs yields the
potential of being implemented in real-time control problems. Three categories are included, namely
instantaneous optimization-based EMSs, predictive EMSs, and learning-based EMSs. The instantaneous
optimization-based EMSs determines the power split with optimal algorithm utilizing the current
driving cycle information while the predictive EMSs mainly employ future information to optimize
the power split. Furthermore, the instantaneous optimization EMSs mainly focus on determining
the optimal power split by minimizing the performance indexes (e.g., fuel economy, emissions, and
drivability) at each instant. In the following subsection, these EMSs are extensively reviewed and
important headlines are highlighted.

5.1. Instantaneous Optimization-Based EMSs

This kind of approach is to optimize the power split by minimizing the instantaneous fuel
consumption and other performances (e.g., emissions and drivability) at each instant. These EMSs can
achieve the best performance at each instant without a priori knowledge of the driving cycle and it is
easy to implement in real-time. Instead of predefining the logical rules, instantaneous optimization
EMSs mainly focus on optimization and implementation on-line, resulting in better fuel economy
and adjustability compared to simple rule-based EMSs. However, only local optimal results can be
obtained instead of global optimization as is possible in offline EMSs.

Due to its reasonable computation burden and no requirements of previewed knowledge, these
are capable of being applied to a real-time controller and achieving approximate optimal results in
comparison with DP. In recent years, many researchers focus on instantaneous optimization EMSs,
including equivalent consumption minimization strategies (ECMS), adaptive-ECMS, Pontryagin’s
minimum principle (PMP), and robust control. In the following section, these are introduced and
discussed in more detail.



Energies 2020, 13, 3352 16 of 36

5.1.1. Equivalent Consumption Minimization Strategy (ECMS)

The main idea of ECMS is that the power is distributed by minimizing the instantaneous equivalent
fuel consumption at each instant by converting the electricity consumption into the equivalent fuel
consumption. In contrast to other EMSs, the control variable in ECMS is the equivalent factor (EF),
which is defined as the relation between the energy consumption of the secondary power source and
power requirement. The equivalent factor plays a significant role in improving the fuel economy.
Thus, selecting a suitable equivalent factor according to different driving cycles is a key issue. For this
method, it is easy to implement for real-time control, achieving sub-optimal results without prior
knowledge of the driving cycle. The standard ECMS generally adopts a constant optimal EF obtained
from an iterative method; however, it cannot adapt to the varying driving conditions. Thus, other forms
of ECMSs are proposed, such as adaptive ECMS [88,89], telemetry ECMS [90], predictive ECMS [91],
ANFIS-based ECMS [92], artificial neural network-enhanced ECMS [93], and a driving-style based
ECMS [94]. Since fuel consumption is the main design objective, two key issues need to be considered
for ECMS implementation. One is the drivability, in that the optimal torque usually jumps frequently
at each instant without incorporating engine or motor response time, which may lead to oscillation of
the powertrain. Another is the computation efficiency, in that it cannot directly be utilized in a real
vehicle controller although yielding a lower computational burden compared to DP. Instead, it can be
implemented online in a look-up table. Additionally, it is more challenging to adjust the EF in real
driving cycles.

The basic principle of an ECMS is illustrated in Figure 7, which is depicted for a parallel HEV.
The energy flow when the battery is discharging is shown in Figure 7a. In this state, the electric
motor supplies mechanical power. The route of the red dots is concerned with the return of the used
instantaneous electrical energy in the future, which means that the used electricity is converted into
equivalent consumption. The energy flow when the battery charging is shown in Figure 7b. In this
state, the engine supplies the mechanical power. The mechanical energy is received and converted into
electrical energy by the motor, and then is stored in the battery. The red dotted route is related to the
use of this electrical energy for generating mechanical power in the future. This part of the mechanical
energy will not have to be generated by the engine, which is considered as fuel-saving. The power
split is then determined by minimizing the equivalent fuel consumption.Energies 2020, 13, 3352 16 of 35 
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The equivalent fuel consumption rate is given as Equation (8).

.
meqv =

.
m f +

.
me =

.
m f +

s
Qlhv

Pe (8)

where
.

m f is the engine instantaneous fuel consumption; s is the equivalent factor; Pe is the motor
power, where the value is negative when braking and the value is positive when driving; and Qlhv is
the fuel lower heating value.

As an instantaneous optimization method, an equivalent consumption minimization strategy
(ECMS) is firstly introduced by [95] and an instantaneous optimization algorithm is supplemented
(see [96–98]). Nüesch et al. [99] proposed an approach that minimizes the fuel consumption using
ECMS for a diesel hybrid electric vehicle while tracking a given reference trajectory for both battery
SOC and NOx emissions adjusted by a PI controller. By hardware-in-the-loop (HIL) experiments,
the proposed method not only improves the fuel economy but also implements feedback regulation of
the SOC and NOx emissions. Gao et al. [100] introduced an ECMS for series Hybrid Electric Vehicles
in comparison with on/off EMSs and power follower strategy. The on/off EMS mainly optimizes the
operation region of the engine while the power follower EMS optimizes the operation region of the
battery charging and discharging. The main objective of the ECMS is to implement system optimization
in terms of battery and engine efficiency, which can achieve better fuel economy.

To ensure battery SOC charge-sustainability and keep the EMSs simple to implement,
Skugor et al. [101] proposed an energy management strategy for a power-split hybrid electric vehicle,
integrating rule-based EMS and ECMS to optimize the fuel economy. One-dimensional directional
search-based and two-dimensional directional search-based instantaneous ECMSs were analyzed,
in which the former was performed in two variants, corresponding to the engine maximum torque
target line and constant-power target line, while the latter gave special attention to the offline
optimization of the target region size. The simulation results indicate that the optimization solution of
the rule-based + ECMS is close to that of dynamic programming under an HWFET (Highway Fuel
Economy Test) cycle.

In [102], ECMS is deployed to solve the optimization problem for a hybrid system of fuel cells and
batteries, obtaining suitable energy management of the hybrid system by minimizing the hydrogen
consumption. In [103], Park et al. applied ECMS for the power distribution between the engine and
the motor of Hybrid Electric Vehicles. To find the optimal equivalent factor for a certain driving
cycle, a parameter optimization method based on a model applying a genetic algorithm was studied.
The results represent a promising improvement in fuel economy and the optimal equivalent factor is
considered as a good initial value for vehicle calibration.

5.1.2. Adaptive Equivalent Consumption Minimization Strategy (A-ECMS)

As explained previously, the performance of an ECMS for real-time control is closely related to the
equivalent factor. Therefore, how to tune the equivalent factor is essential to improve the performance
of energy management strategies. The equivalent factor is generally decided by the future power
requirement and the current SOC as well. To achieve this goal, A-ECMS is proposed by refreshing
the control parameters according to the future power demand and current one. The basic principle of
an A-ECMS is that the equivalent factor is regulated accordingly by the current SOC, predicting the
velocity and driver’s power demand in real-time, keeping the SOC in a certain range and minimizing
the fuel consumption. The PI adaptor is commonly adopted in [104]; however, the PI parameters needs
to be adjusted appropriately. Thus, a fuzzy logic-based PI adaptor is proposed in [105] to adapt to the
changing driving conditions. Furthermore, incorporating the uncertainty of the driving cycles and
future information from ITS are utilized in adjusting the EF. The typical structure of an A-ECMS with
ITS is illustrated in Figure 8. With the GPS/ITS and feedback information, the future power demand is
estimated over a certain horizon. The equivalent factor is estimated and tuned online to maintain the
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prescribed SOC by the adaptor. The A-ECMS can be implemented in real-time control without a priori
knowledge of the driving cycle.
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In [106], Musardo et al. put forward an A-ECMS by estimating the equivalent factor based upon
different road loads to update the control parameters, which minimize fuel consumption and maintain
the battery SOC at a certain range. Sezer et al. [107] introduced a novel ECMS for series Hybrid Electric
Vehicles considering the efficiency of the engine, battery, and generator to gain the combined fuel
consumption and emissions cost map, which optimizes the engine-generator set and ensures battery
charge sustainability. Sciarretta et al. [97] proposed a new approach for redefining an equivalent factor
according to the coefficient of charging and discharging of the battery, which presents great robustness
and reduces the fuel consumption by 30% in comparison to the traditional approaches.

Other approaches to estimate the equivalent factor by combining the ECMS with other optimization
algorithms are proposed in [108–110]. In [108], Zhang et al. proposed two kinds of methods, such as DP
and backward ECMS to estimate the equivalence factor and adopted a backward ECMS sweeping over
the estimated future velocity and exacting the future 3-D terrain information to adjust the parameters
of the ECMS. In [109], Kim et al. developed a method based on Pontryagin’s minimum principle (PMP)
to calculate the optimal equivalence factor. He et al. [110] presented an energy management strategy
that combines rule-based strategy and ECMS for fuel cell vehicles to reduce the hydrogen consumption.

The development of Intelligent Transportation Systems offers a promising way to predict the
velocity and estimate the equivalent factor for an ECMS. The velocity and position of each vehicle as
well as the traffic information in front of a target vehicle can be provided through vehicle-to-vehicle
communication (V2V) and vehicle-to-infrastructure communication (V2I) with a DSRC protocol
to make it possible to adjust the equivalent factor according to the updated predicted velocity.
Serrao et al. [111] indicate that PMP can be shown as the underlying optimization principle for ECMS,
but online implementation is unfeasible due to its iterations in finding the initial value of the dynamic
equivalent factor for charge-sustaining (CS) operation. Mohd et al. [112] proposed a velocity prediction
method combining a car-following model and cell-transmission model (CTM) based on Inter-Vehicle
Communication (IVC) and Vehicle-Infrastructure Integration (VII). A computationally efficient CS HEV
powertrain optimization strategy was then analytically derived based on the PMP and CS condition to
adjust the co-state according to the predicted velocity to evaluate the performance of the proposed
strategy. Zhang et al. [113] proposed an adaptive ECMS on the basis of velocity prediction through
V2V and V2I communications to improve the robustness of the ECMS and maintain a good SOC charge
sustainability. To incorporate the future information into the EF adaptor, Sun et al. [114] developed an
adaptive-ECMS to improve the fuel economy by updating the EF periodically, with the predicted
velocity obtained from neural networks.
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On the basis of recognizing the driving pattern, the equivalent factor can also be assessed.
The driving cycle pattern can be identified by the previous driving pattern. Thus, the equivalent
factor is adjusted adaptively based on driving pattern recognition. In [115,116], Gurkaynak et al. put
forward an energy management strategy using ECMS for a parallel hybrid electric vehicle to obtain
sub-optimal results. The optimal performance is related to the vehicle model and equivalent factor,
which is updated by driving cycle identification using a neural network algorithm. Simulation results
demonstrate that ECMS can obtain approximate optimization results in comparison to DP. In [98],
a novel method is developed to calculate the equivalent factor determined by the change rate of the SOC
in ECMS without a priori knowledge of the entire driving cycle. The robustness and adjustability are
demonstrated through different driving cycles compared with that of estimating the equivalent factor
under specific driving cycles. To catch energy-saving opportunities, Rezaei et al. [117] proposed a novel
energy management based on an adaptive equivalent consumption minimization strategy for series
Hybrid Electric Vehicles by determining a range for the optimal EF of ECMS. Most of the literature
ignore the vehicle lateral dynamic in devising the EMS; to this end, Li et al. [118] developed an energy
management strategy considering the vehicle lateral dynamic with an adaptive ECMS.

5.1.3. Robust Control

Robust control is a branch of control theory whose approach to controller design explicitly deals
with uncertainty. The robust control method is utilized in designs for them to function properly,
provided that there are uncertain parameters and that disturbances exist within some forms (parametric
or structural) [119]. As for this method, the energy management is formulated as an optimal problem,
represented by the state–space equation. The HEV model generally needs to be simplified to devise a
closed-loop system, which can be stable and of strong anti-jamming ability by designing state–feedback
gain matrices, as well as achieving sub-optimal results with higher computational complexity.

In [120], to overcome the presence of parameter uncertainty in the optimal problem,
an optimal-heuristic EMS is presented. The solution is real-time implementable since it is based
on a discrete-time description of the system and the optimal solution can be analytically found.
In [121], a robust energy management strategy for a fuel cell hybrid vehicle is proposed to solve the
sensitivity issue regarding driving cycle uncertainty. This approach improves the robustness of the
energy management strategy against driving cycle variations while minimizing the H2 consumption.
Pisu et al. [122] discussed three kinds of energy management approaches for a parallel hybrid
electric vehicle, namely rule-based EMSs, an adaptive equivalent consumption minimization strategy
(A-ECMS), and H∞ control, compared with DP that presents the disadvantages of computational
complexity and requiring a priori knowledge of the driving cycle. The rule-based EMSs that is of
lower computational burden is easy to implement by pre-defining a series of control rules, dependent
on the brake and accelerator pedal angle, battery SOC, and the torque demand. The A-ECMS is
implemented by establishing an optimization cost function, which takes into account electricity
consumption, fuel consumption, and NOx emissions, and adds a penalty function on an equivalent
factor. The state–feedback H∞ control method aims at minimizing fuel consumption by computing
a control gain matrix. Simulation results show that an A-ECMS achieves a similar performance in
comparison with DP. For the A-ECMS, the optimal control can be calculated offline and stored in the
controller as a look-up table to reduce the computational load, whereas the dynamic characteristics of
the components is neglected.

In principle, although the robust control method can provide dynamic optimization to adjust the
control parameters, it only can achieve sub-optimal solutions because of its simplification of the models.

To clearly show the pros and cons of each method, a comparison of different approaches is
summarized in Table 2.
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Table 2. Comparison of different approaches.

Approaches Main Advantages Main Disadvantages Literature

ECMS
• easy to implement
• on-line implementation

• less adaptability
• obtain local optimal results

[88–103]

A-ECMS
• on-line implementation
• more adaptability

• complex EF adaptor
• obtain local optimal results

[104–118]

RC
• robustness with

uncertainty parameters
• more adaptability

• high computational complexity
• higher vehicle model complexity

[119–122]

Note: The adaptability refers to the flexibility of the energy management strategies (EMSs) adapted in different
driving cycles.

5.2. Predictive EMSs

The main purpose of predictive EMSs is to optimize the power split utilizing predictive information
related to the uncertainty and disturbance of a driving cycle. This strategy requires future driving cycle
information (e.g., future velocity) that can be predicted with available information (e.g., road conditions
and traffic conditions). Thus, to a large extent, the performance of this strategy depends on the power
reference provided at each prediction horizon. In other words, it is mainly based on the predicted
velocity on a flat road without considering road slope. Therefore, it is significant to predict the vehicular
velocity accurately in implementing such approach. Generally, it is impossible to predict the whole
cycle accurately. Alternatively, it should be partially predicted if only a small part of the upcoming trip
is considered [123]. In addition, the factors affecting the prediction accuracy include driver behavior,
road condition, dynamic traffic conditions, preceding vehicles, etc. Inaccurate prediction may worsen
an EMS’s performance. Therefore, in order to improve the prediction accuracy, more surrounding
information needs to be effectively considered. The optimal control input is obtainable by minimizing
the performance indexes (e.g., fuel consumption and emissions) over a certain horizon, and this
approach is in real-time implementation to adapt to the changing driving conditions. In view of this,
researchers increasingly adopt predictive EMSs to improve the fuel economy. Model predictive control
(MPC) is commonly employed to implement predictive energy management. Apart from this approach,
predictive ECMS [124] can also be performed.

The general cost function of the predictive EMSs is commonly formulated as Equation (9) and the
constraint is given as Equation (10). The optimal problem can be solved by minimizing Equation (9)
under the constraint Equation (10).

J =
∫ k+Hp

k
[(

.
m f (u(t))

2 + λF(t))]dt (9)



SOCmin ≤ SOC ≤ SOCmax

we_min ≤ we ≤ we_max

wm_min ≤ wm ≤ wm_max

Pm_min ≤ Pm ≤ Pm_max

Pe_min ≤ Pe ≤ Pe_max

(10)

where J is the cost function; Hp is the prediction horizon;
.

m f (u(t)) is the fuel consumption; u(t) is
the control input (e.g., engine torque, motor torque, and gearshift); F(t) is the other performance
factors, such as emissions and drivability, etc.; λ is the penalty coefficient; SOCmin(t) and SOCmax(t)
are the minimum SOC and maximum SOC, respectively, with SOC being the state of charge; we_min(t)
and we_max(t) are the minimum and maximum speed of the engine; wm_min(t) and wm_max(t) are the
minimum and maximum speed of the motor, respectively. Pm_min(t) and Pm_max(t) are the minimum
and maximum power of the motor; Pe_min(t) and Pe_max(t) are the minimum and maximum power of
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the engine; Pm(t) and Pe(t) are the power of the motor and engine, respectively; and wm(t) and we(t)
are the speed of the motor and engine, respectively.

In the following subsection, typical prediction techniques as well as predictive EMSs are elaborated.

5.2.1. The Driving Cycle Prediction Approach

It is important to predict the driving cycle for EMSs, especially for predictive EMSs. The main
challenge of EMSs is that the power split is conducted under a given standard driving cycle, which cannot
achieve the best fuel economy due to the uncertainty of the driving cycles. Especially for the city
condition, many uncertain factors exist, such as traffic congestion and driving habits. Thus, it is very
important to predict the driving cycle for the energy management of HEVs. In this section, typical
prediction methods are introduced. More predictive techniques can be advised in [125].

A. Driving pattern recognition

The driving database can be obtained by dividing the standard driving cycles into several segments
to extract the feature parameters, including velocity, acceleration, and deceleration. The whole driving
cycle can then be constructed by comparing the current driving pattern with all the past databases to
find a match. At present, this approach is widely used in recognizing driving patterns. However, the
identified driving cycle may be different from the actual one due to the complexity and uncertainty
of the real driving cycle. For this approach, the fuzzy recognition method as well as artificial neural
network are commonly adopted.

Langari et al. [126] proposed an intelligent energy management strategy for a parallel hybrid
electric vehicle on the basis of the driving pattern identification. They utilize vehicle static information
(e.g., velocity and acceleration) to improve fuel economy in different driving conditions. The cycle
characteristic parameters, such as maximum speed, minimum speed, acceleration, and deceleration,
are used to recognize the driving cycle. Wu et al. [127] proposed a learning vector quantization (LVQ)
algorithm by extracting the driving condition parameters to recognize the driving pattern, which can
be integrated into a fuzzy torque distribution controller for improved adaptability. Simulation results
demonstrate that this method enhances the fuel economy more effectively than that of without driving
cycle recognition. Murphey et al. [128] also extracted the driving characteristic parameters from
standard driving cycles by dividing them into several segments and classifying historical data for
different roadway types. The collected data can be trained with a neural network (NN) to identify
the type of driving cycle. Finally, the current driving cycle can be identified according to the input
parameters from the NN. Simulation results show that the EMS with driving identification can
significantly improve the fuel economy.

Driving pattern recognition is usually adopted in optimization for a city bus due to its relatively
fixed route. Zhu et al. [129] proposed a dynamic optimization method based on driving cycle
self-learning in view of a relatively fixed route for a series of hybrid city buses. The velocity and
mileage for certain routes are accumulated by an on-board information unit. The database server
receives the data through GPRS and extracts the kinematics segment, and then the clustering approach
is used to construct the entire driving cycle. Finally, dynamic programming is utilized to optimize
the control parameters and load them into a hybrid controller unit. Bender et al. [130] presented an
energy management strategy for hybrid hydraulic vehicles based on driving cycle prediction in terms
of the repetitive operation characteristics for a city bus. The velocity and acceleration are captured
by a GPS and on-board unit. After data processing and filtering, current driving data, including the
beginning and ending position of the interval, is extracted to obtain the speed–position profiles as a
history database. In the following, the current velocity profile can be predicted by comparing the start
and stop position of each new interval with that of the acceleration process included in the history
database if the set threshold value is satisfied. Finally, DP was implemented according to the predicted
velocity profile to evaluate the effect of prediction error on fuel economy. The results show that fuel
savings increased by 5% with the recognition of the driving cycle.
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B. Traffic flow modeling

The velocity can also be obtained by modeling a driving cycle approximately with the help of a
traffic flow model in the field of transportation. Due to the relationship between vehicle speed and
traffic flow, the velocity is estimated using a mathematical model as well as a probability method
with historical traffic data (e.g., traffic volume, speed, and occupancy). The traffic flow models
(e.g., macroscopic or microscopic models) are utilized to predict the velocity, only reflecting the regular
characteristics approximately and neglecting other factors. Furthermore, it is difficult to accurately
represent the actual cycle conditions because of the uncertainty of the actual driving conditions.

In [131], a piecewise modeling approach is proposed to obtain an entire driving cycle assuming
that velocity and acceleration are kept constant at different intervals. The velocity is also given by
analyzing the historical data. Meanwhile, considering the influence of road slope on fuel economy,
an energy management strategy based on Multi-Information Integrated Trip modeling is developed.
The influence of interval length on fuel economy is analyzed, indicating that a long interval length
leads to less computational time and a worse fuel economy using dynamic programming. In [132],
an optimal EMS is introduced based on a traffic flow model called the gas-kinetic model for highways.
Simulation results show that the gas-kinetic model can reflect the dynamic characteristic of the actual
driving conditions and improve the fuel economy under different driving cycles.

C. Driving cycle prediction based on an Intelligent Transportation System (ITS)

An Intelligent Transportation System (ITS) aims to provide innovative services related to traffic
management and enables various users to be better informed about traffic conditions and having
a safe trip. The ITS does not only offer traffic information for an energy management strategy but
also provides a promising way to enhance the road traffic safety via intelligent vehicle technology.
One way to do so, the vehicular velocity can be predicted over a certain horizon by accumulating
real-time traffic data (e.g., traffic condition, signal phase and timing, and road grade) with Global
Position System (GPS), Geographic Information System (GIS), vehicle-to-vehicle communication,
an on-board units. The predictive EMSs can be then be implemented considering this future information.
The corresponding performances of the EMSs can be highly improved, since multi-source information
from ITS, GPS, and GIS could be combined for reducing the uncertainty of future driving conditions to
further improve the prediction accuracy [125].

To improve the prediction accuracy, He et al. [133] presented a driving cycle prediction method
with real-time traffic data from the communication between a vehicle and infrastructure (V2I) to
predict the velocity using neural networks. The predicted velocity is sent to a vehicle’s on-board
unit to calculate the driver’s power demand. The influence of prediction error, penetration rate,
and window size on fuel economy are also analyzed. Simulation results show that fuel savings can
increase by 14% under the UDDS (Urban Dynamometer Driving Schedule) and the average velocity
prediction error with V2I communication is 13.2%. Considering the influence of road terrain on an
energy management strategy, Zhang et al. [134] proposed a new strategy for solving the problem of not
achieving the best fuel economy with traditional energy management due to a lack of information about
the upcoming driving cycle. With future road terrain determined by Geographic Information System
(GIS), the optimal results using DP and ECMS in comparison to rule-based EMSs are analyzed for the
case of having a terrain preview and no preview. The results show that fuel savings with a terrain
preview increase from 1% to 4% and enhance the longevity of the battery on the uphill. Fu et al. [135]
proposed a real-time optimal energy management strategy based on driving cycle prediction, utilizing
information attainable from Intelligent Transportation Systems (ITS). The effect of prediction error
on the optimal results is also analyzed. The results of using model predictive control (MPC) and
A-ECMS are compared, respectively, which is based on different prediction errors using standard and
actual driving cycles as a prediction benchmark. The results indicate that a small deviation in the
final SOC and fuel economy are introduced when the prediction error is small. Thus, it is important
to investigate the influence of prediction error on fuel economy due to sensor precision and delay
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of ITS. Gong et al. [136–138] modeled a driving cycle using real-time traffic data from ITS, GIS, and
GPS. Two kinds of models are introduced, utilizing historical driving data and only real-time driving
data. The accumulated historical data is classified into urban, highway, and countryside conditions.
The characteristic parameters (e.g., maximum acceleration, maximum speed limit, and average waiting
time) of each segment are extracted to generate an approximate driving cycle. Simulation results under
the two kinds of models were analyzed, indicating that the EMSs with historical data modeling is
better than those without them. The fuel economy of the proposed energy management algorithm is
better than the rule-based EMS.

D. Driving cycle prediction using artificial intelligence

Machine learning is the science of having computers to act without being explicitly programmed,
which can be used to build smart robots (for perception and control), text understanding (web search
and anti-spam), computer vision, medical informatics, audio, database mining, and other areas.
As a machine learning algorithm, Artificial Neural Network (ANN) is deployed in classification,
prediction, pattern recognition, and clustering. The application of ANN to predict driving and
handling behaviors [139], city power load [140], and traffic flows [141] have demonstrated its strong
capability in predicting nonlinear dynamic behaviors. In [142], three kinds of prediction methods,
including exponentially varying, the Markov process, and ANN, are compared. The prediction is
performed over each receding horizon and the predicted velocity is utilized for energy optimization of
a power-split HEV. The results show that the ANN-based velocity predictor yields the best performance
for predictive energy management. In [143], considering the vehicle-to-vehicle communication (V2V)
and vehicle-to-infrastructure communication (V2I) information, a Bayesian Network approach is
presented to predict the velocity by assuming a stochastic model of the velocity of the preceding vehicle.
The results demonstrate that the prediction yields a higher accuracy within a certain horizon.

5.2.2. Model Predictive Control (MPC)

Model predictive control (MPC) describes the development of tractable algorithms for uncertain,
stochastic, and constrained systems. As a mathematical method, model predictive control aims to
optimize a future system output by calculating the system input trajectory [144]. The main idea of
MPC is that the future control output is predicted by an online optimization according to historical
information, as well as by future input and output. The principle diagram of an MPC is shown in
Figure 9. Upon the error between the reference and the predictive output, the control sequence can be
obtained by combining the historical input, historical output, and predictive input. However, it requires
a higher computational burden if the vehicle model is complex. It can be used as a real-time energy
management strategy when the computational load is decreased.
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In recent years, MPC has been widely adopted in EMSs. The purpose of MPC-based EMSs is to
optimize the power split over a prediction horizon and update the control input, by transforming the
global optimization problem into a local optimization for the whole driving condition. Compared with
other EMSs, MPC is a rolling horizon optimization method based on system prediction information.
The main advantages of an MPC are that it can deal with constraints explicitly, i.e., state variables,
input, and output constraints. In addition, the constraints can be formulated as quadratic or nonlinear
programming problems, by predicting the system dynamic behavior [145]. The traditional optimization
algorithm cannot effectively deal with the impact of the uncertainty of the future working conditions on
vehicle performance. In view of this, MPC adopts local optimization, rolling optimization and feedback
correction to solve this problem efficiently. To this end, some forms of MPC has been developed in
optimizing the power split, such as hybrid MPC [146], distributed MPC [147,148], variable horizon
MPC [149], adaptive MPC [150], and tube-based MPC [151].

Generally, linear MPC and nonlinear MPC are commonly formulated in optimizing the power
split. Borhan et al. [115] presented an MPC-based energy management strategy for the power split of a
hybrid electric vehicle. Energy management is a constrained nonlinear optimal problem. The MPC is
utilized to split the power between the engine and motor to regulate the engine operating point at
each sample time. Simulation results of the nonlinear MPC show a noticeable improvement in the fuel
economy with respect to linear time-varying MPC. In [152], the power management based on nonlinear
MPC with an adaptive prediction time horizon is proposed. An MPC-based control algorithm based
on load profile prediction is proposed. In this approach, results show that the MPC-based solution
yields better performance for total energy consumption in comparison to the conventional approach
and strongly depends on the performance of the prediction algorithm. If the predicted velocity could
match well with the measured velocity, then the time horizon increases, and vice versa. Thus, it is
significant to decrease the computational load to improve the performance of energy management.

In [153], an integrated predictive power management controller is studied. A model-based
control approach for a plug-in HEV is proposed to minimize the overall CO2 emissions. The energy
management is formulated as a global optimization problem and cast into a local problem by
applying Pontryagin’s Minimum Principle. Simulation is conducted to calibrate the control parameters
(e.g., environmental factors, vehicle usage condition, and geographic scenarios) and investigate their
influence on the fuel economy. Results show that the sensitivity of proposed EMSs on the driving cycle
is not significant. To design a torque controller for a parallel hybrid electric vehicle, He et al. [154]
developed a torque demand control approach based on MPC. The torque distribution controller has the
function of the torque split, torque demand, torque compensation, and torque limit. The engine torque
controller is designed based on a nonlinear mean-value model with MPC. The difference between
the demand torque and the actual engine torque is compensated for by motor torque because of the
nonlinear and lag of the engine torque response. The motor torque controller is developed based on a
linear MPC and the transient torque load of a hybrid powertrain is estimated with a PI observer.

5.2.3. Stochastic Model Predictive Control (SMPC)

The common MPC generally utilizes the predicted velocity provided by an exponential estimation
or neural network, which have been well studied in [155,156]. This method is based on the standard
driving cycles without considering the uncertainty of the driving cycles. Thus, it yields less adaptability
to the changing driving cycles. To this end, the stochastic model predictive control (SMPC) is proposed
in [157–159], which mainly employs the predicted velocity by a Markov chain and an MPC in optimizing
the power split. In this method, the distribution of the driver’s future power demand can be obtained by
a Markov chain and the MPC is then adopted to obtain the optimal power split. A linear optimization
method is utilized for solving the SMPC with a lower computational burden, which can be regarded
as an online EMS. Stochastic model predictive control (SMPC) accounts for model uncertainties and
disturbances based on their probabilistic description [160].
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In [161], a new model predictive control for a series hybrid electric vehicle is proposed based upon
the Markov chain process. In this method, the driver power demand is modeled as a Markov chain to
represent the driver future power request. All possible distribution of power demand in the next step
with all possible Markov states at each time step are generated iteratively. In the following, SMPC is
used to split the power between the engine and the motor over a distribution of future power demand
given the current one at each sample time. Simulation is conducted under standard driving cycles to
obtain a better fuel economy, compared to other deterministic approaches. The advantage of SMPC
is that its optimization is feasible in real-time control with respect to SDP. Xie et al. [162] proposed a
model predictive energy management for plug-in HEVs based on Pontryagin’s Minimum Principle.
The design utilizes a Markov chain model to predict the velocity and achieves a higher computation
efficiency. Most of the literature works do not consider the battery aging in devising EMSs, especially
for a plug-in HEV. For this purpose, Chen et al. [163] developed a nonlinear model predictive control for
a power-split HEV considering battery aging. Better battery aging performance is achieved compared
with that without considering battery aging while obtaining a similar fuel economy performance.

5.2.4. Learning-Based SMPC

Learning-based SMPC aims to integrate an MPC with machine learning algorithms to improve
the performance of the MPC controller in a data-driven way. In contrast to SMPC, which assumes
that the driver’s power demand can be modeled offline based on the Markov chain, learning-based
SMPC can update the Markov chain by online learning, which allows adjusting to variations in the
driver behavior with minimal computational effort in real-time control. Therefore, it can dynamically
adapt to the changing driving behaviors, such as environmental changes and varying traffic conditions.
This approach is more realistic than SMPC in terms of capturing driver actions as well as driving styles.
In addition, a traditional MPC generally assumes that the vehicle model parameters are time-invariant;
however, actual vehicle models are usually time-varying, such as the vehicle load and battery life
that change with time, for construction vehicles or hybrid electric buses. Thus, to devise a robust
MPC-based energy management, a new learning-based model predictive control should be developed
by adjusting the model parameters adaptively and updating the system model dynamically with
online learning, which can capture the dynamic characteristics of the control objectives.

In [164], the driver’s power demand Markov chain model is updated by online learning, which
can be reconfigured in real-time for accommodating the changes in driver behavior. To capture the
driver behaviors, online learning of the Markov chain is introduced to tackle the uncertainty that arises
from the environment around the vehicle. By updating the Markov model, the controller can adapt to
the changes in driver behavior with less computational effort. Learning-based SMPC is adopted to
determine the power split of a series hybrid electric vehicle, where the driver model predicts the future
power request that relates to the driving style and driving cycle. Simulation results for standard and
real-world driving cycles show that learning-based SMPC improves the performance of classical MPC
with the learned pattern of driver behavior.

5.3. Learning-Based EMSs

The learning-based EMSs aim to update the control parameters of EMSs online by interacting
with the environment to adapt to the various traffic conditions. They generally employ massive
historical and real-time driving-related data to obtain the optimal solution. For this method, the precise
model data is not required. Reinforcement learning (RL) and machine learning are commonly used
to devise such EMSs. This method can capture the dynamic traffic conditions and yield to potential
real-time applications. In [165], the concept of EMSs based on learning is introduced to combine the
optimal EMSs with the learning method to enhance the robustness of the EMSs. A predictive energy
management strategy for a parallel HEV is designed by means of a reinforcement learning approach.
Similar work can also be found in [166–169]. Moreover, an overview of reinforcement learning-based
EMSs can be found in [170]. A reinforcement learning system is composed of two items: a learning
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agent and an environment where the learning agent interacts continuously with the environment.
The state of the environment can be observed at each instant for the learning agent. The learning agent
then selects an action, which is subsequently inputted to the environment. The reward associated with
the transition is calculated and fed back to the learning agent while the environment shifts to a new
state because of the action. Together with each state transition, the agent can receive an immediate
reward to produce a control policy that represents the current state to the best control action for that
state. At each instant, the agent makes a decision based on its control policy. Finally, the optimal
policy can lead the learning agent executing the best series of actions to maximize the cumulated
reward over time, which can be learned after satisfactory training. The advantage is that the design is
a model-free control and provides more adaptability compared other EMSs. However, these require
more driving-related data for training.

To obtain a trade-off between optimal fuel savings and real-time performance, Qi et al [171]
proposed a reinforcement learning-based real-time EMS for PHEVs by learning the optimal decisions
from historical driving cycles. In [172], a deep reinforcement learning-based PHEV EMS is devised
to autonomously learn the optimal behaviors from its own historical driving cycles to adapt to the
changes in driving conditions. Most of the works in the literature ignore battery health in devising
learning-based EMSs; to this end, in [173], a reinforcement learning-based real-time energy management
is developed for PHEV by considering the battery health. To further achieve higher computation
efficiency, Sun et al. [174] developed a reinforcement-learning-based EMS by combining the ECMS for
fuel cell Hybrid Electric Vehicles.

Apart from the learning-based EMSs, the distributed optimization (DO) approach was recently
proposed to solve the complete vehicle energy management problem. Romijn et al. [175] proposed a
distributed optimization (DO) approach for a hybrid truck with a refrigerated semi-trailer, an air
supply system, an alternator, a dc–dc converter, a low-voltage battery, and a climate control system.
A dual decomposition is firstly applied to the optimal control problem such that the problem related
to each subsystem can be solved separately. Then, an Alternating Direction Method of Multipliers
method is used to efficiently solve the optimal control problem for every subsystem in the vehicle.
Simulation results show that the fuel consumption can be reduced up to 0.52% by including auxiliaries
in the energy management problem, assuming that the auxiliaries are continuously controlled.
The computation time is reduced by a factor of 64 up to 1825, compared with solving a centralized
convex optimization problem.

6. Conclusion and Future Trends

The EMSs of Hybrid Electric Vehicles have been extensively studied and compared. The offline
EMSs aim to minimize fuel consumption globally. Although they cannot be directly implemented
in a real vehicle, they provide a benchmark for other energy management strategies and obtaining
modified online EMSs. The online EMSs are relatively easy to implement in a real vehicle due to a
lower computational burden and no prior knowledge of the whole driving cycle, while achieving
similar performance (e.g., fuel economy) as compared to the offline EMSs. The instantaneous
optimization-based EMSs are a promising way to compromise real-time implementation and fuel
consumption minimization. Driving cycle prediction is important in predictive EMSs. As the
ITS technology is increasingly developed, the predictive EMSs are capable of better adjustability
and represent a better performance compared to other EMSs. Although different EMSs have been
conducted in recent years, offering remarkable solutions, some important future trends need to be
further considered.

6.1. The Predictive EMSs Considering Dynamic Traffic Conditions with ITS

The main challenge of current EMSs is that solutions are generally devised under specific driving
cycles, which bring about the impossibility to attain optimal results in a real cycle. Despite the
global optimization that obtains optimal results in theory, it is hard to implement in real-time vehicle
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controllers because of computational complexity. Predicting the driving cycle is an effective way for
real-time optimization-based energy management strategies considering dynamic traffic conditions
and future information. In this design, the real-time traffic data can be dynamically obtained with
intelligent transportation system (e.g., vehicle-to-vehicle communication technology).

If the driving cycle can be predicted as accurate as possible by taking into consideration traffic
congestion and road slope, the EMSs can be effectively performed. Therefore, incorporating dynamic
traffic conditions into EMSs and investigating predictive EMSs based on driving cycle prediction are
possible future trends.

6.2. Real-Time EMSs Incorporating Components Response and Accurate Vehicle Models

Currently, most of the EMSs aim to minimize the fuel consumption and emissions to obtain
global results. Although these EMSs can provide a benchmark for researchers, it is more challenging
to implement in real-time. The vehicle controller not only determines the power split but also is
responsible for acquiring data, monitoring the operation state, and diagnosing the fault required for a
high real-time performance. This is essential for vehicle prompt response once the control command
has been received. The computational complexity of global optimization is acceptable for simulation,
whereas it is impossible to update control parameters for real-time application. The adopted numerical
optimization methods for simplified vehicle models can reduce the computational complexity, which,
on the other hand, become less attractive if the nonlinear characteristic of the vehicle model is
considered. Considering the nonlinear characteristics of the vehicle model results in obtaining a higher
accuracy for the optimization results.

Rule-based EMSs are commonly performed in real vehicles. Because the other optimization
algorithms are hard to implement due to their computational complexity, they utilize simplified
vehicle models, which lead to unexpected energy management results in practice. Consequently, how
to simplify the vehicle model and reduce the computational complexity to ensure the real-time
performance of the optimization algorithm will be an urgent problem that needs to be solved in the
near future.

6.3. Multi-Objectives EMSs Incorporating Battery Aging and Drivability

It is well known that a hybrid electric vehicle is a complex and nonlinear system composed of
many components: engine, motor, and transmission, which are highly coupled. Multiple performance
indexes (e.g., drivability and fuel economy) are influenced by each other. Thus, it is important to
trade-off different performance objectives since these are conflicted with each other in a variety of
operating mode switches. In addition, battery aging will also affect energy efficiency and fuel economy.

Currently, the energy management strategy mainly aims at minimizing fuel economy and
emissions while neglecting other performance factors involving battery life as well as drivability.
Thus, how to incorporate these performance indexes to implement them in an integrated optimization
is a key issue.

6.4. Adaptive EMSs Considering Driver Characteristics and More Influential Factors

To the best of our knowledge, most of the EMSs are demonstrated by simulation over a specific
driving cycle. However, the actual driving condition is complex and diverse; for instance, traffic
congestion in cities, highways, urban, and suburban areas. In addition, driving behaviors (e.g., driving
styles) is another important factor in the driving cycle. Different drivers may take different actions
toward the same situation, leading to uncertainty in driving cycles. The optimal results of the EMSs
are strongly dependent on the driving cycle while it is hard to adapt to various driving conditions
using existing EMSs. Therefore, to develop adaptive EMSs may be a promising solution for the HEVs.
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6.5. Multi-Dimension EMSs Including Route Planning and Velocity Planning

It is well known that the performance of EMSs is related to the vehicular velocity and
traffic conditions. The changing traffic conditions make it challenging to implement a high
energy-efficiency-oriented energy management strategy. This is due to the uncertainty of the vehicle
route and velocity affected by traffic conditions. Moreover, different routes present a distinct traffic
condition, even if the vehicle operates on the same route since the traffic condition may be diverse.
All these factors bring uncertainty and disturbance for optimizing EMSs. Traditional EMSs mainly
consider fuel-to-powertrain optimization instead of combining economic route planning and optimal
velocity planning. Thus, how to integrate powertrain optimization, route, and velocity planning to
further improve the energy efficiency is a key challenge.
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