
Eng. 100: Music Signal Processing W22 ©J. Fessler
December 31, 2021 14:35

Lab 1: Julia and sampling

1 Abstract

This lab introduces some basic tools that you will use throughout the course. The goals of this lab are as follows.

(1) To gain the ability to apply basic Julia language features that will be used in Engin 100.
(2) To learn the basics of sinusoidal signals.
(3) To learn the basics of sampling continuous-time signals.

Projects later in the course will involve simple Julia programs that synthesize music and that process sampled
continuous-time signals (music) to determine their sinusoidal components.

2 Background

2.1 Embedded audio and links

Throughout the PDF files for the digital signal processing (DSP) lecture notes and labs and projects, there are
audio examples that you can hear by using the (free) Adobe Acrobat Reader application and clicking the play
buttons. Other PDF readers may not be able to play the embedded audio. Here is an example: play . You
should hear a 2 second long 440 Hz tone when you click that play button, assuming you have a suitable PDF
reader, a working sound card and speaker or earphones, the system volume high enough, etc. (You might have to
tell Acrobat Reader to “trust” this document, and then you might need to close the file and reopen it and click
again to hear it.)

Also, throughout the PDF files are embedded URLs (uniform resource locator, aka web address), annotated using
cyan boxed words. There are embedded links to the Julia manual and to wikipedia resources. Clicking on any
of them should open an Internet browser window related to the topic for more information. Try clicking on “Adobe
Acrobat Reader” above and your browser should open to a corresponding Wikipedia page.

2.2 Julia

Julia is a free and open-source programming language that was developed specifically for scientific and numerical
computing. It combines the convenience of interactive programming (like Python and Matlab) with the speed of
compiled languages. Its syntax incorporates the best features of Python and Matlab.

Section 3.2 describes how to download and install the free Julia application from https://julialang.org. You
may use it with any code editor; we recommend using the free VSCode editor with its Julia extension for convenient
debugging. You also can use Jupyter notebooks (the Ju in Jupyter is for Julia). It will be most convenient for
you to install Julia on your own computer, but you can also install it locally on a CAEN workstation if needed.

Julia provides a convenient interactive environment for scientific computing. It is particularly convenient for
manipulating vectors and matrices, i.e., arrays of numbers, and we will see that (digital) music signals are simply
arrays of numbers. A Julia program is a list of Julia statements executed in succession. This lab will teach you
enough about Julia to be able to use it.

Bring ear buds or headphones to lab, if possible. Speakers generally should not be used in CAEN labs.

1

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

1.5151018

http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Adobe_Acrobat
http://en.wikipedia.org/wiki/Uniform_resource_locator
https://docs.julialang.org/en/v1/manual/getting-started
http://en.wikipedia.org/wiki/Wikipedia
http://en.wikipedia.org/wiki/Julia_(programming_language)
https://julialang.org
https://www.julia-vscode.org

2.3 Sinusoids

Sinusoids have a central role in Engin 100. They are the building blocks of musical sounds.
A sinusoid or sinusoidal signal or sine wave is a function or signal of the form

x(t) = A cos(2πft+ θ), −∞ < t <∞. (1)

This sinusoid is a function of time t, typically measured in seconds. The signal x(t) is a function of t; for each
value of t, there is an associated signal value x(t). Each sinusoidal signal is defined in terms of the following three
constants:

• A = amplitude. The amplitude A and the signal x(t) have the same units (e.g., “volts”).
A ≥ 0 always. In music, if A increases then the tone sounds louder.

• f = frequency in Hertz = CYCLES
SECOND .

x(t) has period T = 1/f seconds, so x(t) = x(t+ T) = x(t+ 1/f) for all t.
In music, this frequency is also called the pitch.

• θ = phase or phase shift, in radians or degrees. Phase = θ is equivalent to time delay τ = − θ
2πf seconds.

Another (less common) way of writing the sinusoid in terms of a time delay τ is x(t) = A cos(2πf(t− τ)) .
Note that sin(α) = cos(90◦ − α) = cos(α− 90◦), so a sine is a cosine with phase θ = −90◦.

Here is an example plot of (part of) a sinusoidal signal:

t [seconds]

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48

x
(t

)

-2

-1

0

1

2

Let us “reverse engineer” this plot to express the sinusoid mathematically.

• Amplitude: A = 2. This is the maximum value of the signal because the maximum value of cos is 1.
(In contrast, the peak-to-peak amplitude = 4).

• Period: examine the time difference between two peaks: T = 0.22− 0.02 = 0.42− 0.22 = 0.2 seconds.
So the frequency is f = 1/T = 5 Hertz.

• Time delay: normally the first peak of cos is at 0, but here it is at τ = 0.02 seconds. That is the time delay.
The phase is thus θ = −2π5τ = −2π5 (0.02) = −π/5 radians.

• So two mathematical formulas for this sinusoidal signal are:

x(t) = 2 cos(2π5(t− 0.02)) = 2 cos(10πt− π/5) .

Note that “x” is on the vertical axis here; get used to this!

2

http://en.wikipedia.org/wiki/Sine_wave
http://en.wikipedia.org/wiki/Amplitude
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Periodic_function
http://en.wikipedia.org/wiki/Pitch_(music)
http://en.wikipedia.org/wiki/Phase_(waves)

2.4 Reading questions

You must read the description of each lab and project before the start of the corresponding lab section. To help
ensure that you do, each lab/project writeup includes a few easy “reading questions” that you must answer on
Canvas no later than the start of the earliest lab session.
Because our class begins on Wednesday in W22, and labs begin on Thursday, for Lab1 you must complete the RQs
no later than the start of the earliest lab session in the second week.

Here are the first two such questions. There are more later in the document. Submit your answers to Canvas after
you finish reading this lab.

RQ Lab1.1. A sinusoidal signal has amplitude=8, frequency=100Hz, and phase θ = π/3.
What is the value of the signal at t = 0.02 seconds?

Because this is a warm-up problem, here is the answer. The problem is asking for the value x(0.02), where the
sinusoidal signal is x(t) = 8 cos(2π100t+ π/3) so we simply substitute t = 0.02 into the formula: x(0.02) =
8 cos(2π(100)0.02 + π/3) = 8 cos(4π + π/3) = 8 cos(π/3) = 8/2 = 4.
Even though the answer is given, you still must enter it into Canvas to verify you read the lab in advance!

RQ Lab1.2. A sinusoidal signal has frequency=50Hz and phase θ = 2π/3. The value of the signal at t1 = 0.01 is
x(t1) = 7. What is the amplitude of the sinusoid?

3

https://umich.instructure.com/courses/515456
https://umich.instructure.com/courses/515456
https://umich.instructure.com/courses/515456

2.5 Sampling

Unless you have an analog computer, continuous-time signals such as music must be sampled or discretized
into an array of numbers that can be processed with a (digital) computer. The numbers themselves must also
be quantized or digitized into a finite number of bits (finite precision). Engin 100 will not explicitly deal with
quantization much, although we will see some of its effects in the next lab1. In signal processing, the term “sampling”
does not mean incorporating a short segment of one recording into another, as is often done in certain music styles
today.

Sampling is performed by analog-to-digital (A/D) converters. These are very sophisticated electronic compo-
nents present in any digital audio system. Fortunately, all we need here is a simple mathematical model. The usual
way to sample a continuous-time signal x(t) is to look at t = n∆ for integers n for a desired sampling interval
= ∆ seconds. The corresponding sampling rate is S = 1

∆
Sample
Second . The units of the sampling rate S is Hertz or

Sample
Second . When the continuous-time signal x(t) is the input to an A/D converter, the output is the following array
of numbers that can be stored digitally:

(x(0), x(∆), x(2∆), x(3∆), . . .) =

(x[0], x[1], x[2], x[3], . . .) ,

where we relate the digital signal x[n] and the analog signal x(t) as follows:

x[n] = x(n∆) = x(t)
∣∣∣
t=n∆

= x
(n
S

)
= x(t)

∣∣∣
t=n/S

. (2)

If x(t) has finite duration (length), i.e., it starts at some time and stops at another, as all music does (e.g., musical
chairs), then x[n] is a finite list of numbers (an array). This makes x[n] suitable for computer processing.

For a sinusoidal analog signal of the form (1) that is sampled at S “Hertz” = S Sample
Second , (i.e., every ∆ = 1

S seconds),
the resulting sampled signal is

x[n] = x(n∆) = x(t)
∣∣∣
t=n∆

= A cos
(
2πf ∆n︸︷︷︸

t
+θ
)

= A cos

(
2π
f

S
n+ θ

)
, n = 0, 1, 2, (3)

Note that f/S, f∆ and n are all dimensionless. It is usually desirable to put equations in dimensionless form.

It might seem that we will lose information about x(t) by storing only its samples x[n] = x(n∆). How can we
recover the original analog signal x(t) from it samples x(n∆), e.g., for audio playback? Amazingly, we will see later
in Engin 100 that we can reconstruct x(t) exactly from its samples x[n] = x(n∆) = x(n/S) as long as S > 2fmax,
where fmax denotes the maximum frequency of x(t). This fact was discovered by Claude Shannon, a UM alumnus.
His bust is outside the EECS building.

To illustrate these concepts, consider a standard music CD that holds 64 minutes of music. The original analog
musical signal is sampled at S = 44100Sample

Second and quantized using 16 bits per sample (providing 216 = 65536
possible different signal values per sample). There are two channel components because it is stereo (although early
Beatles recordings were monophonic, among others). So we can determine how many bytes are stored on the CD
as follows (watching the units):[

1 byte

8 bits

] [
16

bits

channel

] [
2

channel

sample

] [
44100

sample

second

] [
60

second

minute

]
[64 minutes] = 677 MBytes.

1If you buy a music CD (does anyone still do that?) and import it to another digital format such as MP3, then the import software
(e.g., iTunes) will likely give you options to set the encoding quality to high or low; this choice influences quantization.

4

http://en.wikipedia.org/wiki/Sampling_(signal_processing)
http://en.wikipedia.org/wiki/Quantization_(signal_processing)
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Digital_signal
http://en.wikipedia.org/wiki/Analog_signal
http://en.wikipedia.org/wiki/Claude_Shannon

RQ Lab1.3. A sinusoidal signal has amplitude=6, frequency=2000 Hz, and phase θ = 0. The signal is sampled at
rate S = 8000 Sample

Second . What is the value of the sampled signal x[n] when n = 4?

Now we introduce Julia so that we can plot signals like sinusoids, manipulate them, and listen to them. But first
we start with the basics.

3 Getting started with Julia

3.1 About Julia

All code examples in class and labs and projects will use the Julia programming language. Why?
• It is free and open source.
• It is a real programming language, developed for numerical computing [1].
• Used by Freshmen in Robotics 101 at UM, in ENGR108 at Stanford, and in a similar UCLA course.
• It is interactive (like Python and Matlab), yet has fast execution because it is compiled.
• Much of its syntax is similar to Matlab and Python.
Here is a list of noteworthy differences from Matlab
• DSP / data-science / machine learning are all done with many software languages...
• Jupyter notebooks (based on IPython) are educational, integrating math with documented code and figures.

In parallel to working on Lab1, you should work on HW0 which is an interactive Julia tutorial. The HW0 deadline
is a bit later to give you time to work through it, but the sooner you learn it, the easier the labs will be.

Some documentation / books:
• Online documentation: (stable version) (latest version)
• Wikibook Intro to Julia: https://en.wikibooks.org/wiki/Introducing_Julia

5

http://en.wikipedia.org/wiki/Julia_(programming_language)
https://robotics.umich.edu/academic-program/course-offerings/rob101
https://web.stanford.edu/class/engr108
http://www.seas.ucla.edu/~vandenbe/ee133a.html
https://docs.julialang.org/en/v1/manual/noteworthy-differences
https://jupyter.org/
https://docs.julialang.org/en/v1/
https://docs.julialang.org/en/v1/manual/getting-started
https://en.wikibooks.org/wiki/Introducing_Julia

3.2 Installing and running Julia

During your first lab session, your lab instructor will help you with running Julia (and with installation if you get
stuck), but it will be very helpful for you to get as far with set up as you can before lab.
We recommend (but do not require) that you use the Julia extension with VS Code:
https://www.julia-vscode.org, because of its excellent integration with the Julia Debugger.
Alternatively, you may use your own favorite editor (though you may find debugging more challenging).

Follow installation instructions at https://www.julia-vscode.org/docs/dev/gettingstarted
• Download and install Julia, at least version v1.7.0, from https://julialang.org/downloads.
You can use any computer that has a sound card for audio.
• Download and install VS Code from https://code.visualstudio.com
• Launch VS Code, typically by clicking its icon in your Application folder.
• Install the Julia VS Code extension (“Julia Language Support”), following the instructions.
• Restart VS Code.
• Optional power-user tip: set up your shell to make sure the julia executable is in your path.
On my Mac, I made a link in /usr/local/bin that points to the executable:
[path-to-julia]/Contents/Resources/julia/bin/julia

• Peruse VS Code tutorials: https://code.visualstudio.com/docs
• Customize VS Code (if you want), e.g., by installing your favorite keymap. (I use vim – retro...)
• Follow the Hello World instructions to run your first Julia program.
• Either within VS Code, or separately, launch a Julia REPL with prompt: julia>
• Type 1+2 to verify it works.
• Press the ? key and then type a function name like LinRange to get documentation about it.
• Experiment with some basic statements like x=3 and x+2 and x^2
• Use Julia’s package manager, Pkg, to add some Julia packages that you will use in this course:

using Pkg

Pkg.add(["FileIO", "FFTW", "HTTP", "MAT", "Plots", "Polynomials", "Sound", "WAV"])

If any of these fail to install, then try adding them one at a time, like Pkg.add("FileIO")

If you want to work with Jupyter notebooks, then also Pkg.add("IJulia")
• Here is an alternative way to install packages.
At the REPL, press the] key to enter the package manager that has a prompt like (v1.6) pkg>
Add some useful packages using the package manager:
• add Plots
• add Polynomials
• add FFTW
• ...
• Press the delete key to exit the package manager and return to Julia’s main REPL.

• If you have problems later, return to the package manager and run update to get the latest package versions.
• For documentation of the Plots.jl plotting package, see:
http://docs.juliaplots.org/latest/
https://github.com/sswatson/cheatsheets/blob/master/plotsjl-cheatsheet.pdf

The next section really begins using Julia.

6

https://www.julia-vscode.org
https://www.julia-vscode.org/docs/dev/gettingstarted
https://julialang.org/downloads
https://code.visualstudio.com
https://www.julia-vscode.org/docs/dev/gettingstarted/#Installing-the-Julia-extension
https://code.visualstudio.com/docs
https://code.visualstudio.com/docs/getstarted/keybindings#_keymap-extensions
https://www.julia-vscode.org/docs/dev/gettingstarted/#Creating-Your-First-Julia-Hello-World-program
http://en.wikipedia.org/wiki/Read-eval-print_loop
https://docs.julialang.org/en/v1/stdlib/Pkg
https://pkgdocs.julialang.org/v1
https://docs.julialang.org/en/v1/stdlib/Pkg
http://docs.juliaplots.org/latest/
https://github.com/sswatson/cheatsheets/blob/master/plotsjl-cheatsheet.pdf

3.3 Vectors and arrays

Because Julia is designed for scientific computing, when using Julia you often think in terms of vectors (1D
arrays), matrices (2D arrays) and possibly higher dimensional arrays. Examples of a (column) vector, a matrix,
and the transpose of that matrix in mathematical notation are, respectively:

x =

 3
1
4

 Y =

[
3 4 7
1 5 9

]
Z = Y ′ =

 3 1
4 5
7 9

 .
In Julia syntax you enter such simple arrays by typing (you can use cut-and-paste from the lab pdf) the following
statements at the REPL:
x = [3, 1, 4]
Y = [3 4 7; 1 5 9]
Z = Y’ or Z = transpose(Y)

The transpose operation Z = transpose(Y) means convert rows to columns, and vice-versa. The conjugate
transpose operation Z = Y ′, also known as the Hermitian transpose, is the combination of transpose and
complex conjugate of each matrix element. For a matrix of real numbers, the complex conjugate has no effect,
so transpose and conjugate transpose are equivalent, so we usually just use type Z = Y’ in Julia. Note the
convenient similarity between the mathematical notation and the Julia syntax2.

In both Julia and Python, a vector is a 1D array, and is best thought of as a column vector. In Matlab, there
are no true vectors! There are N × 1 arrays (often thought of as column vectors) and 1×N arrays (often thought
of as row vectors). This sloppiness in Matlab often leads to confusion. In Julia, typing size(Y) returns (2, 3)
because Y is a 2×3 matrix, i.e., a matrix with 2 rows and 3 columns. Typing size(x) returns (3,) because x
is a true 1D array (a vector) with 3 elements. It is not a “3× 1” array! We can transpose the vector x by typing
y = x’ , which produces a special type of “adjoint” vector of size (1,3) . (You can think of it as a row vector if
you want.) If we transpose back by typing z = y’ , then we again get a true 1D array that is the same as x . Try
it in Julia to see. When in doubt, use the size function to check.

To make a 1D vector we can either use vec([3 1 4]) or insert commas (or semicolons): [3, 1, 4] .

Try the following statements in Julia and note what they are doing (reshape will be very useful later):
• A = 10*[1 2 3; 4 5 6] (Create a 2× 3 array and multiply every element by 10.)
• A[2,3] (Access the element of A in row 2 and column 3.
• b = vec(A) (Stack A by columns.)
• reshape(b,3,2) (Convert the column vector b into a 3× 2 array.)
• x = vec([3 1 4 1 5 9 2 6 5 3 5]); d = [x[n+1] - x[n] for n in 1:10]
This takes differences between the elements of x , using a useful Julia technique called comprehensions.
What is the size of the vector d ?
• x[4], x[end] (Access 4th and last element of x .)
• x = vec([3 1 4 1 5 9 2 6 5 3 5]); c = x[2:11] - x[1:10]
This is another way to take differences of x .
A more elegant way is: c = x[2:end] - x[1:end-1] because this works for any length vector x
The simplest way of all uses the built-in Julia function diff as follows: c = diff(x)

2Another name for complex conjugate of a matrix is adjoint, and Z = adjoint(Y) is another way to perform conjugate transpose.

You will never need to use adjoint in this class, but if you want to look at documentation for what Z = Y’ is doing, you need to

look at the adjoint function in the Julia manual because internally the syntax Z = Y’ is translated into Z = adjoint(Y) .

7

http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Transpose
http://en.wikipedia.org/wiki/Transpose
http://en.wikipedia.org/wiki/Conjugate_transpose
http://en.wikipedia.org/wiki/Conjugate_transpose
https://docs.julialang.org/en/v1/manual/arrays/#man-comprehensions
http://en.wikipedia.org/wiki/Hermitian_adjoint
https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#Base.adjoint

• Try to predict what the result will be before you enter the following: x = [10, 20, 30, 40]; s = sum(x)
• a = [1, 2, 3]; b = [5, 6, 7]; c = [a; b]
The operation [a; b] concatenates vectors a and b , appending b after a to make a longer vector c .
• The colon : is useful for generating vectors of values called ranges. Try these statements and think about the
output. You will need to use such statements frequently:
x = 3:7 , t = 2:1/10:3 , y = 10:2:20 , z = 40:-1:30
To see the full list of values, you can use the collect function:
collect(x), collect(t), collect(y), collect(z)
Only rarely does one need to use collect .
• At any point if you want to display the value of an array you can either just type the array name, e.g., x , and
press enter, or use the show function: show(x)
When debugging functions you write, it is helpful to use the macro version: @show x
• Because Julia is a compiled language, unlike Matlab, it does not have any “clear” function. If you want to start
over, you should exit Julia using exit() or ctrl-D.

3.4 Broadcast

Often we want to apply the same function, like cos, to every element of an array. In Julia this is called a broadcast
operation. It is usually implemented by appending a dot . to the function name.

Try the following:
t=0:10; x = cos.(2*pi*t/10)

Here t is a vector having 11 elements. (You can verify that by typing length(t) .) The argument 2*pi*t/10
is also a vector with 11 elements.

The broadcast syntax cos.() tells Julia to apply the cos function to every element of the 11 element vector
argument.

If you try to type cos(t) directly, you will get an error message, because mathematically the cos function is
defined for scalar arguments3.

3.5 Plotting

A particularly common Julia task you will perform is plotting (samples of) functions.
Try running the following examples. (No, this is not part of the lab you will turn in yet):
• You must start by telling Julia to use the Plots package.
See https://docs.juliaplots.org for plotting package documentation.
using Plots

• t = 1:100; x = cos.(2*pi*t/30); plot(x) (Plot a sinusoidal signal with period=30.)
• t = 1:100; y = 2.0.^(t/20); plot(y, ylabel="2^(t/20)", label="")
(Plot an exponential function growing in time.)
Here the .^ is another broadcast meaning element-wise exponentiation.
• t = 1:100; z = 2.0 .^(-t/20) .* cos.(2*pi*t/30); plot(z, title="decay")
(Plot a decaying sinusoid.)
Here the .* is another broadcast meaning element-wise multiplication of two vectors.
3In Matlab you would not need the dot, but then it is hard to read Matlab code and understand what it is doing in general. In

Julia the dot conveys to the reader that the operation is element-wise.

8

https://docs.julialang.org/en/v1/base/math/#Base.range
https://docs.julialang.org/en/v1/manual/arrays/#Broadcasting
https://docs.juliaplots.org

• Typing t and x will each display for you a vector of 100 numbers. You can display them as side-by-side
columns by typing [t x] which forms a 100× 2 matrix.
• To plot multiple functions on one plot (note the colors):

plot(t, x, label="x"); plot!(t, z, label="z")
• To plot x vs. y as a scatter plot:

scatter(x, y)
In such cases the number of elements in t and x , or x and y , must be the same.

3.6 Miscellaneous features

These simple examples illustrate several important points about Julia.
• Using a broadcast operation like t = 1:5; x = exp.(t) to define x as a function of t produces a vector
of x values corresponding to the vector of t values very concisely. Alternatively you could use Julia’s array
comprehension:
x = [exp(t) for t in 1:5]
but here the broadcast version is less typing and easier to read.
Another alternative (that would be necessary in many other programming languages) is to write a loop:

t = 1:5
x = zeros(length(t)) # initialize
for i = 1:length(t)

x[i] = exp(t[i])
end

Matlab and Python users generally try to avoid loops because they are interpreted languages so loops are slow.
Julia is compiled so using loops generally is fine from a speed perspective, but certainly the broadcast version
is more readable and much less typing here.
• Putting a semicolon “ ; ” at the end of a statement suppresses output; without it the Julia REPL will show
the results of the computation on your screen. This is harmless, but can be annoying.
• The operation “ .* ” multiplies two vectors element-by-element, whereas “ * ” multiplies vectors as in linear
algebra.
Try these: [1, 2] * [3, 4]’ and [1, 2]’ * [3, 4] and [1, 2] .* [3, 4] and [1, 2] * [3, 4]
(The last one gives an error message.)
• Compare collect(0:.1:1) (11 numbers spaced by 0.1) and

collect(LinRange(0,1,10)) (10 numbers spaced by 0.111).
This difference is sometimes called the fencepost error or picket fence error. If you have a 30 foot fence
with pickets every 3 feet, how many pickets are there? Answer: 11 (not 10). Programmers often introduce bugs
by disregarding this distinction.

3.7 Getting help for Julia

• To get help for a Julia function, say, LinRange , type ?LinRange or @doc LinRange .
• See https://web.eecs.umich.edu/~fessler/course/100/misc/whywont-julia.htm for ideas on what might
be wrong with your program.

9

http://en.wikipedia.org/wiki/Off-by-one_error
https://web.eecs.umich.edu/~fessler/course/100/misc/whywont-julia.htm

3.8 Programs (jl-files)

You can access previously-typed statements using the up-arrow and down-arrow on your keyboard. But typing
gets old. Instead, you can write (and save) a program or script (a sequence of Julia statements) using a jl-file.
In the VS Code editor, under the “File” menu select ‘New File” and choose Julia as the language (or just name
the file something with a .jl suffix). Use the editor to type in a sequence of Julia statements, then save. To
execute that script, either push the “play” button in the VS Code editor (if you are actively editing that jl-file), or
use an include statement at the Julia REPL, like include("mycode.jl")

3.9 Saving figures

As long as you have loaded the Plots package (by typing using Plots), you can save the current figure by typing
savefig("filename.png") at the Julia REPL. Or, in VS Code there is a small “floppy disk” icon above the
plot that you can click for saving. You could also capture the plot window using your operating system (typically
saves it as a PNG file). Afterwards, you can insert the figure into a google doc to include it in a report. You will
do this frequently in your lab reports and presentations.

3.10 Subplots

You can combine multiple plots into one figure by using the plot function. Try the following example.
using Plots p1 = plot(cos.(2*pi*(1:100)/100), label="cos")

p2 = scatter(sin.(2*pi*(1:10)/10), label="sin")

plot(p1, p2)

The variables p1 and p2 contain plot descriptions. You can see their type by typing typeof(p1) which returns
Plots.Plot{Plots.GRBackend} . Julia has numerous variable types, and typeof is very useful for learning
about them.

3.11 Multiple dispatch

You might note above that the same function name plot is used into two very different ways. In the first use, the
argument is a vector of cos values. In the second use, the arguments are plot descriptions. This feature in Julia
is called multiple dispatch. It means that different methods are called based on the types of one or more of its
arguments. This feature is closely related to function overloading, as used in C++ and Java, for example.

3.12 Exiting Julia

To exit Julia, type exit() .

RQ Lab1.4. What is the name of the Julia operation that applies a function to each element of its argument?

10

http://en.wikipedia.org/wiki/Floppy_disk
https://support.google.com/docs/answer/97447
http://en.wikipedia.org/wiki/Multiple_dispatch#Julia
http://en.wikipedia.org/wiki/Function_overloading

4 Lab 1: What you must do

4.0 Start a Google Doc for your lab results

After completing this lab you will submit a PDF file of your results to Gradescope for grading. You will generate
the PDF file using Google docs. So before starting, point your browser to http://drive.google.com and login
(with your umich account) and create a new document. Put your name, date, and section number at the top of
the document. Put all of the requested figures and answers into this document. Ask your lab instructor for help if
needed. If you have not used it already, Google Docs is worth learning and using for this report because it allows
collaborative editing that will be useful later for the team projects. (This lab is an individual assignment.)

Section 3 suggested a lot of functions that you should try yourself at the Julia REPL before proceeding with the
rest of this lab. For the rest of this lab, we recommend you enter the statements in one or more jl-files as described
in Section 3.8. Your lab instructor can help show you how to do this.

4.1 Sinusoids

[5] Use plot to make a figure consisting of the four (sub)plots described below, following Section 3.10.
Start by typing using Plots .
(a) Type t = 0:10; x = 3*cos.(t) + 4*sin.(t); p1 = plot(t, x, label="(a)")

This should be a jagged-looking plot.
The reason is that it is only sampled at integers, and samples are connected by straight lines.

(b)Type t = 0:0.1:10; x = 3*cos.(t) + 4*sin.(t); p2 = plot(t,x, label="(b)")
This should be a smoother plot.
Are you surprised that the sum of a sin and a cos is a pure sinusoid? See the Appendix below for why.

(c) Prepare to use the Sound package, then listen to a sound by typing:
using Sound

n = 1:4000; S = 8192; x = cos.(2*pi*440*n/S); sound(x, S)
This tone should sound like note “A” (440 Hz) if your computer audio is working properly.

(d)Type p3 = plot(x, label="(d)")
This should be a blue smear! It is about 200 cycles squished together.

(e) Type x[1:8]
This extracts the first 8 elements of the vector x and displays them.
You will use frequently this way of extracting certain elements of a vector.

(f) Type p4 = plot(x[1:100], label="(f)", marker=:square)
This extracts the first 100 samples of x and then plots them so we can better see (part of) the sinusoid. The
squares show the samples, and the plot just “connects the dots” between them.

(g) Type sound(x[1:2:end], S)
This extracts every other value of x , halving its length.
The sinusoid is squished together and effectively is sped up by a factor of two, so the tone is now “A” one octave
higher (880 Hz).

(h)Combine all four plots into one following Section 3.10.
(i) Add a title to the combined plot by typing

plot!(plot_title = "Lab 1 Figure 1", plot_titlefontcolor=:red)
Save this four-subplot figure as a PNG file and import it into your Google Doc.
The plot title and font color are just two of numerous plot attributes that you can control.

11

https://www.gradescope.com/courses/335728
http://drive.google.com
https://github.com/JeffFessler/Sound.jl
https://docs.juliaplots.org/latest/attributes

4.2 Non-sinusoidal signals

[5] Use subplots with plot to make a figure consisting of the four plots described below. It will be best to combine
all the code below into a single jl-file.
(a) Type:

using HTTP
using FileIO: load
using Sound: sound
using Plots
url = "https://web.eecs.umich.edu/~fessler/course/100/misc/train-whistle.wav"
(y, S, _, _) = load(HTTP.URI(url))
sound(y, S)

This signal should sound like a train whistle.
(b)Type p1 = plot(y, label="train", xticks=[1,length(y)], ylim=(-1,1), yticks=-1:1)

This will be a blue smear mainly showing the envelope. Then to zoom in type:
n = 1501:1700; p2 = plot(n, y[n], marker=:circle, label="y zoom")
Note that this signal is approximately periodic.
[2] Q1: How many samples are displayed in the second plot? (The answer is not 1700!)

(c) Type sound(y[1:2:end], S) Again this doubles the pitch and halves the length.

(d)Type z = y .* cos.(2*pi*1000*(1:length(y))/S); sound(z, S)
This operation is another way to alter pitch, called modulation.
Multiplying by this cosine shifts all of the frequencies of y both up and down by 1000 Hertz.

(e) Type p3 = plot(z, label="z", xticks=[1,length(z)], ylim=(-1,1), yticks=-1:1)
Again it is a similar looking blue smear; to zoom in:
n = 1501:1700; p4 = plot(n, z[n], marker=:star, label="z zoom")
Note how this signal z differs considerably from the original signal y .

(f) Combine all 4 plots into one using plot , add an appropriate title, save as PNG, and import to your report.

4.3 Sum of two sinusoids

[5] Make a figure consisting of the four (sub)plots described below.
(a) Type S = 8192; t = (1:S)/S; z = cos.(2*pi*440*t) + cos.(2*pi*444*t); sound(z, S)

Describe this sound. Does it sound like two tones close together in pitch? Or like a single tone with a time-
varying amplitude?

(b)Type p1 = plot(z, label="cos + cos") and zoom in using
n = 1501:1700; p2 = plot(n, z[n], marker=:hex, label="z zoom")
You need both of these plots. Now can you see why this sounds the way it does? See Appendix below for why.

(c) Type t = 0:.01:1; f=2; x = cos.(2*pi*f*t); p3 = plot(t, x, marker=:diamond, label="cos 2")
This is just a sampled 2 Hz sinusoid.

(d)Type t=0:.01:1; f=98; x = cos.(2*pi*f*t); p4 = plot(t, x, marker=:cross, label="cos 98")
Just a sampled 98 Hz sinusoid.

(e) Notice something unsettling? Try this:
t=0:.01:1; d = cos.(2*pi*98*t) - cos.(2*pi*2*t); plot(t, d) (Do not print this plot.)

12

http://en.wikipedia.org/wiki/Envelope_(music)

Sampling 2 Hz and 98 Hz sinusoids at ∆ = 0.01 seconds, i.e., S = 100 Hz, yields the same result! This
phenomena is called aliasing. We will learn later that we must sample much faster than 100 Hz to distinguish
a 98 Hz signal from lower frequency signals.

(f) Combine plots, add an appropriate title, save as PNG, and import to your report document.
(g) Type S = 8192; t=(1:S)/S; y = 0.6*cos.(2*pi*440*t) + 0.6*sin.(2*pi*440*t); sound(y, S)

Does this sound like one tone or two? (See Appendix.)

4.4 Do not always believe numerical results from software

• Is software like Julia infallible? Type:

using Polynomials
p = fromroots(ones(11)) # defines a polynomial from its roots
r = roots(p) # computes roots of polynomial

This code forms the polynomial (z − 1)11 having 11 repeated roots at z = 1, and then computes the roots of
that polynomial. Did you get 11 ones? No!
• To see what happened, type

scatter(real(r), imag(r), label="roots",
xlims=(-1.2,1.2), ylims=(-1.2,1.2), aspect_ratio=1,
xlabel="Real part", ylabel="Imaginary part")

Are computers infallible? All software has numerical problems for polynomials with multiple roots. (You need
not print or save this plot.)

4.5 Questions

[2] Q2. Determine how many elements are in the vector x produced by the statement x = 3:0.01:5

[2] Q3. Determine the spacing between the elements of the array x = LinRange(3,5,200)

[3] Q4. Use Julia’s sum function to determine the sum of the values 300 + 301 + · · ·+ 400. Hint: use a colon.
Report your code and the result.

[3] Q5. A sinusoidal signal with amplitude 6, frequency 10 Hz, and phase 2π/15 is sampled every 2 msec using
the ideal sampling formula (2). What is the value of the digital signal x[n] when n = 5?
Hint: the numbers have been designed here so that you could do this without a calculator, though some
students may need to review the unit circle.

[5] Q6. Plot the signal x(t) = sin(2π100t) for samples of t spaced by 1/8192 seconds over the interval [3, 3.1]
seconds. Label both axes.

13

http://en.wikipedia.org/wiki/File:Unit_circle_angles_color.svg

4.6 Lab report

Add to your Google Doc report the answers to the 6 questions above. Then use the Google Doc menu File →
Download As → PDF Document to export a PDF file. Upload that PDF file to Gradescope. If possible, show it to
your lab instructor first.

If needed, you should keep seeking help from classmates and your lab instructor until you get all 30 points (and
all the concepts). You should finish it all by the end of your lab section during the 2nd week of class.
Read Lab 2 thoroughly before coming to the next lab section.

5 Appendix: sum of sin and cos of same frequency

• Why is the sum of a sine and a cosine (of same frequency) in Section 4.3(g) a pure sinusoid rather than something
more complicated?
• Why did the sum of two sinusoids at close frequencies in Section 4.3(a) appear to be one sinusoid with varying
amplitude?

Answers to both questions follow from the trigonometric identity called the cosine angle difference formula:

cos(α− β) = cos(α) cos(β) + sin(α) sin(β) .

• First, set α = 2πft and β = θ and multiply by C to get

C cos(2πft− θ) = C cos(θ) cos(2πft) +C sin(θ) sin(2πft) = A cos(2πft) +B sin(2πft) .

Setting t = 0 yields the equality:
A = C cos(θ) .

Setting t = 1
4f yields the equality:

B = C sin(θ) .

Combining the formulas for A and B yields (think about polar coordinates):

C =
√
A2 +B2, tan θ =

B

A
.

In other words, the sum of two sinusoids of the same frequency is just another sinusoid of that frequency but
with a different amplitude and phase:

A cos(2πft) +B sin(2πft) =
√
A2 +B2︸ ︷︷ ︸

amplitude

cos (2πft− arctan(B/A)︸ ︷︷ ︸
phase

). (4)

Lab 3 uses this equation extensively.
• Second, set α = 2π442t and β = ±2π2t and add and subtract the results to get:

cos(2π440t) + cos(2π444t) = 2 cos(2π2t) cos(2π442t) .

So 440 Hz and 444 Hz sinusoids added together are identical to a 442 Hz sinusoid with a time-varying amplitude.
Mathematically these two sides of the above equation are identical, but our ears “hear” the right-hand side.
We will use this result (think tuning a piano) in Lab 2 to measure frequency.

References

[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical computing.
SIAM Review, 59(1):65–98, 2017.

14

https://www.gradescope.com/courses/335728
http://en.wikipedia.org/wiki/List_of_trigonometric_identities#Angle_sum_and_difference_identities

	Abstract
	Background
	Embedded audio and links
	Julia
	Sinusoids
	Reading questions
	Sampling

	Getting started with Julia
	About Julia
	Installing and running Julia
	Vectors and arrays
	Broadcast
	Plotting
	Miscellaneous features
	Getting help for Julia
	Programs (jl-files)
	Saving figures
	Subplots
	Multiple dispatch
	Exiting Julia

	Lab 1: What you must do
	Start a Google Doc for your lab results
	Sinusoids
	Non-sinusoidal signals
	Sum of two sinusoids
	Do not always believe numerical results from software
	Questions
	Lab report

	Appendix: sum of sin and cos of same frequency

	fd@rm@0:

