Energy Procurement Portfolio Optimization

Paula Rocha and Daniel Kuhn

Imperial College London

March 9, 2010

Risk Management for Utilities

Sources of Randomness

Electricity Market

Forwards

* Fixed delivery profile (base, peak, off-peak)
* Fixed volume
* Physically settled

European Call Options

* Forwards as underlying instruments * Financially settled

Financial Transactions

Costs (Uncertainties; Decisions)

Spot Trading

$$S_t(D_t - \sum_i v_t^i x_{\mathsf{F},t}^i)$$

Forward Trading

Option Trading

 $\sum_{i} F_t^i v^i x_{f_t}^i$

 $\sum_{j} C_{t}^{j} v^{i(j)} x_{c,t}^{j}$

Option Exercising $-\sum_{i} \max\{F_{t}^{i(j)} - K^{j}, 0\} v^{i(j)} x_{C_{t}}^{j}$

Financial Transactions

Constraints (Decisions)

Budget Constraints

$$\begin{aligned} x^i_{\mathsf{F},t} &= x^i_{\mathsf{F},t-1} + x^i_{\mathsf{f},t} \\ x^j_{\mathsf{C},t} &= x^j_{\mathsf{C},t-1} + x^j_{\mathsf{c},t} \end{aligned}$$

No-Short-Sales Constraints

$$egin{array}{l} x^i_{{\sf F},t} \geq 0 \ x^j_{{\sf C},t} \geq 0 \end{array}$$

No-Trading Constraints

 $x_{\mathbf{f},t}^i = 0$ if forward *i* has expired $x_{\mathbf{c},t}^i = 0$ if option *j* has expired

Mean-Risk Model

- minimize γ Expected Costs $+(1 \gamma)$ Risk
- subject to Budget Constraints No-Short Sales Constraints No-Trading Constraints Non-Anticipativity Constraints

Problem Complexity

* # State variables \propto # contracts \gg 4 \implies DP problematic

 * Arbitrage-free scenario tree requires (# contracts +1)^T scenarios ⇒ SP problematic

Dimensionality Reduction

- * All uncertainties explained by few risk factors $\{\xi_t\}_{t=1}^T$
- * Eliminate perfect dependencies
- * Use principal component analysis

Stage Aggregation

- * Observe uncertain parameters only every third (nth) stage
- * Trading only reasonable when new information is revealed

Linear Decision Rules

* Trading decisions: linear decision rules of the risk factors

Uncertainty modelling:

- * Spot price One-factor model w seasonality (Lucia & Schwartz, 2002)
- * Demand Log-Vasicek model w seasonality

Efficient Frontier

SAA Results

LDR Results

Value of Adaptivity

Ability to react to changing market conditions \Rightarrow risk reduction!

Bibliography

Daniel Kuhn

Aggregation and discretization in multistage stochastic programming. *Mathematical Programming A 113*, 1 (2008), 61–94.

Daniel Kuhn, Wolfram Wiesemann, and Angleos Georghiou Primal and dual linear decision rules in stochastic and robust optimization. *Mathematical Programming A*, in press (2010).

Paula Rocha and Daniel Kuhn Multistage stochastic portfolio optimisation in deregulated electricity markets using linear decision rules.

Available on Optimization Online, submitted for publication (2010).