ENGG4420 -- CHAPTER 2 -- LECTURE 2

October-12-12
2:33 PM

RTOS -- DEFINING AN RTOS

A real-time operating system (RTOS) is a program that
schedules execution in a timely manner, manages system
resources, and provides a consistent foundation for
developing application code.

An RTOS contains a real-time kernel and high level
services such as: file management, protocol stacks,
graphical user interface, other device oriented services.

Application
. RTOS
FIG. High Networking ——
worki :
i File Syst
level view Protocols ile System Components
ofan C/C++ POSIX
RTOS. Support Support
Libraries
Device Debugging Device
Drivers Facilities I/O
BSP (Board Support Package)
Target Hardware

Q: An RTOS should be scalable. So, what is a scalable RTOS?

For example in some applications, an RTOS comprises only a kernel,
which is the core supervisory software that provides minimal logic,
scheduling, and resource-management algorithms -- every RTOS has a
kernel.

On the other hand, RTOS can be a combination of various modules,
including the kernel, a file system, networking protocol stack, and
others.

CHAPTER 2 By Radu Muresan University of Guelph Page 1

REAL-TIME KERNEL - software that manages the time
and resources of a microprocessor, microcontroller,
or a DSP.

e Considering the work job an applications needs to
do, a task is a portion of that job to be done.

e From a software perspective a task or a thread is
a simple program that can have the CPU to itself.

e A kernel is responsible for managing all the tasks
of an application - thus we have a multitasking
system.

MULTITASKING - is the process of scheduling and
switching the CPU between several tasks.

e In the context of one CPU the multitasking
provides the illusion of having multiple CPUs and
maximizes the CPU usage.

e Multitasking also helps in the creation of modular
applications.

e Real time application programs are easier to
design and maintain when multitasking is used.

KERNEL COMPONENTS - most RTOS kernel contain
the following components:

e Scheduler -- implements a set of algorithms that
determine which task executes and when.

e Objects -- are special kernel constructs that can
be used to help developer to create applications.

e Services -- are operations that the kernel
performs on an object, or general operations.

CHAPTER 2 By Radu Muresan University of Guelph Page 2

PREEMPTIVE KERNEL -- the kernel always runs the

highest priority task that is ready to run.
e uC/OS-lll is a preemptive kernel

T = Il (2)
Low Priority (1) Event that
Task High Pricrity Task
is Waiting for
>

.l
1 1
- 1 1 ISR
Time i E N {2
1 1
1 1
: :
High Priorit
v : : (5) v Tas:::" ’ Infinite
Infinite | ! Loop
Loop I I

©

Low Priority
Task (7)

CHAPTER 2 By Radu Muresan University of Guelph Page 3

(3)

CONTEXT SWITCH

e Each task has its own context: the state of the CPU
registers required each time it is scheduled to run.

e A context switch occurs when the scheduler switches
from one task to another.

e Every time when a new task is created the kernel also
creates and maintains an associated task control block
(TCB) -- the context of a task is maintained in TCB.

o TCB contains everything a kernel needs to know
about a task.

e \When a task is running, its context is highly dynamic.

e When the task is not running, its context is frozen in
order that a restoration can be made when the
scheduler switches back to the corresponding task.

EXAMPLE -- Task 2 is
scheduled to run.

e The kernel saves Task 1’s
context information in its TCB.

e |t loads Task 2’s context
information from its TCB,
which becomes the current
thread of execution.

e The context of Task 1 is frozen Task 2

Context Switch

Save Task Current
1 Info Thread of

Execution

¢ ¢

Context Context
of Taskl

Load
Task 2
Info

Listof
Tasks

while Task 2 executes. Task 1 J _
e As aresult, Task 1 can resume ContextSutich Tme
execution from where it left. Time

e There is a context switch time associated with the context
switch -- this time is relatively insignificant ...

CHAPTER 2 By Radu Muresan University of Guelph Page 4

EXAMPLE OF CONTEXT SWITCH IN uC/OS-II

Task #1

stack

Task Control Block

Status

SP

Priority
1

Memory

Task #2

stack

Task Control Block
Status

Task #3

stack

Task Control Block
Status

Priority

CPU

CPU Registers

SP

Context

e In a RTOS, each task is assigned a priority, its own set
of CPU registers, and its own stack area.

e When a multitasking kernel decides to run a different
task, it saves the current task’s context (CPU registers)
in the current task’s context storage area — its stack.

e After this operation is performed the new task’s
context is restarted from its storage area and resumes
execution.

e Context switching adds overhead to the application.
The more registers a CPU has the higher the overhead.

CHAPTER 2 By Radu Muresan University of Guelph Page 5

EXAMPLE FROM uC/OS-Il -- DATA STRUCTURES

MC/OS-Il structures when 0S_TASK_SW() is called.

See uC/0S- Low Priority Task High Priority Task
1 bOOk for 0S_TCB 0S_TCB
OSTCBCur ——> OSTCBHightRdy —> .
example
(Pp. 92-96)
LOW MEMORY) CPU LOW MEMORY 4)
R1
R2
R3
Stack Growth R4
= N
PSW R3
R2
®) R1
PC
- PSW
HIGH MEMORY HIGH MEMORY

OS_TASK_SW() is called to perform a context switch -- the context switch
code needs to save the register values of the task being preempted and
load into the CPU the values of the registers of the task to resume.
OS_TASK _SW() is a macro that normally invokes a microprocessor
software interrupt. Q: Why do we need a software interrupt here?

o A: The interrupt triggers the hardware mechanism for saving the
CPU’s Program counter (PC), and Process Status Word (PSW) register
at the switch time.

HERE we created for this example a fictional CPU to show the process:

SP —stack pointer; PC — program counter; PSW — processor status word;
R1-R4 — four general purpose registers.

(1): OSTSBcur points to the OS-TSB of the task being suspended (the low
priority task); (2): The CPU’s stack pointer register points to the current
top-of-stack of the task being preempted; (3): OSTCBHighRdy points to
the OS-TCB task that will be executed after context switch;

(4): .OSTTCBStkPtr field in OS_TCB points to the top-of-stack of the task to
resume; (5): The stack of the task to resume contains the desired register
values to load into CPU.

CHAPTER 2 By Radu Muresan University of Guelph Page 6

Saving the current task’s context.

Low Priority Task High Priority Task
OS_TCB 0S_TCB
osTCBCur —>[e OSTCBHightRdy — o
/ N
~.6)
Example
from
. CPU
uC/OS-lI ®) LOW MEMORY S LOW MEMORY
f R1
R2
R3
L R4
[wa L/ i D
R3 @) Al PSW R3
Stack Growth R2 R2
R ¥ R1
pow | &=
S PSW
HIGH MEMORY HIGH MEMORY

Step (1): Calling OS_TASK_SW() invokes the software
interrupt instruction, which forces the processor to save the
current value of PSW and the PC unto the current task’s
stack.

The processor then vectors to the software interrupt
handler which is responsible for completing the remaining
steps of the context switch.

Step (2): The software interrupt handler starts by saving the
general purpose registers R1, R2, R3, and R4 in this order.
Step (3): The stack pointer register is then saved into the
current task’s OS_TCB. At this point, both the CPU’s SP
register and OSTCBcur -> OSTCBStkPtr are pointing to the
same location into the current task’s stack.

CHAPTER 2 By Radu Muresan University of Guelph Page 7

Low Priority Task High Priority Task

0S_TCB 0S_TCB
i —> , e
. OSTCBHightRdy ,
— | OSTCBCur /'/, .
(1) g
)"
Example /
f r O m CPU ///
®) LOW MEMORY P LOW MEMORY
uC/OS-ll
— R4 R4 —
R3 R3
Stack Growth R2 R2
R1 R1
PC PC
PSW e

HIGH MEMORY) HIGH MEMORY

e Step (1): Because the current task is now the task being
resumed, the context switch code copies OSTCBHighRdy to
OSTCBCur.

e Step (2): The stack pointer of the task to resume is extracted
from the OS_TCB (from OSTCBHighRdy -> OSTCBStkPtr and
loaded into the CPU’s SP register. At this point, the SP
register points to the stack location containing the value of
register R4.

e Step (3): The general purpose registers are popped from
stack in reverse order (R4 — R1).

e Step (4): The PC and PCW registers are loaded back into the
CPU by executing a return from interrupt.

e Note: Because PC is changed, code execution resumes at this
point to which PC is pointing, which happens to be in the new
task’s code.

CHAPTER 2 By Radu Muresan University of Guelph Page 8

THE DISPATCHER

e The dispatcher is the part of the scheduler that performs
context switching and changes the flow of execution.

e At any time an RTOS is running, the flow of execution is
passing through one of three areas:

e through an application task, through an ISR, or
through the kernel.

e When a task or ISR makes a system call, the flow of
control passes to the kernel to execute one of the
system routines provided by the kernel.

e When it is time to leave the kernel, the dispatcher is
responsible for passing control to one of the tasks in the
user’s application.

e Depending on how the kernel is first entered,
dispatching can happen differently:

® Case 1: task makes a system call -- the dispatcher is used to
exit the kernel after every system call completes. In this
case, the dispatcher is used on a call-by-call basis so that it
can coordinate task-state transitions that any of the
system calls might have caused.

e Case 2: ISR makes system calls -- the dispatcher is
bypassed until the ISR fully completes its execution, then
kernel exits through dispatcher so then it can dispatch the
correct task.

= this process is true even if some resources have been
freed that would normally trigger a context switch
between tasks.

CHAPTER 2 By Radu Muresan University of Guelph Page 9

SCHEDULING ALGORITHMS
e The scheduler determines which task runs by following a
scheduling algorithm (scheduling policy).
e Most kernels today support two common scheduling
algorithms:
preemptive priority-based scheduling, and
round-robin scheduling
e The RTOS manufacturer typically predefines these
algorithms. However, in some cases developers can
create and define their own scheduling algorithm.

e NON-PREEMPTIVE kernels (also called cooperative
multitasking) require that each task does something to
explicitly give up control of the CPU. As a result, in order
to maintain the illusion of concurrency the process of
giving up control of the CPU by a task must be done
frequently.

e Advantages of a non-preemptive kernel: a) interrupt
latency is low; b) at the task level - non-reentrant
functions possible; c) task level response is better than
foreground/back systems; d) lesser need to guard

shared data.

e Disadvantages: a) a higher priority task that has been made
ready to run might have to wait a long time since the current
task must give up the CPU; b) task level response is non-
deterministic -- you never really know when the highest

priority task will get control of the CPU.
Note: A reentrant function can be used by more than one task without fear of
data corruption.

CHAPTER 2 By Radu Muresan University of Guelph Page 10

PREEMPTIVE KERNELS

e A preemptive kernel is used when system
responsiveness is important -- most commercial RT
kernels are preemptive.

e The highest priority task ready to run is always given
control of the CPU:

o when a task makes a higher priority task ready to
run, the current task is preempted and the higher
priority task is immediately given control of CPU.

o if an ISR makes a higher priority task ready, when
the ISR completes, the interrupted task is
suspended, and the new higher priority task runs.

High 4 preemption task completion
| Task 3 7
Task - o
priority Task 2 Task 2
Task 1 [==
L ow Task 1 :

e |f a task with a priority higher than the current task
becomes ready to run, the kernel immediately saves the
current task's context in its TCB and switches to the
higher priority task.

e With preemptive kernels, execution of the highest
priority task becomes deterministic. As a result, task-
level time is thus minimized.

CHAPTER 2 By Radu Muresan University of Guelph Page 11

OPERATION of a preemptive and non-preemptive
kernel when a task is executed but is interrupted.

Low Priority Task Low Priority Task

M % @ ISR @ % @

High Priority Task ®
@ “

ISR makes the high

@)

ISR makes the high ®) priority task ready Time

A

priority task ready Time 5)
7/ : . o High Priority Task
N
¢ % e \\
/ Loyv prliority task \ @
relinquishes the CPU
% q N
Fig. (a) Preemptive Fig. (b) Non-preemptive

PREEMPTIVE CASE

(1) A task is executing but is interrupted; (2) If interrupts are
enabled, the CPU vector jumps to the ISR; (3) The ISR
handles the event and makes a higher priority task ready to
run. Upon completion of the ISR, a service provided by the
kernel is invoked; (4) This function knows that a more
important task has been made ready to run and thus,
instead of returning to the interrupted task the kernel
performs a context switch; (5) High priority task executes.
(6) When done another function that the kernel provides is
called to put the task to sleep waiting for the event -- the
kernel then sees that a lower priority task needs to execute,
and another context switch is done to resume execution of
the interrupted task; (7) The lower priority task executes.

CHAPTER 2 By Radu Muresan University of Guelph Page 12

OTHER FEATURES OF PREEMPTIVE KERNELS

e Real-time kernels generally support 256 priority levels,
in which 0 is the highest and 255 is the lowest (some
kernels have 255 as the highest priority and 0 as the
lowest)

e |[n preemptive kernels each task has a priority

o Task’s priority is assigned when they are created.

e The task’s priority can be changed dynamically using
kernel-provided calls -- this allows an embedded
application the flexibility to adjust to external events
as they occur creating a true real-time, responsive
system.

e Advantages of preemptive kernels:

o the execution of the highest priority task is
deterministic.
o task-level response is minimized.

e Application code using preemptive kernel should not
use non-reentrant functions unless exclusive access to
these functions is controlled through mutual
semaphores because both a low and a high priority
task can use a common function.

o As a result, corruption of data can occur if a higher
priority task preempts a lower priority one.

CHAPTER 2 By Radu Muresan University of Guelph Page 13

ROUND ROBIN SCHEDULING OR TIME SLICING

e \When two or more tasks have the same priority, the
kernel allows one task to run for a predetermined
amount of time (quantum or slice) and then selects

another task.

e The kernel gives control to the next task in line if:
o the current task has no work to do during its time slice, or
o the current task completes before the end slice, or
o the time slice ends.
e Note: uC/0S-Il does not currently support round-robin
scheduling. Each task must have a unique priority in
the application.
e Preemptive, priority-based scheduling can be
augmented with round-robin scheduling to achieve
equal allocation of CPU for tasks of the same priority;

>

High {

preempti\on
Task time \ »
priority ;63_”83_4 Task 4
Low Task 1| Task 2| Task 3|T1 T1|l Task 2
Time

task completion

ll*

Figure. Case of the preemptive with round-robin. Note that T1 is preeemptied but after
T4 finishes T1 starts from where it left in its slices. (T1-T3 have same priority.

e A run-time counter tracks the time slice for each task incrementing
on every clock tick. When one task’s time slice completes, the
counter is cleared, and the task is placed at the end of the cycle.

e Newly added tasks of the same priority are placed at the end of the

cycle with their run time initialized to 0.

CHAPTER 2 By Radu Muresan University of Guelph Page 14

OBJECTS
e Kernel objects are special constructs that form the
building blocks for application development for real-
time embedded systems;
e The most common RTOS kernel objects are:
o Tasks —are concurrent and independent threads of
execution that can compete for CPU execution time
o Semaphores — are token-like objects that can be
incremented or decremented by tasks for
synchronization or mutual exclusion
o Message Queues — are buffer-like data structures
that can be used for synchronization, mutual
exclusion, and data exchange.
... Q: Combining these basic kernel objects (and
others) what common real-time design problems can
be solved??

SERVICES

e Along with objects most kernels provide services that
help developers create applications for real-time
embedded systems.

e The most common services found comprise sets of API
(Application Program Interface) calls that can be used
to perform operations on kernel objects or can be used
in general to facilitate timer management, interrupt
handling, device I/O, and memory management.

CHAPTER 2 By Radu Muresan University of Guelph Page 15

KEY CHARACTERISTICS OF AN RTOS

e Applications define the requirements of its underlying
RTOS. Some of the more common ones are:

O

Reliability -- depending on the application, the
system might need to operate for long periods
without human intervention.

Predictability -- meeting time requirements is key to
real-time embedded systems -- the term
deterministic describes RTOSs with predictable
behavior, in which the completion of OS calls occurs
within known timeframes.

Performance -- this requirement dictates that the
embedded system must perform fast enough to
fulfill its timing requirements.

Compactness -- application design constraints and
cost constraints help determine how compact and
embedded system needs to be.

Scalability -- because RTOSs can be used in a wide
variety of applications, they must be able to scale
up or down to meet application-specific
requirements.

CHAPTER 2 By Radu Muresan University of Guelph Page 16

ENGG4420 -- CHAPTER 2 -- LECTURE 3

October-14-10
3:10 PM

SYSTEM INITIALIZATION AND STARTING

e Every RTOS has some specific steps for system
initialization and starting. Here we present the
initialization steps for the uC/OS-II.

e A requirement of uC/0S is that you call OSInit() before

you call any of uC/OS’s other services.

o OSInit() initializes all uC/OS variables and data structures
(see OS_CORE.C).

o OSInit() creates the idle task OS_Taskldle(), which is
always ready to run. The priority of OS_Taskldle() is
always set to OS_LOWEST_PRIO.

o If OS_TASK_STAT EN and OS_TASK CREATE_EXT_EN (see
OS_CFG.H) are both set to 1, OSInit() also creates the
statistic task OS_TaskStat() and makes it ready to run.
The priority of OS_TaskStat() is always set to
OS_LOWEST_PRIO-1.

First 0S_CFG.H ;
— Oth C/OS
: ! er u
, VOSInlt()W] services

always ready to run ready to run

|

OS_Taskidle()| |0S_Taskstat()|

CHAPTER 2 By Radu Muresan University of Guelph Page 17

Figure Variables and data structures after calling OSInit().

OSRdyGrp

GYL|ojofofojojofo OSTCBPrioTblI[]
)I ‘ | ‘ | ‘ ‘ | l OSRdyTbl[] [0] OSPriorCur =0
ojofo 1] OSPrioHighRdy =0
[2] OSTCBCur =NULL
[3] OSTCBHighRdy=NULL
OSTime =0L
OSIntNesting =0
OSLockNesting =0

OSCtxSwCtr =0
OSTaskCtr =2
OSRunning =FALSE
OSCPUUsage =0
OSldleCtrMax =0L
OSldleCtrRun =0L

mlo|lo|lo|lo|o|o o
mrlo|lo|lo|lo|lo|o o
o|lo|lo|lo|lo|o| o o
o|lo|lo|lo|lo|o | o
o |lo|lo|o|o|o| o
o|lo|lo|lo|lo|o | o
o|lo|lo|lo|lo|o| o o
o|lo|lo|lo|lo|o | o o

—
N
~

OSldleCtr =0L
OSStatRdy =FALSE
OSIntExitY =0

hd [OS_LOWEST PRIO-1]

[0S_LOWEST_PRIO] 0——‘

e This illustration assumes that the following #define
constants are set as follows in OS_CFG.H:

OS_TASK STAT EN=1; OS FLAG EN=1;
OS_LOWEST _PRIO =63; OS LOWEST _PRIO1 =62;
OS_MAX_TASKS = 63.

e Here we see the values for OSRdyGrp, OSRdyTbl[],
OSTCBPrioTbl[] and the initial variable values.

e (4) Because both tasks (ldle and Stat) are ready to
run, their corresponding bits in OSRdyTbl[] are set
to 1.

e (5) Also, because the bits of both tasks are on the
same row in OSRAyTbl[] only one bit in OSRdyGrp is
1.

CHAPTER 2 By Radu Muresan University of Guelph Page 18

OS_TCB OS_TCB
of of
OS_TaskStat() OS_Taskldle()
OSTCBStkPtr °® OSTCBStkPtr °
OSTCBExtPtr =NULL OSTCBExtPtr =NULL
OSTCBStkBottom @ OSTCBStkBottom @
OSTCBStkSize =stk_size OSTCBStkSize =stk_size
OSTCBOpt =0S_TASK_OPT_STK_CHK OSTCBOpt =0S_TASK_OPT_STK_CHK
| OS_TASK_OPT_STK CLR | OS_TASK_OPT_STK_CLR
) OSsTCBId =0S_LOWEST_PRIO-1 OSTCBId =0S_LOWEST_PRIO
OSTCBList — 8§gggext ° > | OSTCBNext ° > 0
rev
0 _® < (1) |ostcBPrev @ (3)

(3) OSTCBEventPtr =NULL OSTCBEventPtr =NULL
OSTCBMsg =NULL OSTCBMsg =NULL
OSTCBFlagNode = NULL OSTCBFlagNode = NULL
OSTCBFlagsRdy =0 OSTCBFlagsRdy =0
OSTCBDly =0 OSTCBDly =0
OSTCBStat =0S_STAT_RDY OSTCBStat =0S STAT RDY
OSTCBPrio = OS_LOWEST PRIO-1 OSTCBPrio -0S LOWEST PRIO
OSTCBX =6 OSTCBX =7
OSTCBY =7 OSTCBY =7
OSTCBBItX =0x40 OSTCBBItX =0x80
OSTCBBItY =0x80 OSTCBBItY =0x80
OSTCBDelReq =FALSE OSTCBDelReq =FALSE

D D
Task «— Task «—
Stack Stack

(1) The task control blocks of the Idle and Stat tasks
are chained together in a doubly linked list.

(2) OSTCBList points to the beginning of this chain --
when a task is created, it is always placed at the
beginning of the list.

(3) both ends of the doubly linked list point to NULL
(i.e., 0).

e Because both tasks are ready to run their
corresponding bits in OSRdyTb[] are set to 1; also only
one bit in OSRdyGrpis setto 1. ... Q: Why?

A: Each bit in OSRdyGrp corresponds to one row in OSRdyTbl[].

CHAPTER 2 By Radu Muresan University of Guelph Page 19

e uC/0OS-Il also initializes five pools of free data
structure, as shown in the next slide. Each of these
pools is a singly linked list and allows uC/OS-Il to
obtain and return an element from and to a pool

quickly.

Figure: Free Pools

OSTCBFreelList

—

0S_TCB

0S_TCB

OSTCBNEXT e

0s_TCB

> OSTCBNEXT @

» OSTCBNEXT e

0S_TCB

(OSTCBNEXT ®1—> 0

OS_EVENT OS_EVENT OS_EVENT OS_EVENT
OSEventFreelList —»| OSEventPtr e OSEventPtr @ OSEventPtr @ ------------ > OSEventPtr ®—* 0
0Ss_Q 08_Q 0s_Q 0S_Q
OSQFreeList —»| 0SQPtr . » OSQPtr . » OSQPtr L R et »| OSQPtr —0
OS_FLAG_GRP OS_FLAG_GRP OS_FLAG_GRP OS_FLAG_GRP
OSFlagFreelList OSFlagWaitList| OSFlagWaitligt| | |OSFlagWaitlist| OSFIagWalitList__>O
0OS_MEM OS_MEM OS_MEM OS_MEM
OSMemFreeList OSMemFreeList| OSMemFreeList pSMemFreeList | » [OSMemFresLigtl _

o After OSInit() has been called:
o OS_TCB pool contains OS_MAX_TASKS entries
OS_EVENT pool contains OS_ MAX_EVENTS entries
OS_Q pool contains OS_MAX_QS entries
OS_FLAG_GRP pool contains OS_ MAX_FLAGS entries; and
OS_MEM pool contains OS. MAX_MEM_PART entries
e Each of the free pools are NULL-pointer terminated -- their
size is defined in OS_CFG.H.

©)
©)
©)
©)

CHAPTER 2 By Radu Muresan University of Guelph Page 20

STARTING uC/OS-Il MULTITASKING

e You start multitasking by calling OSStart().

e Before you start uC/OS you must create at least one
of your application tasks, as shown below.

void main(void)

{
OSlInit() /* Initialize uC/OS */

Create at least 1 task using OSTaskCreate() or
OSTaskCreateExt();

OSStart(); /*Start multitasking. OSStart will not return */

void OSStart (void)
{ INT8Uy; INT8UX;
if (OSRunning == FALSE) {
y = OSUnMapTbl[OSRdyGrp];
x = OSUnMapTbIl[OSRdyTbl[y]];
OSPrioHighRdy = (INT8U)((y << 3) + x);

OSPrioCur = OSPrioHighRdy;

OSTCBHighRdy =OSTCBPrioTbl[OSPrioHighRdy]; | (1)
OSTCBCur = OSTCBHighRdy;

OSStartHighRdy(); '} (2)

(1)When called, OSStart() finds the OS_TCB from the ready list of the

highest priority task you have created

(2) OSStart() calls OSSStartHighRdy(), whichis found in OS_CPU_A.ASM
forthe processor being used. Basically, OSStartHighRdy() restores the

CPU registers by popping them off the task’s stack and then executing a
return from interrupt instruction, which forces CPU to execute your task’s code
NOTE: OSStartHighRdy() never returns to OSStart() ...Q?7

CHAPTER 2 By Radu Muresan University of Guelph Page 21

Figure:

Variables and data structures after calling OSStart().

OSTCBPrioThl OSPrioCur =6
OSRdyGp i OSPrioHighRdy =6
1blkB 0Bkl osRdyTh o
JII G Esa s i 0STime =0
______ ofoJoJop oo OSIntNesting =0
————— > 6]
created task-—— s aml OStcknghesing 0
»{ofo ofobfo o \ OSCtxSwCtr =0
E gg 88 op g ! OSTaskCtr =3
4 ! OSRunning =True
>l lojop ok o | OSCPUUsage =0
i OSldleCtrMax =0L
! OSldleCtrRun =0L
! 0SldleCtr =0L
0SStatRdy
® | [0S LOWEST_PRIO-1] - -
[0S_LOWEST_PRIO]—@—+— - OSintExity =0
0S_TCB 0S_TCB 08P
Of Of

OSTCBCur —*

OSTCBHighRdy—>
OSTCBList _
0 «—

priority

First App. Task()

OS_TaskStat()

OSTCBStkPtr @
OSTCBExtPtr =NULL

OSTCBStkPtr @
OSTCBExtPfFNULL

OSTCBStkBottom @
OSTCBStkSize =stk_size
OSTCBOpt =0S_TASK_OPT_STK_CHK

| OS_TASK_OPT_STK_CLR
OSTCBId =6

OSTCBStkBottom = @
0STCBstkSZatk_size

OSTCBNext @—

OSTCBOpt=0S_TASK_OPT_STK_CHK
| OS_TASK_OPT_STK_CLR
OSTCBId -5 | OWEST PRIO-1

OSTCBNext @

OSTCBPrev_-@

OSTCBEventPtr =NULL
OSTCBMsg =NULL

OSTCBFlagNode =NULL
OSTCBFlagsRdy =0

OSTCBDly =0

OSTCBStat =0S_STAT_RDY
OSTCBPrio = 8

OSTCBX =

OSTCBY =1

OSTCBBItX =0x40
OSTCBBitY =0x01

OSTCBDelReq =FALSE

OSTCBPrey_#® OSTCBPrey 9

OSTCBEventPtr NULL OSTCBEventPtr =NULL

OSTCBMsg =NULL OSTCBMsg =NULL

OSTCBFlagNode=NULL OSTCBFlagNode =NULL

OSTCBFlagsRdy:0 OSTOBFIcsRd, 0

OSTCBDly =g agsnay =

OSTCBStat =0 STAT RDY OSTCBDIlY =0

QOSTCBPrio = OS__LOWEET_F’RIO-1 OSTCBStat =0S_STAT_RDY

OSTCBX =6 OSTCBPrio =0S_LOWEST_PRIQ

OSTCBY =7 OSTCBX =7 -

OSTCBBItX ~ =0x40 OSTCBY -7

OSTCBBitY ~ =0x80 OSTCBBItX =080

OSTCBDelReq =FALSE OSTCBBItY ;oiso
OSTCBDelReq =FALSE

of 6.

v

OS_Taskldle()

=False

OSTCBStkPtr @
OSTCBExtPtr=NULL

OSTCBStkBottom ~ @—
OSTCBStkSize =stk_size

OSTCBOpE OS_TASK_OPT_STK_CHK
| OS_TASK_OPT_STK_CLR
OSTCBId =0S_LOWEST_PRIO

v

OSTCBNext @

task stack

e Here it is assumed that the task created has a

e Notice that OSTaskCtr indicates that three tasks

have been created; OSRunning is set to TRUE,
indicating that multitasking has started; OSPrioCur
and OSPrioHighRdy contain the priority of your

application task; and OSTCBCur and OSTCBHighRdy

both point to the OS_TCB of your task.

CHAPTER 2 By Radu Muresan University of Guelph Page 22

PROGRAM ORGANIZATION EXAMPLE

e When writing a program for uC/Q0S, the main program
module contains the main() function, a start-up task,
and some or all the other tasks

e Additional tasks and support functions may be
contained in separate modules.

e In the next example we consider that we have only one
module in the project, and the module contains all the
tasks.

EXAMPLE -- DECLARATIONS BEFORE main()

[*A simple uC/OS-Il program demo*/
#include “includes.h’
/* Global event definition */
OS_EVENT *SecFlag; /* Aone-second flag semaphore */
[* Task functions prototype.
-Private if in the same module as start-up task, otherwise public */
static void StartTask(void *pdata);
static void Task1(void *pdata);
static void Task2(void *pdata);
/*Allocate task stack space. (Must be public)
- Private if in the same module as start-up task, otherwise public */
static OS_STK StartTaskStk[STARTTASK _STK_SIZE];
static OS_STK Task1Stk[TASK1_STK_SIZE];
static OS_STK Task2Stk[TASK2_STK_SIZE];

CHAPTER 2 By Radu Muresan University of Guelph Page 23

DECLARATIONS EXPLAINED

e The module starts by including the master header
file include.h (to be presented later).

e Next, the program defines the uC/0OS events and task
functions contained in the module.

o In this case, there is a single event, SecFlag, and
three tasks, StartTask, Task1, and Task?2.

o Notice that the task functions are declared as
private functions. “static” declaration indicates
private to the module file (static variables are
local but permanent — remain in existence). This is
because task functions should never actually be
called by another function. They are executed by
the kernel, which knows about each task through
the OSTaskCreate() service routine.

o The event objects are handled like normal C
resources. They may be private if only used in the
current module, or they must be public if used by
a task in another module.

e In a preemptive kernel each task uses its own stack
space. So after the task functions are declared, the
stack space for each task is allocated.

o The size of each stack is defined in the include.h
header file. The stack space should always be
allocated in the same module as the task, so it too
can be declared as a private resource.

CHAPTER 2 By Radu Muresan University of Guelph Page 24

EXAMPLE -- MAIN()

e The next item in the module is the main() function.

o Recall that main() is the function called after the
system is reset and the start-up code is completed.

o Therefore, the main() it is the entry point for our
application code.

e The following should be in main():

o initialize the kernel with OSInit(),

O create the start-up task with OSTaskCreate(),
o create any kernel events,

o start the kernel with OSStart().

e There is rarely anything else in the main() function. All
the hardware and system initialization is completed in
the start-up code before reaching main().

e The application wide initialization is completed in the
start-up task and the task-specific initialization is
completed in the tasks themselves.

e I[n our example, there are 3 tasks declared: StartTask,
Taskl, and Task2.

void main(void) {

OSlInit(); /* Initialize uC/OS-I1*/
OSTaskCreate(StartTask, [*Create start-up task */
(void*)0,
(void*)&StartTaskStk[STARTTASK _STK_SIZE],
STARTTASK PRIO);
SecFlag= 0SSemCreate(0); /*Create a semaphoreflag */

OSStart(); [*Start multitasking */

CHAPTER 2 By Radu Muresan University of Guelph Page 25

EXAMPLE -- START-UP TASK

StartTask() is the start-up task, which is required in all
programs using uC/0S.

When we started the kernel in main(), the start-up task
was the only task that had been created. Therefore it is
guaranteed that the kernel will run the start-up task
first.

In the start-up task, we need to initialize the uC/OS
timer service, create other tasks, and initialize
application-wide resources that were not already
initialized in the start-up code before main().

Because, the start-up task creates other tasks, it must
have the highest priority or the kernel may switch to
another task before the initialization in the start-up
task is complete.

The uC/OS timer is initialized using the service
OSTicklInit(). The timer must be initialized before any
timer services can be used but only after the kernel
has been started. Therefore we could not move this to
main().

The start-up task is unique because it is meant to run
only one time. As we have mentioned most tasks are
endless loops. To make sure that the start-up task is
executed only one time, it ends with a trap that calls
the OSTaskSuspend() service. OSTaskSuspend() does
stop the task, but just in case another task accidentally
starts it up again with OSTaskResume(), it is contained
in an endless trap.

CHAPTER 2 By Radu Muresan University of Guelph Page 26

START-UP TASK AND THE OTHER TASKS -- CODE

[*START-UP TASK */
static void StartTask(void *pdata) {
OSTicklnit(); [*Initialize the uC/OS ticker */
DBUG_PORT_DIR = Oxff; [*Initialize debug port */
DBUG_PORT = 0xff;
OSTaskCreate(Task1,
(void *)0,
(void *)&Task1Stk[TASK1_STK_SIZE],
TASK1_PRIO);
OSTaskCreate(Task2,
(void *)0,
(void *)&Task2Stk[TASK2_ STK_ SIZE],
TASK2_PRIO);
FOREVER(){ [*Start-up task ending trap */
DBUG_PORT A= DBUG_STSK;
OSTaskSuspend(STARTTASK PRIO);

}
) Q...??
[*TASK #1 */
static void Task1(void *pdata) {
INT8U TimCntr = 0; /* Counter for one-second flag */
while (1) { [*Endless loop */
OSTimeDly(10); /[* Task period = 10 ms */
DBUG PORT*=DBUG _TSK1;
TimCntr++;
if(TimCntr==100) {
OSSemPost(SecFlag); /* Signal one second */
TimCntr=0;
}

CHAPTER 2 By Radu Muresan University of Guelph Page 27

[*TASK #2 */
static void Task2(void *pdata) {
INT8U err; [* Storage for error codes */
while (1) {
OSSemPend(SecFlag, 0, &err); /*Wait for 1-second event */
DBUG _PORT2*=DBUG_TSK2; /*Toggle task 2 debug bit */

}

Notice that Task1l and Task2 appear never to exit. They are
designed as endless independent tasks. When the delay is
completed the task code is executed.

Task1 is a timed loop with a loop period of 10ms.

The task toggles a general purpose output bit and
increments a counter TimCntr.

If TimCntr reaches to 100 then Task1 signals an event flag
to communicate to Task2 that 1 second passed.

Task 2 is configured as an event loop -- it waits for a
TimCntr event from Taskl and then runs the task code.
The task code toggles another general purpose output bit.
Therefore the output bit is toggled every second.
o One significant difference in this case is that the event
signal does not have to be polled.
o The task is placed in a waiting state when it calls
OSSemPend(), and then when the event occurs, the
kernel makes the task ready to run.

Q: Why don’t we need to poll the signal event?
A: The task is in waiting list and waits for the event. When Task1
signals the event the kernel makes Task2 ready.

CHAPTER 2 By Radu Muresan University of Guelph Page 28

TYPICAL TASK STRUCTURES
e When writing code for tasks, the code is structured
in one of two ways:
o run to completion, or
o endless loop.

RunToCompletionTask() { EndlessLoopTask() {
Initialize application Initialization code
Create ‘endless loop tasks’ Loop forever
Create kernel objects {
Delete or suspend this task Body of the loop
} Make one or more blocking calls
}
}

EXAMPLE -- HEADER FILE

e For small projects, the header file should include all

your definitions + the uC/0OS definitions such as:
the task priorities, the task stack sizes, and message
gueue sizes.

e By putting these definitions here, we can look in one
place to see what tasks are used in the project, what
priority each task has and how much RAM space is used
for the stacks.

e For larger projects the uC/0OS definitions could be
placed in a separate header file.

e For the header file for this example check Morton’s book pp. 601-602.There
are: Project type definitions; General defined constants; General defined
macros; MCU specific configurations; Task priorities (such as: #define
STARTTASK_PRIO 4; #define TASK1_PRIO 6; #define TASK2_PRIO 10); Task
stack sizes; System header files.

CHAPTER 2 By Radu Muresan University of Guelph Page 29

ENGG4420 -- CHAPTER 2 -- LECTURE 4

October-14-10
4:57 PM

TASK OBJECT

e Upon creation, each task has an associated name, a
unique ID, a priority (if part of a preemptive
scheduling plan), a task control block (TCB), a stack,
and a task routine. Together, these components
make up what is known as the task object.

Task Control Block Task Stack

TCB Stack
Figure.
Task

. Highest
ObJeCt Task — Priority
Name/ID Level
N
‘—~—> InttMyTask()
Task — { .
Routine while(1){

Task

F)rintf(...) : 23 Priority

Lowest
Priority
— Level

Atask, its associated parameters, and supporting data structures
Together all these elements make up the task object.

e Task: an independent thread of execution that can
compete with other concurrent tasks for processor

execution time.
e Atask is schedulable and is defined by its distinct
set of parameters and supporting data structures.

CHAPTER 2 By Radu Muresan University of Guelph Page 30

SYSTEMS TASKS

When the kernel first starts, it creates its own set of
system tasks and allocates the appropriate priority for
each from a set of reserved priority levels. The
reserved priority levels refer to the priorities used
internally by the RTOS for its system tasks.
An application should avoid using the reserved priority
levels for its tasks because running application tasks at
such level may affect the overall system performance
or behaviour.

For most RTOSs, these reserved priorities are not
enforced. The kernel needs its system tasks and their
reserved priority levels to operate. These priorities
should not be modified.

Examples of uC/OS-Il system tasks include:

o initialization or startup task OSInit() — initializes the

system and creates and starts system tasks,
o idle task — uses up processor idle cycles

= |tis set to the lowest priority, typically executes in an endless loop, and runs
when either no other task can run or when no other task exists, for the sole
purpose of using idle processor cycles. The idle task is necessary because the
processor executes the instruction to which the program counter register
points while it is running. Unless the processor can be suspended, the
program counter must still point to valid instructions even when no task
exists in the system or when no task can run.

O logging task — logs system messages,

o exception handling task — handles exceptions,

o debug agent task — allows debugging with a host
debugger, and

o Statistics task -- generates execution statistics.

CHAPTER 2 By Radu Muresan University of Guelph Page 31

TASK CONTROL BLOCK (TCB)

A task control block is a data structure.

All OS_TCBs reside in RAM. The following are some
members of the structure for uC/0S:

o .OSTCBStkPtr: contains a pointer to the current top-
of-stack for the task

o .OSTCBStkBottom: is a pointer to the bottom of the
task’s stack

o .OSTCBStkSize: holds the size of the stack in number
of elements instead of bytes,

o .OSTCBId; .OSTCBNext; .OSTCBPrev; .OSTCBEventPtr;
.OSTCBMsg; .OSTCBFlagNode; .OSTCBFlagsRdy;
.OSTCBDIy; .OSTCBStat (contains the state of the
task); OSTCBPrio (contains the task priority); ...

OS_TCB is initialized by the function OS_TCBInit() when a
task is created.

Note: A dot at the beginning of a variable indicates that the variable is an
element of a structure.

OS_TCBInit() is called by either OSTaskCreate() or OSTaskCreateExt().
OS_TCBInit() receives seven arguments:

o prio: is the task priority;

O ptos: is a pointer to the top of stack after the stack frame has been
built by OSTaskStklInit() and is stored in the .OSTCBStkPtr field of the
OS_TCB

o pbos: is a pointer to the stack bottom and is stored in
the .OSTCBStkBottom field of the OS_TCB

o id: is the task identifier and is saved in the .OSTCBId field;

o stk_size: is the total size of the stack and is saved in
the .OSTCBStkSize field of the OS_TCB;

o pext: is the value to place in the .OSTCBExtPtr field of the OS_TCB;

o opt: are the OS_TCB options and are saved in the .OSTCBOpt field.

CHAPTER 2 By Radu Muresan University of Guelph Page 32

A TASK AS AN INFINITE LOOP -- EXAMPLE

void YourTask (void *pdata) /*return type must be declared void*/
{
for (;;){ /* you could also use a while (1) statement */
/* USER CODE */
Call one of uC/OS-II's services:
OSFlagPend();
OSMutexPend();
OSQPend();
OSSemPend();
OSTaskDel(OS_PRIO_SELF);
OSTaskSuspend(OS_PRIO_SELF);
OSTimeDly();
OSTimeDIlyHMSM();
"USER CODE/

) NOTE: A task can delete itself upon completion

e The return type must always be declared void.

e An argument is passed to your task code when the task first
starts executing. Notice that the argument is a pointer to a
void, which allows your application to pass just about any
kind of data to your task.

O The pointer is a universal vehicle used to pass your task the
address of a variable, a structure, or even the address of a
function if necessary.

e |t is possible to create many identical tasks, all using the
same function (or task body). For example, you could have
four asynchronous serial ports that each are managed by
their own task. However, the task code is actually identical.

O Instead of copying the code four times, you can create a task
that receives a pointer to a data structure that defines the
serial port’s parameters (for example, baud rate, I/O port
address, and interrupt vector number) as an argument (See
uC/0S examples in the book).

CHAPTER 2 By Radu Muresan University of Guelph Page 33

TASK PRIORITIES IN uC/OS-II

e uC/0OS can manage up to 64 tasks;

e The current version uses two tasks for system use.

e |t is recommended that you don’t use priorities 0, 1, 2,
3, OS_LOWEST_PRIO-3, OS_LOWEST PRIO-2,
OS_LOWEST_PRIO-1, OS_LOWEST PRIO

e OS _LOWEST PRIO is a #define constant defined in file
OS_CFG.H

e Each task must be assigned a unique priority level. The
lower the priority number the higher the priority of
the task.

e uC/0S always executes the highest priority task ready
to run, the task priority serve as task ID as well.

e A task must be created by passing its address along
with other arguments to one of two functions:

o OSTaskCreate(), or
o OSTaskCreateExt() -- this is an extended version
with more features.

CHAPTER 2 By Radu Muresan University of Guelph Page 34

ASSIGNING TASK PRIORITIES
e Assigning task priorities in a complex real-time system
is a difficult job -- noncritical tasks should obviously be
given low priorities
e Most real-time systems have a combination of soft
and hard requirements
o in soft real time systems, tasks are performed as
quickly as possible but they don’t have to finish by
specific times
o in hard real-time systems, tasks have to be
performed not only correctly but on time

RATE MONOTONIC SCHEDULING (RMS)

Assigning task priorities base on task execution rate.

High

—
@

Priority
@

0 <
=
| @
[]

Task Execution Rate (Hz)

e RMS - assigns task priorities based on how often
tasks execute (other technique will be presented
later):

o tasks with the highest rate of execution are given
the highest priority

CHAPTER 2 By Radu Muresan University of Guelph Page 35

RMS THEOREM
e RMS theorem makes a number of assumptions:

o all tasks are periodic (occur at regular intervals),

o tasks do not synchronize with one another, share
resources, or exchange data,

o the CPU must always execute the highest priority task
that is ready to run. ... Q: What type of scheduling
we need to use in this case? A: Preemptive.

e Given a set of n tasks that are assigned RMS
priorities, the basic RMS theorem states that all task
hard-real time deadlines are always met if the
following inequality holds:

Allowable CPU use on number of tasks

Number of Tasks n[2*(1/n)— 1]
E 1 1.000
Z_' <n(2"" -1) 2 0.828
— T 3 0.779
i 4 0.756
infinite 0.693

e Where:
o Ei: maximum execution time of task j,
o Ti: execution period of task j,
o Ei/Ti: the fraction of CPU time required to execute task i.
e NOTE: Using 100% of your CPU is not a desirable goal
because it does not allow for code changes and added
features.
e As arule of thumb, you should always design a system to
use less than 60 to 70% of your CPU.

CHAPTER 2 By Radu Muresan University of Guelph Page 36

SPECIAL SYSTEM TASKS
e IDLE TASK -- OS_Taskldle(): the idle task is always the
lowest priority task -- See uC/0OS book pp. 98-101.

void OS_Taskldle (void *pdata) {
#if OS_CRITICAL_METHOD==3
OS_CPU_SR cpu_sr;

#endif
pdata = pdata;
for (;;) {
OS_ENTER_CRITICAL(); /*interrupts are disabled */
OSldleCtr++; [* counter used for the statistics task */

OS_EXIT_CRITICALY();
OS_TaskldleHook(); } /*itis a functionthat you can write to do
anything you want. You can use this function for power saving*/

}

e The idle task executes when none of the other tasks are
ready to run.

e Note that: OSldleCrt is a 32 bit counter that is used by the
statistics task.

e OS TaskldleHook() is a function that you can write to do
anything you want. It can be used for testing, power
conservation, etc.

STATISTICS TASK -- OS_TaskStat() -- is a special task that
provides run-time statistics and it is created by uC/OS.
o executes every second and computes the percentage of
CPU usage by your application.
o the percentage value is placed in the signed 8-bit integer
value OSCPUUsage; the resolution is 1%
e OSCPUsage% = (100 — OSldleCrt/(OSldleCrtMax/100)).
e See also the uC/0S book (pages 99 — 103) for the usage of
this task.

CHAPTER 2 By Radu Muresan University of Guelph Page 37

TASKS STATES AND SCHEDULING

e Whether it’s a system task or an application task, at
any time each task exists in one of a small number of
states including ready, running, or blocked.

e As the real-time embedded system runs, each task
moves from one state to another according to the logic
of a simple finite state machine (FSM).

e Kernels can define task-state grouping differently,
however, there are 3 main states that are most used in
typical preemptive kernels.

Task is initialized and
enters the finite state

machine. \

/ Ready
Task is unblocked \

butis notthe

Task no longerhas
highest-priority task

the highest priority. Task has the
highest priority.

Task is unblocked \

andisthe

highest-priorit T
Blocked highestpriortty

\ Task is blocked
dueto arequest

foran unavailable
resource.

A typical state machine for task execution states.

CHAPTER 2 By Radu Muresan University of Guelph Page 38

Figure: Task States.

uC/0S Example

OSTaskDel()

OSTaskCreate()
OSTaskCreateExt()

/ N\

TASK
DORMANT

\'\ OSTaskDel)

OSFlagPost()
OSMboxPost()
OSMboxPostOpt()
OSMutexPost()
OSQPost()
OSQPostFront()
OSQPostOpy()
0OSSemPost()
OSTaskResume()
OSTimeDlyResume()
OSTimerTick()

0SStart()
OSIntExit()
0S_TASK_SW()

T

v

TASK
READY

N

Task is Preempted

OSFlagePend()
OSMboxPend()

OSMutexPend()
OSQPend()

0OSSemPend()
OSTaskSuspend()
OSTimeDly()
OSTimeDIyHMSM()

Interrupt

N

TASK
RUNNING

OSTaskDel()

/

OSIntEXxit()

e The TASK DORMANT state corresponds to a task that
resides in program space (ROM or RAM) but has not
been made available to uC/0S:

O a task is made available to uC/0S by calling either
OSTaskCreate() or OSTaskCreateExt().

o A task can return itself or another task to the
dormant state by calling OSTaskDel().

e When a task is created, it is made ready to run and
placed in the TASK READY state.

e Tasks can be created before multitasking starts or
dynamically by a running task.

CHAPTER 2 By Radu Muresan University of Guelph Page 39

e |f multitasking has started and a task created by
another task has a higher priority than its creator, the
created task is given control of the CPU immediately.

e OSStart() must only be called once during startup and
the highest priority task is placed in the TASK RUNNING
state.

e Only one task can be running at any given time -- a
ready task does not run until all higher priority tasks
are either placed in the TASK WAITING state or are
deleted.

e The running task can delay itself for a certain amount
of time by calling either OSTimeDly() or
OSTimeDIyHMSM().

o This task would be placed in the TASK WAITING state until
the time specified in the call expires.

o Both of these functions force an immediate context
switch to the next highest priority task that is ready to
run.

o The delayed task is made ready to run by OSTimeTick()
when the desired time delay expires (pp.108).

e OSTimeTick() is an internal function to uC/0S-Il and
thus, you don’t have to actually call this function from
your code.

e When all the tasks are waiting either for events or for
time to expire, uC/0OS executes an internal task called
the idle task, OS_Taskldle().

CHAPTER 2 By Radu Muresan University of Guelph Page 40

e RUNNING tasks are placed in the TASK WAITING state
when calling event functions. The running task may
also need to wait until an event occurs by calling
either OSFlagPend(), OSSemPend(), OSMutexPend(),

OSQPend(), OSMboxPend().

o If the event did not already occur, the task that calls one
of these functions is placed in the TASK WAITING state
until the occurrence of the event.

o When a task pends on an event the next highest priority
task is immediately given control of the CPU. The task is
made ready when the event happens or when a timeout
expires.

o The occurrence of an event can be signaled by either
another task or an ISR.

e A running task can always be interrupted, unless
uC/0OS disables the interrupts. When interrupted the
task enters the ISR RUNNING state.

e |SRs are treated differently by the kernel. When an
interrupt occurs, execution of the task is suspended,
and the ISR takes control of the CPU.

e The ISR can make one or more tasks ready to run by
signalling one or more events. In this case, before
returning from the ISR, uC/0OS determines if the
interrupted task is still the highest priority task ready
to run. If the ISR makes a higher priority task ready to
run, the new highest priority task is resumed;
otherwise, the interrupted task is resumed.

CHAPTER 2 By Radu Muresan University of Guelph Page 41

BASIC TASK OPERATIONS

e |n addition to providing a task object, kernels also
provide task-management services -- task management
services include actions that a kernel performs behind
the scenes to support tasks:

o For example: creating and maintaining the TCB and
task stacks, etc.

e A kernel also provides an APl (Application Program
Interface) that allows developers to manipulate tasks.
Common operations are:

o creating and deleting tasks; controlling task
scheduling; and obtaining task information.

EXAMPLE OF TASK CREATION IN uC/OS-l
e You create a task with uC/OS by passing its address and
other arguments to one of two functions:
o OSTaskCreate() or OSTaskCreateExt().
e A task can be created prior to the start of multitasking
or by another task. You must create at least one task
before OSStart(). An ISR cannot create a task.

INT8U OSTaskCreate
void (*task)(void *pd), void *pdata, OS STK *ptos, INT8U prio
((Q_) pd) hd _ Bt B)

task is a pointer pdatais a pointer ptosis a pointer priois the
tothe task code toan argument tothe top of the desiredtask
thatis passedto stackthatis priority
yourtask whenit assignedto the
starts executing task

CHAPTER 2 By Radu Muresan University of Guelph Page 42

DECLARATION of a task in uC/OS -- task is declared as:
static void Task(void *pd);
o Here, (void *pd) —is the argument of the task
which is of type void.

Example #1, TaskStartCreateTask()
NOTE: In this application, N_TASKS = 10.

static void TaskStartCreateTasks (void) { 1
INT8U i;

for (i=0;i < N_TASKS; i++){
2 TaskData[i]=‘0’ +i; /*array initialized to contain ASCII char 0 to 9*/
OSTaskCreate(Task, /*N_TASKS identical tasks called Task(), created */
3 (void*)&TaskDatali], /*each task receives a pointer to an array el.*/
&TaskStk[i][TASK_STK_ SIZE — 1], /*each task need stack space*/
i+1); /*each task must have unique priority, 1 to 10*/

}
}

e Example 1 is found in the uC/0OS book pp. 4-10. The
book has other interesting examples.

e The function of statement 1 is called from TaskStart().
Q: How does the statement 2 work? A: ‘0’ = 0x30;

e The for loop initializes n identical tasks called Task().
Each instance of task will place a different ASCII
character on the display.

e |[n statement 3, (void *)... is a pointer to the argument
passed to the task.

e Note: Even if the tasks have identical code they need
to have their own stack space and individual ID (See
how OS_TCBInit() works).

CHAPTER 2 By Radu Muresan University of Guelph Page 43

TYPICAL TASK OPERATIONS SUPPORTING MANUAL
TASK SCHEDULING

e Many Kernels provide a set of API calls that allow the
control of task moves.

e Operations for task scheduling: suspend; resume;
delay; restart — fresh initialized (not resumed); get
priority; set priority - dynamically sets a task’s priority;
preemption lock — locks the scheduler; preemption
unlock — unlocks the scheduler.

e By using manual scheduling, developers can suspend
and resume tasks from within an application.

EXAMPLE OF OPERATIONS SUPPORTING DYNAMIC
SCHEDULING FROM uC/OS-II

Changing a Task’s Priority:

INT8U OSTaskChangePrio (INT8U oldprio, INT8U newprio)
/*At runtime you can change the priority of any task by
calling OSTaskChangePrio()*/

Suspending a Task:

INT8U OSTaskSuspend (INT8U prio)

/*A suspended task can only be resumed by calling
OSTaskResume() function call. Task suspension is additive
which means that if a task is also waiting for time to expire,
the suspension needs to be removed and the time needs to
expire before the task is ready to run */

CHAPTER 2 By Radu Muresan University of Guelph Page 44

ENGG4420 - CHAPTER 2 - LECTURE 5

October-15-10
4:11 PM

INTERRUPTS

e [nterrupts allow a microprocessor to process events
when they occur, which prevents the microprocessor
from continually polling an event to see if it has
occurred.

e Microprocessors allow the interrupts to be ignored and
recognized through the use of two special instructions:
disable interrupts (DI) and enable interrupts (El),
respectively.

e In a real-time environment, interrupts should be
disabled as little as possible. Disabling interrupts
affects interrupt latency and can cause interrupts to be
missed.

e Processors generally allow interrupts to be nested.

e An interruptis a HW mechanism used to inform the
CPU that an asynchronous event has occurred.

e When an interrupt is recognized, the CPU saves part (or
all) of its context (i.e. registers) and jumps to a special
subroutine, called an ISR.

e The ISR processes the event, and, upon completion of

the ISR, the program returns to:

o the background for a foreground/background system;
Q ...Why to background? A: Because the foreground is the ISR.

o the interrupted task for a non-preemptive kernel, or
o the highest priority task ready to run for a preemptive
kernel.

CHAPTER 2 By Radu Muresan University of Guelph Page 45

INTERRUPT LATENCY

e An important specification of a real-time kernel is the
amount of time interrupts are disabled.

e All real-time systems disable interrupts to manipulate
critical sections of code and re-enable interrupts when
the critical sections have been executed.

e The longer the interrupts are disabled, the higher the
interrupt latency.

(interrupt latency) = (maximum amount of time interrupts

are disabled) + (time to start executing the first instruction
inthe ISR) (2.2)

e Note that the time to start executing the first
instruction in the ISR is composed of the time required
to save the PC and Status Word (SW) plus the
execution time of the longest instruction (here we
assume worst case scenario, such that the interrupt
comes during the longest instruction).

e Also note that some processors will save more than
the PC and SW when the interrupt is acknowledged.
INTERRUPT RESPONSE

e Interrupt response is defined as the time between the
reception of the interrupt and the start of the user
code that handles the interrupt.

the interrupt response time accounts for all of the
overhead involved in handling an interrupt.
typically, the processor’s context (CPU registers) is
saved on the stack before the user code is executed.

CHAPTER 2 By Radu Muresan University of Guelph Page 46

e The interrupt response includes the latency time plus
the time needed to save the CPU’s context (other
savings besides the ones saved automatically by the
processor) which is normally done before the
application code starts.

e Normally, at the beginning of the ISR you will have
some context saving instructions. The application
code starts after this. Also, you might have some
kernel calls.

e As aresult, we will have different interrupt response
calculations depending on the type of kernel used.

e In FOREGROUND/BACKGROUND and NON-
PREEMPTIVE systems ISR code is executed
immediately after saving the processor’s context, so:

interruptresponse=interruptlatency +timeto save CPU’s context

e In PREEMPTIVE kernels a special function provided
by the kernel needs to be called to notify the kernel
that an ISR is starting. This function allows to keep
track of interrupt nesting. As a result:

interruptresponse=interrupt latency + time to save CPU’s context +
executiontime of the kernel ISR entry function

e Note that, in all cases you must consider the system’s worst
case interrupt response time.

e Your system might respond to interrupts in 50us 99% or the
time, but, if it responds to interrupts in 250us the other 1%,
you must assume a 250us interrupt response time.

CHAPTER 2 By Radu Muresan University of Guelph Page 47

INTERRUPT RECOVERY

e Interrupt recovery is defined as the time required for
the processor to return to the interrupted code or to
a higher priority task, in the case of a preemptive
kernel.

foreground/background and non-preemptive kernels

interrupt recovery = time to restore the CPU’s context + (2.6)
time to execute the return from interrupt instruction ‘

preemptive kernels (2.8)

interrupt recovery = time to determine if a higher priority task
is ready + time to restore the CPU’s context of the high priority
task + time to execute the return from interrupt instruction

e For a preemptive kernel, interrupt recovery is more
complex. Typically, a function provided by the kernel is
called at the end of the ISR.

e For uC/0S, this function is called OSIntExit() and allows
the kernel to determine if all interrupts have nested. If
they have nested (i.e., a RTI would return to task-level
code), the kernel determines if a higher priority is
ready to run as a result of an ISR, this task is resumed.

e Note that in this case, the interrupted task resumes
only when it again becomes the highest priority task
ready to run.

e For a preemptive kernel, interrupt recovery is given by
Eq. (2.8).

CHAPTER 2 By Radu Muresan University of Guelph Page 48

INTERRUPT LATENCY, RESPONSE, AND RECOVERY FOR

VARIOUS TYPES OF SYSTEMS

e You should note that for a preemptive kernel, the exit
function decides to return either to the interrupted
task or to a higher priority task that the ISR has made

ready to run.
o ...Q7 What happens to the execution time in the case when the exit
functions decides to return to a higher priority task?
o A:The execution time is slightly longer because the kernel has to
perform a context switch to this high priority task.

Interruptlatency, response, and recovery
(foreground/background)

TIME

v

Interrupt Request

BACKGROUND BACKGROUND
1 ; CPU Context Saved I
IS 12 1 CPU context
’ T
! InterruptLatency | ! P
“ "o bl

: Int tRecove
InterruptResponse nterrup very

|«

e 1 —includes the DI + the execution of the longest
instruction before ISR + saving of PC and SW.

e 2 —includes the time to save all the CPU registers
and all other system and kernel calls before the

user ISR code.

CHAPTER 2 By Radu Muresan University of Guelph Page 49

Interruptlatency, response, and recovery
(non-preemptive kernel)

TIME .
Interrupt Request
TASK ASK
' CPU Context Saved '
| - -
1S ' - . : . CPU context
| o .. UseriSR Code . | restored
i Interrupt Latency ' : P
—» : >
| Interrupt Response ‘ InterruptRecovery
|« >
Interruptlatency, response, and recovery
(preemptive kernel)
TIME >
Interrupt Request return to the
Interrupt Recovery interrupted
; E- task
TASK : . _TASK
I ‘: _
i 1 : CPU Context Saved Kernel's ISR I‘ _ ' A
; ! Exitfunction x|
|)
i ' : : '\ CPU context
IS : : ; . 4 "~ restored
5 o, User ISR Code i returnto a
, . — higher priority
: . 3 | task
LW? » Kernel's ISR 5 I!‘ CPU context
: : Exitfunction ; 5 I restored B
I« Interrupt Response ‘I H i
i TASK
Interrupt Recovery

e 2 —includes context saved + execution of the Kernel’s ISR
entry function (i.e., OSIntEntry () for uC/OSS);

4 — Kernel's ISR exit function to decide the nesting level. If
the nesting complete, and interrupted task is the highest
priority then restore the CPU context.

e 5 — context switch to a higher priority task is longer than
CPU context restore.

CHAPTER 2 By Radu Muresan University of Guelph Page 50

ISR PROCESSING TIME

Although ISRs should be as short as possible, no
absolute limits on the amount of time exist for an
ISR. One cannot say that an ISR must always be less
than 100us, 500us, or 1 ms.

If the ISR code is the most important code that
needs to run at any given time, it could be as long as
it needs to be.

In most cases, however, the ISR should recognize
the interrupt, obtain data or a status from the
interrupting device, and signal a task to perform the
actual processing.

You should also consider whether the overhead
involved in signalling a task is more than processing
of the interrupt. Signalling a task from an ISR (i.e.,
through a semaphore, a mailbox, or a queue)
requires some processing time.

If processing your interrupt requires less than the
time required to signal a task, you should consider
processing the interrupt in the task itself and
possibly enabling interrupts to allow higher priority
interrupts to be recognized and serviced.

CHAPTER 2 By Radu Muresan University of Guelph Page 51

INTERRUPTS UNDER uC/0OSS

Your ISR: |
Save all CPU registers; (
Call OSIntEnter() or, increment OSIntNesting directly; (2)
if (OSIntNesting==1) { (

OSTCBCur-> OSTCBStkPtr= SP; (
}
Clear interrupting device; (
Re-enable interrupts (optional); (
Execute user code to service ISR; (
Call OSIntExit(); (8)
Restore all CPU registers; (
Execute a return from interrupt instruction; (

uC/0S requires that an ISR be written in assembly language. However, if your
C compiler supports in-line assembly you can put the ISR code directlyina C
source file.

(1) Your code should save all CPU registers unto the current stack; this time is
part of the response time.

(2) uC/0S needs to know that you are servicing an ISR, so you need to either
call OSIntEnter() or increment the global variable OSIntNesting. Incrementing
OSIntNesting directly is much faster than calling OSIntEnter() and is thus the
preferred way; This time is part of the response time.

(4) We check to see if this level is the first interrupt level, and, if it is, we
immediately save the stack pointer into the current task’s OS_TCB.

(5) you must clear the interrupt source because you stand the chance or re-
entering the ISR if you decide to re-enable interrupts.

(8) the conclusion of the ISR is marked by calling OSIntExit(), which
decrements the interrupt nesting counter. When the nesting counter reaches
to 0, all nested interrupts are complete, and uC/OS needs to determine
whether a higher priority task has been awakened by the ISR (or any other
nested ISR). If a higher priority task is ready to run, uC/OS returns to the
higher priority task rather than to the interrupted task.

(9) if the interrupted task is still the most important task to run, OSIntExit()
returns to the ISR.

NOTE: uC/OS returns to the interrupted task if scheduling has been disabled.
Q: What sections within the ISR are part of the latency time, response time,
and recovery time?

A: Latency: none; Response: 1, 2, 3, 4, 5, and 6; Recovery: 8, 9, and 10.

CHAPTER 2 By Radu Muresan University of Guelph Page 52

Figure Servicing an interruptin uC/OS II.

Time

i: Task Response >
Interrupt F@est (1 UC/OS-llor your application
l has interru;ts disabled !
! ; (2) . ' Interrupt Recovery
: ; — ——
.

_ No New HPT or, | .

v hl :
Vectoring . OSLockNesting >€O FReturn from interrupt
3) : ; ! 9)
Saving Contex +-Restor?s()iontext
4) ' ! .
Notify kernel: - Notify kernel: OSIntExit()
OSintEnter() Or, User ISR code ; @)

OSIntNEsting++ - -~
5)) |

i 5) '
Interrupt Response ' _ Notify kernel: OSIntExit()

(10)

h Restore Context
i H (1)
ISR sianals a task .Return frominterrupt
9 | New HPT ; (12)

— Interrupt Recovery §<—

1 »'

- Task Response >

(1) the interrupt is received but is not recognized by the CPU, either
because interrupts have been disabled by uC/0OS or your application, or
because the CPU has not completed executing the current instruction. (3)
After the CPU recognizes the interrupt, the CPU vectors (at least on most
microprocessors) to the ISR. (4) the ISR saves the CPU registers (i.e., the
CPU’s context). (5) ISR notifies uC/OS by calling OSIntEnter() or by
incrementing OSIntNesting. You also need to save the stack pointer into the
current task’s OS_TCB. (6) your ISR code executes. Your ISR should do as
little work as possible and defer most of the work at the task level. A task is
notified from the ISR by calling OSFlagPost(), OSMboxPost(), OSQPost(),
OSQPostFront(), or 0SSemPost(). The receiving task might or might not be
pending at the event flag, mailbox, queue, or semaphore when the ISR
occurs and the post is made. (7) after the ISR code is completed you need to
call OSIntExit(). As can be seen from the timing diagram, OSIntExit() takes
less time to return to the interrupted task when there is not higher priority
task (HPT) readied by the ISR. (9) in this case, the CPU registers are then
simply restored and a return from interrupt instruction is executed. (10) Q:
Why if a HPT is made ready the OSIntExit() takes longer to execute? A:
Because the OSIntExit() must execute a context switch to HPT. (12) the
registers of the new task are restored, and a return from interrupt
instruction is executed.

CHAPTER 2 By Radu Muresan University of Guelph Page 53

CLOCK TICK
e A clock tick is a special interrupt that occurs periodically.
Clock tick interrupt usage:
o allows a kernel to delay tasks for an integral number of

clock ticks,

... Q: How? A delay time value is stored on the TCB variable. Every time the tick
interrupt is serviced by the kernel this value is decremented.

o provide timeouts when tasks are waiting for events to
occur.

e NOTE: the faster the tick rate, the higher the overhead
imposed on the system.

e uC/0OS REQUIRES that you provide a periodic time source to
keep track of time delays and timeouts.

o a tick should occur between 10 and 100 times per
second, or Hertz,

o the actual frequency of the clock tick depends on the
desired tick resolution of your application,

o Generally, you can obtain a tick source by dedicating a
hardware timer.

e You must enable the ticker interrupts by calling OSTickInit()
after multitasking has started (OSStart()). As a result, you
should initialize ticker interrupts in the first task that
executes following a cal to OSStart().

e The uC/0OS clock tick is serviced by calling OSTimeTick () from
a tick ISR or from a task -- OSTimeTick() keeps track of all the
task timers and timeouts.

e The tick ISR follows all the rules described for interrupts
under uC/0S. The code for the tick ISR must be written in
assembly language because you cannot access CPU registers
directly from C. Because the tick ISR is always needed, it is
generally provided with a port.

CHAPTER 2 By Radu Muresan University of Guelph Page 54

e THE RESOLUTION of delayed tasks is 1 clock tick -- however,
this does not mean that its accuracy is 1 clock tick.

CASES 1, 2, and 3 present situations of task jitter related to
clock tick delay.

Delaying a task for one tick (Case 1)

20ms

Tick Interrupt | | | | ’
Tick ISR B B | | | B
All higher priority tasks - - I -
Callto delay 1 tck (20ms) Callto delay 1 tick (20 ms) [Callto delay 1 ik (20 ms)

Delayed Task - I - -

. tt | J 3 |

g gl 2 [« al

(19 ms) — (27 ms)

(17 ms)

CASE 1 shows a situation where higher priority tasks and ISRs
execute prior to the task, which needs to delay for one tick.
As you can see, the task attempts to delay for 20 ms but
because of its priority, actually executes at varying intervals.
o The variable execution time causes the execution of the
task to jitter.
The shaded areas indicate the execution time for each
operation performed. The processing time of the tick ISR has
been exaggerated to show that it is subject to varying
execution time -- Note: Time for each operation varies to
reflect typical processing which would include loops and
conditional statements.
In this case, due to variable execution time of HPT (High
Priority Task) the period of the delay is less than or greater
than 20 ms.

CHAPTER 2 By Radu Muresan University of Guelph Page 55

Delaying a task for one tick (Case 2)

20 ms

Tick Interrupt | | | | |

Tick ISR - . l I .
All higher priority tasks _ I I -
Callto delay 1 tick (20 ms ;
Call to delay 1 tick (20 ms) — y1tick (20 ms) [Callto delay 1 ik (20 ms)
Delayed Task i - .
‘4_&‘ L t3 ‘|
t2 ™ >

b » (27 ms)

e CASE 2 shows a situation where the execution times
of all higher priority tasks and ISRs are slightly less
than one tick.

e |f the task delays itself just before a clock tick, the
task executes again almost immediately.

e As aresult of this, if you need to delay a task at
least one clock tick, you must specify one extra tick.

o In other words, if you need to delay a task for at
least 5 ticks, you must specify 6 ticks.

CHAPTER 2 By Radu Muresan University of Guelph Page 56

Delaying a task for one tick (Case 3)

< 20 ms >

Tick Interrupt | | | | |

Tick ISR | I i i ||
All higher priority tasks . _ -
Callto delay 1 tick (20 ms) — Call to delay 1 tick (20 ms) _I
Delayed Task i I .
|] . |
| € t1 :I“ '
' (40 ms) ' (26 ms)

e CASE 3 shows a situation in which the execution times of all
higher priority tasks and ISRs extend beyond one clock tick.
e In this case, the task that tries to delay for one tick
actually executes two ticks later and misses its deadline.
Missing the deadline might be acceptable in some
applications, but in most cases it isn’t.

e CASE 1, 2, and 3 situations exist in all real-time kernels. They
are related to the CPU processing load and possibly incorrect
system design

e Possible solutions to these problems:

increase the clock rate of your microprocessor,
increase the time between tick interrupts,

rearrange task priorities,

avoid using floating-point math (if you must, use single
precision),

get a compiler that performs better code optimization,
write a time-critical code in assembly language,

if possible upgrade to a faster processor in the same
family.

CHAPTER 2 By Radu Muresan University of Guelph Page 57

ENGG4420 -- CHAPTER 2 -- LECTURE 6
EVENT CONTROL BLOCK (ECB) FOR uC/0S

e Atask or an ISR Use of event control blocks.

through a kernel X
object called an ®)
event control block o Y @
(ECB) — the signal Tipgout

is considered to be
Signal i
event. : e B

e An ECB can be a ECB
semaphore, a wone M
message mailbox,
or a message waitsignal Trgsut
queue, as @) . c

discussed later.
Wait(/f)ignal Timeout

e (1) an ISR or a task can signal an ECB.

* (2) only a task can wait for another task or an ISR to signal
the ECB. An ISR is not allowed to wait on an ECB.

e (3) an optional timeout can be specified by the waiting task
in case the object is not signalled within a specified time
period.

e (B) multiple tasks can wait for a task or an ISR to signal an
ECB. When the ECB is signalled, only the highest priority
task waiting on the ECB is signalled and made ready to run.

e (4) when an ECB is used as a semaphore, tasks can both
wait on and signal the ECB.

A

Signal Wait

signals a task sna | o] v
(1) Y @

o

|

CHAPTER 2 By Radu Muresan University of Guelph Page 58

e ECB is used as a building block to implement services,
such as semaphore management, mutual exclusion
semaphores, message mailbox management, and
message queue management.

e uC/OS maintains the state of an ECB in a data
structure called OS_EVENT.

typedef struct {
INT8U OSEventType; [* Event type */
INT8U OSEventGrp; [* Group for wait list */
INT16U OSEventCnt; [* Count (when eventis a semaphore)*/
void *OSEventPtr; [* Ptr to message or queue structure */
INT8U OSEventTbl[OS _EVENT_TBL_SIZE]; /*wait list for event
to occur */
} OS_EVENT;

e NOTE: A dot in front of a variable name indicates that
the variable is part of a data structure.

e .OSEventType contains the type associated with the
ECB and can have the following vaues:
OS_EVENT _TYPE_SEM, OS_EVENT_TYPE_MUTEX,
OS_EVENT _TYPE_MBOX, or OS-EVENT_TYPE_Q. This
field is used to make sure that you are accessing the
proper object when you perform operations on these
objects through the uC/0OS service calls.

CHAPTER 2 By Radu Muresan University of Guelph Page 59

Event Control Block (ECB)

OS EVENT

Pevent —*

.OSEventType

.OSEventCnt

.OSEventPtr

B

.OSEventGrp

5 |4 3 |2

.OSEevnetTbl[1]

63

62

61 60 |59 |58

o7

56

e .OSEventPtr: is only used when ECB is assigned to a
message mailbox or a message queue. It points to a
message when used for a mailbox or to a data

structure when used for a queue.

e .OSEventTbl[] and .OSEventGrp: are similar to
OSRdyTbl[] and OSRdyGrp, respectively, except
that they contain a list of tasks waiting on the
event instead of a list of tasks ready to run.

e .OSEventCnt: is used to hold the semaphore count
when the ECB is used for a semaphore or the
mutex and PIP when the ECB is used for a mutex.

CHAPTER 2 By Radu Muresan University of Guelph Page 60

Figure: Waitlist for task waiting for an event to occur.

.OSEventGrp

[7lofs[afafafafo]

.OSEventTbl[OS_LOWEST PRIO/8+1]

Highest Priority Task Waiting
le X | ;
™~ 1 -
0] 7 6 5 4 3 2 1 0

[1] 15|14 |13 |12 (11 |10 | 9 8

[2] 23 (22|21 |20 |19 |18 | 17 | 16

[3] 31 (30|29 |28 |27 |26 | 25| 24

[4] 39 (38 |37 |36 | 35|34 |33 32

5] |47 |46 |45 |44 | 43 | 42 | 41 | 40

[6] 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48

7] 63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 v

Priority of task waiting \

forthe eventto occur.

Task’s Priority

ooy [y |y [x]|x]|x] Lowest Priority of task
(Idle Task, can NEVER be waiting)

Bit position in .OSEventTbl[OS_LOWEST_PRIO/8+1]

Bitposition in .OSEventGrp and
Index into .OSEventTbl[OS_LOWEST_PRIO/8+1]

Each task that needs to wait for the event to occur is placed in
the wait list, which consists of the two variables: .OSEventGrp
and .OSEventTbl[].

Task priorities are grouped (eight tasks per group). Each bit

in ...Grp is used to indicate when any task in a group is waiting
for the event to occur. When a task is waiting, its
corresponding bit is set in the wait table, ...Tbl[].

The size (in bytes) of ...Tbl[] depends on OS_LOWEST_PRIO
(which indicates the lowest task priority that your tasks can
take — the maximum number of tasks in the system). As a
result, OS_LOWEST_PRIO/8 +1 represent the size of
OSEventTbl([].

The task that is resumed when the event occurs is the highest
priority task waiting for the event and corresponds to the
lowest priority number that has a bit set in ..Tbl[].

CHAPTER 2 By Radu Muresan University of Guelph Page 61

OPERATIONS ON ECBs
e Four common operations can be performed on ECBs
o Initialize an ECB: OS_EventWaitListInit(),

* This is a function called when a semaphore, mutex,
message queue, or message mailbox is created.

= All that is accomplished by this function is to indicate
that no task is waiting on the ECB.

o Make a task ready: OS_EventTaskRdy(),

» This function is called by the POST functions for a
semaphore, a mutex, a message mailbox, or a message
gueue when an ECB is signaled and the highest priority
task waiting on the ECB needs to be made ready to run.

" |n other words, OS_EventTaskRdy() removes the highest
priority task (HPT) form the waiting list of the ECB and
makes this task ready to run.

o Make a task wait for an event: OS_EventWait(),

= This function is called by the PEND functions of a
semaphore, mutex, message mailbox, and message
gueue when a task must wait on an ECB. As a result,
OS_EventTaskWait() removes the current task from the
ready list and places it in the wait list of the ECB.

o Make a task ready because a timeout occurred while
waiting for an event: OS_EventTO().

= This function is called by PEND functions for a
semaphore, mutex, message queue, and message
mailbox when OSTimeTick() has readied a task to run,
which means that the ECB was not signaled within the
specified timeout period.

CHAPTER 2 By Radu Muresan University of Guelph Page 62

MEMORY REQUIREMENTS FOR REAL-TIME SYSTEMS
e The size of a kernel is from 1K to 100K bytes.

o A minimal kernel for an 8-bit CPU that provides only
scheduling, context switching, semaphore
management, delays, and timeouts is 1K to 3K bytes.

e Total code space = application space + kernel space.
e Total RAM if the kernel does not support a separate
interrupt stack is:

o application code requirements + data space needed
by the kernel itself + SUM (task staks + MAX(ISR
nesting)).

e If the kernel supports a separate stack for interrupts is:

o application + data space needed by the kernel +
SUM(task stacks) + MAX(ISR nesting).

CHAPTER 2 By Radu Muresan University of Guelph Page 63

SYNCHRONIZATION, COMMUNICATION, AND
CONCURRENCY
TOPICS COVERED IN THIS SECTION ARE:

1. Synchronization and communication

2. Objects used for synchronization, communication and
signaling (semaphores, mutexes, mailboxes, message
gueues, etc.)

3. Pattern designs for inter-task synchronization and
communication

4. Common design problems (deadlocks, priority
inversion)

SYNCHRONIZATION

e Real time system applications use multiple concurrent
tasks to maximize efficiency -- coordinating these
activities requires inter-task synchronization and
communication.

e Synchronization is classified in two categories:

o resource synchronization -- determines whether
access to a shared resource is safe, and, if not, when
it will be safe.

o activity synchronization -- determines whether the
execution of a multithreaded program has reached a
certain state, and, if it hasn’t, how to wait for and be
notified when this state is reached.

CHAPTER 2 By Radu Muresan University of Guelph Page 64

RESOURCE SYNCHRONIZATION
e Access by multiple tasks must be synchronized to
maintain the integrity of a shared resource.

o Shared Resource: is a resource that can be used by
more than one task. Each task should gain exclusive
access to the shared resource to prevent data
corruption. This process is called mutual exclusion.

e Resource synchronization is closely associated with
critical sections and mutual exclusions.

e Mutual exclusion is a provision by which only one task
at a time can access a shared resource.

e A critical section is the section of code from which the
shared resource is accessed.

o Critical section: a critical section of code, also called
a critical region, is code that needs to be treated
indivisibly. After the section of code starts executing,
it must not be interrupted. To ensure that execution
is not interrupted, interrupts are typically disabled
before the critical code is executed and enabled
when the critical code is finished.

CHAPTER 2 By Radu Muresan University of Guelph Page 65

EXAMPLE OF TWO TASKS TRYING TO ACCESS SHARED
MEMORY

Problem arises if access to the shared memory is not
exclusive, and multiple tasks can simultaneously

access it -- As an example, consider two tasks trying to
access shared memory.

Inputsfrom _, | Sensor Display Outputs t
i puts to
/O Devices Task Task > 1/0 Devices
Writes to Memory \ / Reads from Memory
Memory

One task (the sensor task) periodically receives data from a
sensor and writes the data to shared memory.

Meanwhile, a second task (display task) reads the data from
the memory and displays it.

Erroneous data interpretation can take place. ...Q1? ... Q27?

Q1: How can we get erroneous data in this scenario?

A: One task (the sensor task) periodically receives data from a sensor and
writes the data to the shared memory. If the sensor task has not completely
written the data to the shared memory area before the display task tries to
display the data, the display would contain a mixture of data extracted at
different times, leading to erroneous data interpretation.

Q2: Identify the critical sections of code in this example.

A: The section of code in the sensor task that writes input data to the shared
memory is a critical section of the sensor task. The section of code in the
display task that reads data from the shared memory is a critical section of
the display task. These two critical sections are called competing critical
sections because they access the same shared resource.

CHAPTER 2 By Radu Muresan University of Guelph Page 66

ACTIVITY SYNCHRONIZATION

e Activity synchronization, also called condition
synchronization or sequence control, ensures that the
correct execution order among cooperating tasks is

used. ...Q"?

= Q: What types of activity synchronization do you think we can
have? A: activity synchronization can be either synchronous or
asynchronous.

e Methods of activity synchronization: 1) rendezvous
synchronization; 2) barrier synchronization.

RENDEZVOUS SYNCHRONIZATION
e A simple rendezvous method can use kernel primitives
such as semaphores or message queues, instead of

entry calls. |
binary semaphore #1

2 1
Task | , Task

#1 L #2
1 2

binary semaphore #2

Simple rendezvous without data passing

e Both binary semaphores are initialized to 0.

e When task 1 reaches the rendezvous point, it gives semaphore #2,
and then it gets on semaphore #1.

e When task 2 reaches the rendezvous point, it gives semaphore #1,
and it gets on semaphore #2.

e Task 1 has to wait on semaphore #1 before task 2 arrives, and vice
versa, thus achieving rendezvous synchronization.

CHAPTER 2 By Radu Muresan University of Guelph Page 67

BARRIER SYNCHRONIZATION

A barrier is a point where some tasks need to
present some results that must be analyzed before
the decision on the next execution path can be

made.
task ti ti
Tasks Tasks reaching the barrier barrier as con.mua 'on
) : ; point
at different times 0
™ \\ \ @
T4 \ @ EO—>
T2 4\ ------------------------- -~
| | |] |
Time t

Barrier synchronization comprises three actions:

1. A task posts its arrival at the barrier,

2. The task waits for other participants to reach the barrier,

3. The task receives notification to proceed beyond the barrier.
EXAMPLE of barrier: In an embedded control system, a
complex computation can be divided and distributed among
multiple tasks. Some parts of this complex computations are
/0 bound, other parts are CPU intensive, and still others are
mainly floating point operations that rely heavily on
specialized floating-point coprocessor hardware. These
partial results must be collected from the various tasks for
the final calculation. The result determines what other partial
computations each task is to perform next.

CHAPTER 2 By Radu Muresan University of Guelph Page 68

Pseudo code for barrier synchronization

typedef struct {
mutex_t br_lock; /*guarding mutex */ _ _
cond t br cond:/* condition variable */ Associated with the shared resource

int br _count; /* number of tasks at the barrier */
int br_n_threads;/*number of task participating in the sync. */
} barrier_t;

barrier (barrier_t *br) { 1
mutex_lock (&br ->br_lock); 2
br-> br_count ++; 3
if (br-> br_count < br->br_n_threads) 4

cond_wait(&br->br_cond, &br->br_lock); 5

else {
br-> br_count = 0; 6
cond_broadcast (&br->br_cond); 7
}
mutex_unlock(&br->br_lock); 8

e This is a barrier synchronization mechanism implementation
that uses a mutex and a condition variable.

e Each participating task invokes the function barrier for barrier
synchronization -- which is part of posting its arrival.

e The guarding mutex for br_count and br_n_threads is
acquired on line 2 (makes the task wait). The number of
waiting tasks on the barrier is updated on line 3. Line 4 checks
to see if all of the participants have reached the barrier.

e If more tasks are to arrive, the caller waits at the barrier (the
blocking wait on the condition variable at line 5). If the caller
is the last task of the group to enter the barrier, this task
resets the barrier on line 6 and notifies all other tasks that the
barrier synchronization is complete.

e Broadcasting on the condition variable on line 7 completes
the barrier synchronization -- notification part.

CHAPTER 2 By Radu Muresan University of Guelph Page 69

COMMUNICATION

e Tasks in a multitasking environment communicate with

one another so they can pass information to each other
and coordinate their activity.

e Types of communications are:

o signal-centric -- all necessary information is conveyed
within the event signal itself.

o data-centric -- the information is carried within the
transferred data.

o or both -- data transfer accompanies event
notification.

COMMUNICATION PURPOSES

Transferring data from one task to another,
signaling the occurrences of events between tasks,
allowing one task to control the execution of other
tasks,

synchronizing activities, and

implementing custom synchronization protocols for
resource sharing

The main kernel objects used for task communications
are message mailboxes and message queues

CHAPTER 2 By Radu Muresan University of Guelph Page 70

Loosely coupled communication — when communication
involves unidirectional data flow.

Interrupt
\ message queue
Interrupt > | D L o Task
Service Routine

In this ISR-to-task communication using message
queue, the ISR (data producer) does not require
response from the consumer.

Tightly coupled communication — the data movement
is bidirectional.

message queue #1
/ x (i ‘\1
Task Task
41 message queue #2 #2

e The data producer synchronously waits for a response to its
data transfer before resuming execution, or the response is
returned asynchronously while the data producer continue its
function.

e Example: Task 1 sends data to task 2 using message queue #2
and waits for confirmation to arrive at message queue #1.

e The communication is bidirectional. It is necessary to use a
message queue for confirmation because the confirmation
should contain enough information in case task #1 can
continue sending messages while waiting for confirmation to
arrive on message queue #2.

CHAPTER 2 By Radu Muresan University of Guelph Page 71

RESOURCE SYNCHRONIZATION METHODS IN RTOS

e Resource synchronization or mutual exclusion methods
are: 1) interrupt locking (disabling system interrupts),
2) preemptive locking (disabling the kernel scheduler);
3) performing test-and-set operations; 4) using
semaphores and event flags (semaphores, event flags
and other kernel objects are described in the next
section)
DISABLING SYSTEM INTERRUPTS

Disable interrupts;
Access the resource (read/write from/to variable);
Reenable interrupts;

NOTE: most of the kernels (including uC/OS) use this method

/*using uC/OS macros to disable and enable interrupts */

void Function (void)

{
OS_ENTER_CRITICAL();

. [*you can access shared data in here */

0S_EXIT_CRITICAL();
}

e Interrupt locking (disabling system interrupts) is the method used to
synchronize exclusive access to shared resources between tasks and ISRs.
This process guarantees that the current task continues to execute until it
voluntarily relinquishes control. As such, interrupt locking can also be
used to synchronize access to shared resources between tasks. Interrupt
locks, although the most powerful and the most effective synchronization
method, can introduce indeterminism into the system when used
indiscriminately. Therefore, the duration of interrupt locks should be
short, and interrupt locks should be used only when necessary to guard a
task-level critical region from interrupt activities.

CHAPTER 2 By Radu Muresan University of Guelph Page 72

DISABLING AND ENABLING THE SCHEDULER

Can be used when a task is not sharing variables or data
structures with an ISR. NOTE that while the scheduler is
locked, interrupts are enabled, but the behavior of the
scheduler is very similar with that of a non-preemptive
kernel.

void Function (void) Disadvantage:
{ introduces the
OSSchedLock(); possibility
for priority

. [* you can access shared data in here

interrupts are recognized */ inyersion
(discussed
OSSchedUnlock(); |ater)

}

The schedulerisinvoked when OSSchedUnlock()is called to seeif a
higher priority task has been made ready to run by the task or an ISR

If your task is not sharing variables or data structures with an ISR, you can disable and
enable scheduling (lock and unlock the scheduler). In this case, two or more tasks can
share data without the possibility of contention. You should note that while the
scheduler is locked, interrupts are enabled, and, if an interrupt occurs while in the
critical region, the ISR is executed immediately. At the end of ISR, the kernel always
returns to the interrupted task, even if the ISR has made a higher priority task ready to
run. Because the ISR returns to the interrupted task, the behaviour of the kernel is
very similar to that of a non-preemptive kernel (at least, while the scheduler is
locked). The scheduler is invoked when OSSchedUnlock() is called to see if a higher
priority task has been made ready to run by the task or an ISR. A context switch
results if a higher priority task is ready to run. Although this method works well you
should avoid disabling the scheduler because it defeats the purpose of having a kernel
in the first place. Also, preemptive locking (disabling and enabling the scheduler)
introduces the possibility for priority inversion. Even though interrupts are enabled
while preemption locking is in effect, actual servicing of the event is usually delayed to
a dedicated task outside the context of the ISR. The ISR must notify that task that such
an event has occurred. The dedicated task usually executes at a high priority. This
higher priority task, however, cannot run while another task is inside a critical region
that a preemption lock is guarding. In this case, the result is not much different from
using an interrupt lock. The priority inversion, however, is bounded.

The method that uses semaphores should be chosen instead.

CHAPTER 2 By Radu Muresan University of Guelph Page 73

USING TEST-AND-SET OPERATIONS
e Global variable combined with a test-and-set (or TAS)
operation can be used to access shared resources.

Disable interrupts:
if (‘Access Variable’is 0) {
Set variable to 1;
reenable interrupts;
access the resource;
disable interrupts;
set the ‘Access Variable’ back to O;
reenable interrupts;
}else {
reenable interrupts;
/* you don’t have access to the resource, try back later */

e If you are not using a kernel, two functions could agree that
to access a resource, they must check a global variable and
if the variable is O, the function has access to the resource.
To prevent the other function from accessing the resource
the first function that gets the resource sets the variable to
1, which is called a test-and-set (or TAS) operation.

e NOTE: A TAS operation must be performed indivisibly (by
the processor) or you must disable the interrupts when
doing the TAS on the variable.

e Processors actually implement a TAS operation in hardware
(e.g., the 68000 family, ARM cores have TAS instruction).

CHAPTER 2 By Radu Muresan University of Guelph Page 74

ENGG4420 -- CHAPTER 2 -- LECTURE 7

October-24-10
6:37 PM

e Synchronization and mutual exclusion objects covered:
semaphores, mutex.

e Communication objects covered: mail boxes, message
qgueues.

DEFINING A SEMAPHORE

e A semaphore (sometimes called a semaphore token) is
a kernel object that one or more tasks can acquire or
release for the purpose of synchronization or mutual
exclusion

e Types of semaphores:

o a) binary semaphores, b) counting semaphores, c)
mutual exclusion (mutex) semaphores.

e A semaphore is like a key when used for mutual
exclusion and like a flag when used for
synchronization -- if a task can acquire the semaphore,
it can carry out the intended operation or access the
resource.

Task
- *Operations
!> *Resource access

Semaphore

CHAPTER 2 By Radu Muresan University of Guelph Page 75

DEFINING SEMAPHORES -- IN COMMON KERNELS

When a semaphore is first created, the kernel assigns to it an
associated semaphore control block (SCB), a unique ID, a
value (binary or count), and a task-waiting list.

Semaphore-
Control Block

SCB

Semaphore
Name or ID

Task-Waiting List

Value \

Binary or a
Count

Determines how many
Semaphore tokens are
available.

A single semaphore can be acquired a finite number of times. The
kernel tracks the number of times a semaphore has been acquired or
released by maintaining a token count, which is initialized to a value
when the semaphore is created.

As a task acquires the semaphore, the token is decremented; as a
task releases the semaphore, the count is incremented.

If the token count reaches 0, the semaphore has no tokens left. A
requesting task, therefore, cannot acquire the semaphore, and the
task blocks if it chooses to wait for the semaphore to become
available.

The task waiting list tracks all tasks blocked. These blocked tasks are
kept in the task waiting list in either first in/first out (FIFO) order or
highest priority first order.

When an unavailable semaphore becomes available, the kernel
allows the first task in the task-waiting list to acquire it. The kernel
moves this unblocked task either to the running state, if it is highest
priority task, or to the ready state, until it becomes the highest
priority task and is able to run.

Note that the exact implementation of a task-waiting list can vary
from one kernel to another.

CHAPTER 2 By Radu Muresan University of Guelph Page 76

BINARY AND COUNTING SEMAPHORES

. Acquire
Binary (value = 0)

semaphores N
Initial Initial
nita Available Unavailable value= 0
value = 1 <~

Release
(value=1)

Release
(count =count + 1)
Release
(count=1)

Counting
semaphores

Initial — __,(* Available Unavailable Initial
count>0 7 count=0
Acquire
(count=0)
Acquire

(count=count - 1)

e A binary semaphore has a value of either O or 1.
Note that when the binary semaphore is created it
can be initialized to either available or unavailable (1
or 0) state.

e Binary semaphores are treated as global resources,
which means that they are shared among all tasks
that need them. Making the semaphore a global
resource allows any task to release it, even if the task
didn’t initially acquire it — this sometimes becomes a
problem.

e A counting semaphore uses a count to allow it to be
acquired or released multiple times.

CHAPTER 2 By Radu Muresan University of Guelph Page 77

MUTUAL EXCLUSION SEMAPHORE (MUTEX)

Special binary semaphore that supports ownership,
recursive access, task deletion safety, and one or more
protocols for avoiding problems inherent to mutual
exclusion.

Mutex ownership -- when task owns the mutex and as

a result, no other task can lock or unlock that mutex.

O Ownership of a mutex is gained when a task first locks the
mutex by acquiring it. Conversely, a task loses ownership of the
mutex when it unlocks it by releasing it (In contrast binary
semaphores can be released by any task).

Recursive locking -- task that owns a mutex can acquire

the mutex multiple times in the lock state.
o recursive mutex is useful when a task requiring exclusive access
to a shared resource calls one or more routines that also require
access to the same resource — avoids deadlock creation.

Task deletion safety -- premature task deletion is

avoided by using the built in task deletion locks.
o Task deletion feature ensures that while a task owns the mutex,
the task cannot be deleted.

Priority inversion avoidance -- protocols such as: PIP
(priority inversion protocol) and CPP(ceiling priority
protocol) are build into mutexes to help avoid priority

inversion:

o PIP ensures that the priority level of the lower priority task that
has acquired the mutex is raised to that of the highest priority
task that has requested the mutex when inversion happens.

o CPP ensures that priority level of the task that acquires the
mutex is automatically set to the highest priority of all possible
tasks that might request the mutex when it is first acquired until
is released.

CHAPTER 2 By Radu Muresan University of Guelph Page 78

OPERATIONS PERFORMED ON A SEMAPHORE
e The operations performed on a semaphore are:
o INITIALIZE (also called CREATE)
o WAIT (also called PEND)
o SIGNAL (also called POST)
e The initial value of the semaphore must be provided
when the semaphore is initialized.
e The waiting list of tasks is always initially empty.

ACQUIRING A SEMAPHORE
e A task desiring a semaphore performs a WAIT
operation.

o if the semaphore is available (the semaphore value is
greater than 0) the semaphore value is decremented
and the task continue execution.

o if semaphore’s value is 0, the task performing WAIT
is placed in a waiting list.

e most kernels allow to specify a timeout for the wait

CHAPTER 2 By Radu Muresan University of Guelph Page 79

RELEASING A SEMAPHORE
A task releases a semaphore by performing a SIGNAL
(POST) operation
o If no task is waiting for the semaphore, the
semaphore value is simply incremented
o If any task is waiting, one of the tasks is made ready
to run and the semaphore value is not
incremented - depending on the kernel.
the task that receives the semaphore is the highest
priority task waiting or, the first task that requested
the semaphore -- uC/OS supports the first method

Usinga / Tamskar
Q: What is Semaphore
the \

semaphore / 1
u Se d fo r Acquire Semaphore

here» A\ /) T

OS_EVENT *ShareDataSem

void Function (void)

{ INT8U err;
0OSSemPend(SharedDataSem, 0, &err);

/* You can access shared data in here (interrupts are recognized) */

6SSem Post(SharedDataSem);
}

Semaphores are useful when task share 1/0O devices. Note: a
timeout value of 0 indicates that the task is willing to wait forever.
Example: Two tasks need to access the same printer.

Solution: The resource (device) has a semaphore associated to it.
Initialize the semaphore to 1.

Rules to access the printer: each task must first obtain the
semaphore.

CHAPTER 2 By Radu Muresan University of Guelph Page 80

EXAMPLE OF SEMAPHORE MANAGEMENT AND
OPERATIONS FOR uC/0S

e uC/0OS semaphores consist of two elements:

O a 16-bit unsigned integer used to hold the
semaphore count (0 to 65,535),

o a list of tasks waiting for the semaphore count to be
greater than 0.

e uC/OS provides 6 services to access semaphores:
OSSemAccept(), OSSemCreate(), OSSemDel(),
OSSemPend(), OSSemPost() and OSSemQuery().

e FUNCTION CALLS

OS_EVENT *OSSemCreate (INT16U cnt)

OS_EVENT *OSSemDel (OS_EVENT *pevent,

INT8U opt, INT8U *err)
void OSSemPend (OS_EVENT *pevent, INT16U timeout,
INT8U *err)

INT8U OSSemPost (OS_EVENT *pevent)

INT16U OSSemAccept (OS_EVENT *pevent)

INT8U OSSemQuery (OS_EVENT *pevent,

OS_SEM_DATA *pdata)

e The above services are enabled when OS_SEM-EN is set
to 1 -- Note that the underlined services can be
individually disabled.

o OSSemCreate(), 0SSemPend(), and OSSemPost() cannot
be individually disabled as can the other services. That’s
because they are always needed when you enable uC/0S
semaphore management.

o To enable the other services individually you must set the

corresponding constant to 1, specifically:
OS_SEM_ACCEPT_EN, OS_SEM_DEL_EN, OS_SEM_QUERRY_EN.

CHAPTER 2 By Radu Muresan University of Guelph Page 81

Figure: Relationships between tasks, ISRs, and a semaphore

1 2
0SSemCreate() OSSemAccept()
0SSemDel() OSSemPend

0SSemPost() SSemQuery
I
I
\ \
lSR 0SSemPost() .. _-7 OSSemAccept()

e The key symbol indicates that the semaphore protects a
shared resource and the N next to the key represents
how many resources are available.

e A flag symbol indicates that a semaphore is used to

signal the occurrence of an event. ...Q"?

O Q: What represents N under the flag? A: N in this case represents the
number of times the event can be signalled. N is 1 for a binary
semaphore.

e The hourglass represents a timeout that can be
specified by OSSemPend() call.

e On the diagram marked by 1 we have functions
targeting the object semaphore,

e And marked by 2 we have functions accessing the
object semaphore.

CHAPTER 2 By Radu Muresan University of Guelph Page 82

MUTEX IN uC/0OS

e In general, a mutex is used by an application to avoid
the priority inversion problem

O a priority inversion occurs when a low priority task owns
a resource needed by a high priority task,

o In order to avoid the priority inversion, the kernel can
increase the priority of the lower priority task to the
priority of the higher priority task until the lower priority
tasks is done with the resource.

e A real-time kernel supporting mutex objects needs to
provide the ability to support multiple tasks at the
same priority. Unfortunately, uC/OS doesn’t allow
multiple tasks at the same priority.

e Q: How does uC/0S implement mutexes? The example
below shows a solution of using mutexes for uC/0S. In this
example, we have 3 tasks with access a common resource.

OS_EVENT *ResourceMutex;

OS_STK TaskPrio10Stk[1000]; Mutex is OS_EVENT type object
OS _STK TaskPrio15Stk[1000];

OS_STK TaskPrio20Stk[1000];

void main (void) {

INT8U err;

OSlInit(); 1
/* Application initialization */

OSMutexCreate(9, &err); 2

OSTaskCreate(TaskPrio10, (void *)0, &TaskPrio10Stk[999], 10); 3
OSTaskCreate(TaskPrio15, (void *)0, &TaskPrio10Stk[999], 15);
OSTaskCreate(TaskPrio20, (void *)0, &TaskPrio10Stk[999], 20);
/* Application initialization */
OSStart(): ‘ 4
}

CHAPTER 2 By Radu Muresan University of Guelph Page 83

void TaskPrio10 (void *pdata) {

NOTE: the INT8U err;

other tasks pdata = pdataj;

have the while (1) {

same /* Application code */

structure as OSMuxPend(ResourceMutex, 0, &err);

TaskPrio10 /* access common resource */
askkrio OSMutexPost(ResourceMutex);
/* application code */

}

}

e To access the resource each task must pend on the mutex
ResourceMutex.

e An unused priority just above the highest task priority (i.e.,
priority 9) is reserved as the priority inheritance priority (PIP).

* (2) As shown in main(), uC/0S is initialized and a mutex is
created by calling OSMutexCreate(); note that
OSMutexCreate() is passed the PIP = 9.

e (4) the 3 tasks are then created, and the uC/OS is started.

e Suppose that this application has been running for a while
and at some point, task #3 accesses the common resource
first and thus acquires the mutex; Task #3 runs for a while
and then gets preempted by task #1.

e Task #1 needs the resource and thus attempts to acquire the

mutex (by calling OSMutexPend()):

o In this case, OSMutexPend() notices that a higher priority task
needs the resource and thus raises the priority of task #3 to 9,
which forces a context switch back to task #3,

o When done with the resource, task #3 calls OSMutexPost() to
release the mutex. OSMutexPost() notices that the mutex was
owned by a lower priority task that got its priority raised and
thus, returns task #3 to its original priority. OSMutexPost()
notices that a higher priority task (i.e., task #1) needs access to
the resource, gives the resource to task #1, and performs a
context switch to task #1.

CHAPTER 2 By Radu Muresan University of Guelph Page 84

SERVICES SUPPORTED BY MUTEX OBJECTS IN uC/0S

A mutex consists of 3 elements: aflag, a priority, a task list

Figure: Relationship between tasks and a mutex

OSMutexCreate() OSMutexPend()
OSMutexDel() OSMutexAccept()
T k OSMutexPost() OSMutexQuery()
as > Task

OS_EVENT *OSMutexCreate (INT8U prio, INT8U *err)

OS_EVENT *OSMutexDel (OS_EVENT *pevent, INT8U opt, INT8U *err)
void OSMutexPend (OS_EVENT *pevent, INT16Utimeout, INT8U *err)
INT8U OSMutexPost (OS_EVENT *pevent)

INT8U OSMutexAccept (OS_EVENT *pevent, INT8U *err)

INT8U OSMutexQuerry (OS_EVENT *pevent, OS_ MUTEX_DATA *pdata)

e uC/0OS mutexes consist of 3 elements: a flag
indicating whether the mutex is available (0 or 1), a
priority to assign to the task that owns the mutex in
case a higher priority task attempts to gain access to
the mutex, and a list of tasks waiting for the mutex.

e uC/0S provides 6 services to access the mutexes.
These services follow the same principles as the
semaphore services.

e The initial value of a mutex is always ‘1’ indicating
that the resource is available.

CHAPTER 2 By Radu Muresan University of Guelph Page 85

COMMUNICATION OBIJECTS -- MASSAGE MAILBOXES
Messages can be sent to a task through kernel services. A
message mailbox, also called a message exchange, is typically a
pointer-size variable.

Through a service provided by the kernel, a task or an ISR can
deposit a message (the pointer) into this mailbox.

Similarly, one or more tasks can receive messages through a
service provided by the kernel. Both the sender and receiving
task agree on what the pointer is actually pointing to.

A waiting list is associated with each mailbox in case more
than one task wants to receive messages through the mailbox.
A task desiring a message from an empty mailbox is suspended
and placed on the waiting list until a message is received.
Typically, the kernel allows the task waiting for a message to
specify a timeout. If a message is not received before the
timeout expires, the requesting task is made ready to run, and
an error code (indicating that a timeout has occurred) is
returned to it.

When a message is deposited into the mailbox, either the
highest priority task waiting for the message is given the
message (priority-based), or the first task to request a
message is given the message (FIFO).

uC/0OS support the highest priority mechanism.

Mailbox

POST PEND
Task > I
X 10

v

CHAPTER 2 By Radu Muresan University of Guelph Page 86

OPERATIONS ON THE MAILBOXES

e Kernels typically provide the following mailbox services
o initialize the content of a mailbox.
o deposit a message into the mailbox (POST).
o wait for a message to be deposited into the mailbox
(PEND).
o get a message from a mailbox, if one is present, but do
not suspend the caller if the mailbox is empty (ACCEPT).

uC/0S MAILBOX MANAGEMENT AND SERVICES

Figure: Relationship between tasks, ISRs, and a message
mailbox.
OSMboxCreate()
OSMboxDel() OSMboxAccept()
OSMboxPost() OSMboxPend()
OSMboxPostOpt() OSMboxQuery()

OSMbOXPOSt Mallbox
OSMboxPostOpt

Message

OS_EVENT *OSMboxCreate (void *msg)
OS_EVENT *OSMboxDel (OS_EVENT *pevent,
INT8U opt, INT8U *err)
void *OSMboxPend (OS_EVENT *pevent,
INT16U timeout, INT8U *err)
INT8U OSMboxPost (OS_EVENT *pevent, void *msg)
INT8U OSMboxPostOpt (OS_EVENT *pevent, void *msg,
INT8U opt)
void *OSMboxAccept (OS_EVENT *pevent)
INT8U OSMboxQuery (OS_EVENT *pevent,
OS_MBOX_DATA *pdata)

CHAPTER 2 By Radu Muresan University of Guelph Page 87

MESSAGE QUEUES

e A message queue is used to send one or more
messages to a task — is an array of mailboxes.

e The messages are extracted in FIFO fashion or LIFO
fashion.

e A waiting list is associated with the queue -- highest
priority task waiting or FIFO will get the message.

Queue

\ POST PEND

Interrupt r’[ISR) > | 10
Yo

v

e Kernels typically provide these message queue
services:

o initialize the queue (queue empty after
initialization).

o deposit a message into the queue (POST).

o wait for a message to be deposited into the
queue (PEND).

o get a message from a queue, if one is present,
but do not suspend the caller if the mailbox is
empty (ACCEPT).

CHAPTER 2 By Radu Muresan University of Guelph Page 88

Queue Control Memory

Defining Bod " (Spse

M €ssage

Queues
Message queue created: an Sending Task . QueueNamelD R‘x:;;i’:]”ggLTi;Sk
associated queue control block Waiting List e | \ ' P

(QCB), a message queue

Maxi ;
name, a unique ID, memory [Task [M::gg;;n

Y
<

buffers, a queue length, a '-‘engt*i ———
maximum message length, and -
one or more task-waiting lists

le >
I‘ il

Queue Length Queue

Tail Head Element

e A message queue in any kernel is a buffer-like object through
which a task and ISRs send and receive messages to
communicate and synchronize with data.

e A message queue temporarily holds messages from sender until
the intended receiver is ready to read them -- this temporary
buffering decouples a sending and receiving task; that it frees the
tasks from having to send and receive messages simultaneously.

e The message queue itself consists of a number of elements, each
of which can hold a single message.

Message Delieverd
(msgs = msgs - 1)

Message queues follow
the logic of a simple FSM

Queue Created Message Delieverd Message Delieverd
(msgs = msgs - 1)

(msgs = 0) (msgs = 0)

’—»

Message Arrived

Message Arrived
(msgs = Queue Length)

(msgs =1)

Message Arrived
(msgs = msgs + 1)

I N
messages

Message queue Task waiting list
delivering
tasks

CHAPTER 2 By Radu Muresan University of Guelph Page 89

uC/0OS MESSAGE QUEUE MANAGEMENT

Figure: Relationship between tasks, ISRs, and a message
queue.

OSQCreate()
0OSQDel()
OSQFlush()
OSQPost()
OSQPostFront()
OSQPostOpt()

OSQAccept()
OSQPend()

0SQQue
N X 0

/ OSQACCGPt
ISR Queue

OSQFlush()

OSQPost()

OSQPostFront()
OSQOpt()

Message

Figure: Data structures used in a message queue

OS_EVENT (1)

* (1) An ECB (event

. pevent ——» | OS_EVENT_TYPE_Q |-OSEventtype
control block) is 0x00 OSEventr
. . 0x00 .OSEventGrp
required since you e s 0%, |OSEventTl)
need a waiting list. inflized
to
* (2) A queue control 0x00 void *MsgTbi[] ~ (3)
b|0Ck (i'e'l an OS_Q 63 62 6160 59 58 57 56
see 0S_Q.C)is osa o _
a“ocated and .OSQPtr ————— Qi—ﬂ\’\/l/lessage
. .OSQS_tar[*— &————» Message
||nked to the ECB 82835? o . —>Messa;e .OSQEntries
. . n o e———— | »Message
using .OSEventPtr osatns + e I —— e
. .OSQEntries .0SQSize
field.

e (3) Before you create a queue you need to allocate an array of pointers that
contains the desired number of queue entries. The number of elements in
the array = number of entries in the queue.

e The starting address of the array is passed to OSQCreate(), as well as the size
(in number of elements) of the array.

e OS MAX_0OSin OS_CFG.H must be > 0 so it will allow to create a list of free
gueue control blocks.

CHAPTER 2 By Radu Muresan University of Guelph Page 90

Figure: List of free queue control blocks.

OS_MAX_QS
OSQFreelist — OSQPtr e+ OSQPtr &——>----oo-—> .OSQPtr e—+—0
.0SQstart .OSQStart .OSQstart
.OSQSize .0OSQSize .0OSQSize
.0SQOut .0SQOut .0SQ0ut
.0SQin .0SQin .0SQin
‘OSQEnd ‘OSQEnd ‘OSQEnd
.OSQEntries .OSQEntries .OSQEntries
0S_Q
Figure: A message queue as a circular buffer of pointers

. .OSQStart OSQEnd
¢ (3) Each entry contains (8) \ / ®)

a pointer. The pointer

to the next message is "%
deposited at the entry ST

to which . OSQIn points osaou

unless the queue is full

(i.e., .OSQEntries

_ ﬂ’

== .0SQSize).
OSQEnterles 081?"1

Depositing the pointer at .OSQln implements FIFO queue which is
what OSQPost() does.

(2) ucOS-Il implements a LIFO queue by pointing to the entry
preceding .0SQOut and depositing the pointer at that location (See
OSQPostFront() and OSQPostOpt().

(4) The pointer is also considered full when .OSQEntries

== .0SQSize. Message pointers are always extracted from the entry
to which .0SQOut points.

(5) The pointers .0SQStart and .OSQEnd are simply markers used to
establish the beginning and the end of the array so that .0OSQln
and .0SQOut can wrap around to implement this circular motion.

CHAPTER 2 By Radu Muresan University of Guelph Page 91

ENGG4420 -- CHAPTER 2 -- LECTURE 8

October-25-10
3:50 PM

PRIORITY INVERSION PROBLEM IN RTOS

e A priority is assigned to each task -- the more important
the task, the higher the priority given to it.

e The application designer is responsible for deciding
what priority each task gets.

e STATIC PRIORITIES -- task priorities are static when the
priority of each task does not change during the
application’s execution -- all the tasks and their timing
constraints are known at compile time and each task
gets a fixed priority at compile time.

e DYNAMIC PRIORITIES -- Task priorities are dynamic if
the priority of tasks can be changed during the
application’s execution -- each task can change its
priority at run time. This feature is desirable to have in
real-time kernels to avoid priority inversions.

PRIORITY INVERSION PROBLEM --

e Priority inversion is a situation in which a low-priority
task executes while a higher priority task waits on it
due to resource contentions.

o Priority inversion is a problem in real-time system
and occurs mostly when you use a real-time kernel.

o May be caused by semaphore usage, device
conflicts, bad design of interrupt handlers, poor
programming and system design.

CHAPTER 2 By Radu Muresan University of Guelph Page 92

Example 1 . Priority Inversion

Taskct (4 I S

C)]

Task 2 (M)

o et ol me
Task 3 (L) :@ ________ % __ | % _______

Task 3 Gets a Semaphore : ' : |
@) P Task 3 Resumes !
' b (10)

Task 1 Preempts Task 3 :
@) P .
Task 1 tries to get Semaphore i Task 3 Releases the Semaphore

(6) (12)

l Task 2 Preempts Task 3
(8)

Task 1 has a higher priority than Task 2, which in turn has
a higher priority than Task 3.

e (1) Task 1 and Task 2 are both waiting for an event to occur and Task 3 is
executing. (2) At some point, Task 3 acquires a semaphore, which the task
needs before it can access a shared resource. (3) Task 3 performs some
operations on the acquired resource. (4) The event for which Task 1 was
waiting occurs, and thus the kernel suspends Task 3 and starts executing
Task 1 because Task 1 has a higher priority. (5) Task 1 executes for a while
until it also wants to access the resource at (6) (i.e. it attempts to get the
semaphore that Task 3 owns). Because Task 3 owns the resource, Task 1 is
placed in a list of tasks waiting for the kernel to free the semaphore. (7)
Task 3 resumes and continues execution until it is preempted by Task 2 at
(8) because the event for which Task 2 was waiting occurred. (9) Task 2
handles the event for which it was waiting, and when it’s done, the kernel
relinquishes the CPU back to Task 3 at (10). During (11) Task 3 finishes
working with the resource and releases the semaphore at (12). At this
point, the kernel knows that a higher priority task is waiting for the
semaphore and performs a context switch to resume Task 1. During (13)
Task 1 has the semaphore and can access the shared resource.

 In this scenario the priority of Task 1 has been virtually reduced to that of
Task 3.

CHAPTER 2 By Radu Muresan University of Guelph Page 93

PRIORITY INVERSION EXAMPLE 2

Three tasks T1, T2 and T3 have decreasing priorities
(T1 has the highest priority) and T1 and T3 share some
data or resource that require exclusive access, while
T2 does not interact with either of the other tasks.
Access to the critical section is done through the P
(WAIT, PEND) and V (SIGNAL, POST) operations on
semaphore S.

Blocked
T1 [1 [.
Normal Execution
T2 [|
LT v B — - .
t0 t1 ‘\\ t2 {3 t4 t5 t6 t7 t8 time

Cri)tical Section

Consider the following execution scenario -- the tasks are
preemptable and the release times (the time when the
tasks start executing) of the 3 tasks are:

o T1:12;T2:t4; and T3: t0
A priority inversion is said to occur between time interval
[t3, t6] during which the highest priority task T1 has been
unduly prevented from execution by a medium-priority
task.
Note that the blocking of T1 during the periods [t3, t4] and
[t5, t6] by T3 which has the lock, is preferable to maintain
the integrity of the shared resource while blocking due to
T2 is not preferred since it can result in an unbounded or
excessive blocking.

CHAPTER 2 By Radu Muresan University of Guelph Page 94

PRIORITY INHERITANCE PROTOCOL (PIP)
The problem of priority inversion in real-time systems
has been studied intensively for both fixed-priority
and dynamic-priority scheduling.
One result is: the priority inheritance protocol that
offers a simple solution to the problem of unbounded
priority inversion.

In the PIP the priority of tasks are dynamically
changed so that the priority of any task in a critical
region gets the priority of the highest task pending on
that same critical region. In particular when a task T
blocks one or more higher-priority tasks, it
temporarily inherits the highest priority of the blocked
tasks.

HIGHLIGHTS OF THE PIP
The highest-priority task T gives up the processor
whenever it seeks to lock the semaphore guarding a
critical section that is already locked by some other
task.

If a task T1 is blocked by T2 and, T1 > T2 (i.e., T1 has
precedence over task T2), task T2 inherits the priority
of T1 as long as it blocks T1.

o When T2 exits the critical section that caused the

block, it reverts to the priority it had when it
entered that section.

* Priority inheritance is transitive.

o If T3 blocks T2, which blocks T1, (with T1 > T2 > T3)
then T3 inherits the priority of T1 via T2.

CHAPTER 2 By Radu Muresan University of Guelph Page 95

PIP APPLIED TO EXAMPLE 2

Blocked
T1 [1 B]
— Delayed
Normal Execution /
T2 | |
Priority Inherited Priority Reverted
T3 [| 5
t0 t1 t2 t3 t4 t5 t6 t7 t8 time

Critical Section

e Thus, in Example 2, T3 priority would be temporarily
raised to that of T1 at time t3 => the preemption of T3
at t4 by T2 is prevented

e At time t5, T3 reverts to its original priority and T2 gets
to execute only after T1 completes its computations

CHAPTER 2 By Radu Muresan University of Guelph Page 96

Priority Inversion

Kernel that supports

—>
PIP S . |
le) 9
! Tttt Fr N
Task 1 (H) . 777/ R
(1)
Task 2 (M)
Qe G
!
TskaW) | WG A
Task 3 Gets Mutex .
@) i
; i ! Task 1 Completes
Task 1 Preempts Task 3 i i (10)
) | |
Task 1 tries to get Mutex : Task 3 Releases the Mutex
(Priority of Task 3 is raised to Task 1's) (Task 1 g?sumes)
(6)

uC/OS-II solve the priority inversion problem by providing the mutex
objects that implement the PIP protocol.

(1) Task 3 executes. (2) As with Example 1, Task 3 is running but,
this time, acquires a mutual exclusion semaphore (mutex) to access
a shared resource. (3) - (4) Task 3 accesses the resource and then is
preempted by Task 1. (5) — (6) Task 1 executes and tries to obtain
the mutex. The kernel sees that Task 3 has the mutex and knows
that Task 3 has a lower priority than Task 1. In this case, the kernel
raises the priority of Task 3 to the same level as Task 1 (mutex
priority which is greater than T1 priority). (7) The kernel places Task
1 in mutex wait list and then resumes execution of Task 3 so that this
task can continue with the resource. (8) When Task 3 is done with
the resource, it releases the mutex. At this point, the kernel reduces
the priority of Task 3 to its original value and looks in the mutex
waiting list to see if a task is waiting for th mutex. The kernel sees
that Task 1 is waiting and gives it the mutex. (9) Task 1 is now free to
access the resource. (10) — (11) When Task 1 is done executing, the
medium priority task (i.e. Task 2) gets the CPU. Note that Task 2
could have been ready to run any time between points (3) and (10)
without affecting the outcome. Some level of priority inversion cannot
be avoided but far less is present than in the previous scenario.

CHAPTER 2 By Radu Muresan University of Guelph Page 97

DEADLOCK
A deadlock also called a deadly embrace, is a situation
in which two tasks are each unknowingly waiting for
resources held by the other.
o Assume task T1 has exclusive access to resource
R1 and task T2 has exclusive access to resource R2.
If T1 needs exclusive access to R2 and T2 needs
exclusive access to R1, neither task can continue —
they are deadlocked.
(1) The simplest way to avoid deadlock is for tasks to:
o acquire all resources before proceeding,
O acquire the resources in the same order, and
release resources in the reverse order. ..q1?
Most kernels allow you to specify a timeout when
acquiring a semaphore so the deadlock can be
broken. ..q2?

Q1: How do the techniques presented at (1) solve the deadlock
problem?

A. Tasks don’t lock when they are in the wait state; In the
example if we acquire, release resources in order R1, R2. This
makes the tasks acquire and release the resources in the same
order and as a result the tasks can’t deadlock.

Q2: How the deadlock is broken by having the timeout specified,
and what are the implications of this method?

A: If the semaphore is not available within a certain amount of
time, the task requesting the resource resumes execution. Some
form of error code must be returned to the task to notify it that a
timeout occurred. A return error code prevents the task from
thinking it has obtained the resource. Deadlocks generally occur
in multitasking systems, not in embedded systems.

CHAPTER 2 By Radu Muresan University of Guelph Page 98

PROBLEMS WITH THE PIP

e PIP does not prevent deadlock. In fact, PIP can cause
deadlock or multiple blocking. It also cannot prevent other

problems induced by semaphores.

o Ex. Consider the following sequence with T1 > T2:
T1: Lock S1; Lock S2; Unlock S2; Unlock S1
T2: Lock S2; Lock S1; Unlock S1; Unlock S2

o Here two semaphores are used in a nested fashion, but reverse
order. Although the deadlock does not depend on the PIP (it is
caused by an erroneous use of a semaphore), the PIP does not
prevent the problem.

e Priority Ceiling Protocol (PCP) solves some of these
problems by imposing a total ordering of the S access.

TRANSITIVE EXAMPLE: the PIP is dynamic and the priority
promotion for a task during PIP is transitive but deadlock
can take place -- 3 tasks share a common resource

Priority Inversion

Priority N |
HP-task @\Lp'tas@
(High) : L E
MP-task LP-task | I GVE.

(Medium) i @4

TAKE

LP-task I I I
(Low) (:) = v

| I I | I I >
t1 2 t3 t4 t5 t6

Transitive priority promotion example.

e In the transitive example above deadlock situation can take place -- MP-task
can hold some additional resources required by HP-task. HP-task can also
acquire some other resources needed by MP before HP-task is blocked.

e When LP task releases the resource and HP task immediately gets to run, it
is deadlocked with the MP-task.

e Therefore, the PIP protocol does not eliminate deadlock.

CHAPTER 2 By Radu Muresan University of Guelph Page 99

PRIORITY CEILING PROTOCOL (PCP)

The Priority Ceiling Protocol extends the Priority
Inheritance Protocol through chained blocking in such
a way that no task can enter a critical section in a way
that leads to blocking it.

o To achieve this, each resource is assigned a priority
(the priority ceiling) equal to the priority of the
highest priority task that can use it.

The Priority Ceiling Protocol is the same as the Priority
Inheritance Protocol, except that a task, T, can also be
blocked from entering a critical section if there exists
any semaphore currently held by some other task
whose priority ceiling is greater than or equal to the
priority of T.

In the PCP, the priority of every task is known, as are
the resources required by every task.

For a given resource the priority ceiling is the highest
priority of all possible tasks that might require the

resource.

O Example 1: R is required by 4 tasks (T1 of priority 4, T2
of priority 9, T3 of priority 10 and T4 of priority 8). As a
result the priority ceiling of R is 4.

The current priority ceiling for a running system at any
given time is the highest priority ceiling of all of
resources in use at that time

O Example 2: A system has 4 resources. R1: PC=4, R2: PC=
9, R3: PC=10; R4: PC=8. As a result the current priority
ceiling of the system is 4.

CHAPTER 2 By Radu Muresan University of Guelph Page 100

PRIORITY CEILING PROTOCOL RULES

e The following rules apply when a task T requests a

resource R:

o (1) If Risin use, T is blocked,

o (2) If Ris free and if the priority of T is higher than the
current priority ceiling, R is allocated to T,

o (3) If the current priority ceiling belongs to one of the
resources that T currently holds, R is allocated to T,
and otherwise T is blocked,

o (4) The task that blocks T inherits T’s priority if it is
higher and executes at this priority until it releases
every resource whose priority ceiling is higher than or
equal to T’s priority. The task then returns to its
previous priority.

e |n PCP a requesting task can be blocked for one of 3 causes.

1.

2.

The first cause is when the resource is currently in use, which is
direct resource contention blocking, and is the result of rule (1).
The second cause is when the blocking task has inherited a
higher priority and its current execution priority is higher than
that of the requesting task. This cause is priority inheritance
blocking and is the result of rule (4).

. A task can be blocked when its priority is lower than the

current priority ceiling even when the requested resource if
free. This cause is priority ceiling blocking and is a direct
conseguence of the “otherwise” clause of rule (3). Rule (3)
prevents a task from blocking itself if it holds a resource that
has defined the current priority ceiling.

CHAPTER 2 By Radu Muresan University of Guelph Page 101

PCP CHARACTERISTICS

e The PCP has 3 characteristics:

1. A requesting task can be blocked by only one task;
therefore, the blocking interval is at most the duration
of the critical section,

2. Transitive blocking never occurs under the PCP,

3. Deadlock never occurs under the PCP.

e One of the deadlock preventions strategies is to impose
ordering on the resources.

e The resource ordering can be realized by using the
priority ceilings of the resources. Rule (2) says if the
priority of T is higher than the current priority ceiling, T
does not require any resources that are in use.

o This issue occurs because otherwise the current priority
ceiling would be either equal to or higher than the
priority of T, which implies that tasks with a priority
higher than T’s do not require the resources currently in
use.

o Consequently, none of the tasks that are holding
resources in use can inherit a higher priority, preempt
task T, and then request a resource that T holds. This
feature prevents the circular-wait condition. This feature
is also why deadlock cannot occur when using the PCP as
an access control protocol.

o The same induction process shows that the condition in
which a task blocks another task but is in turn blocked by

a third task, transitive blocking, does not occur under the
PCP.

CHAPTER 2 By Radu Muresan University of Guelph Page 102

PRIORITY CEILING PROTOCOL EXAMPLES

e Scenario Example:

e T2 executes and holds Critical | Accessed | Priority
a lock on S2; Section | by Ceiling
e T1is initiated: S1 T1,T2 P(T1)
T1 will be blocked from S2 T1,T2,T3 |P(T1)
entering S1 ?
A: P(T1) is not strictly >3 T3 P(T3)
greater than the PC(S2) S4 T2,T3 P(T2)

=P(T1);

Priority Ceiling. Protocol Example Scheduling

~__.——""Acquire S1
T1 | I |
Qggﬂ?rztéﬂ Acquire S .~ Acquire S2
T2 m -
-~ Acquire S2
T3 I | | —1 R
t0 t1 t2 t3 t4 t5 t6 t7 t8 time

e T1,T2, T3 (decreasing priorities) with the following sequence
of op:
O T1: Lock S1; Unlock S1 T2: Lock S1; Lock S2; Unlock S2;
Unlock S1 T3: Lock S2; Unlock S2; Semaphores ceiling
priorities for S1 and S2 are P(T1) and P(T2), respectively.

e Suppose that T3 starts executing first, locks the semaphore S2 at time t1 and enters
the critical section.

e At time t2, T2 starts executing, preempts T3, and attempts to lock semaphore S1 at
time t3. At this time, T2 is suspended because its priority is not higher than priority
ceiling of semaphore S2 (it is equal only), currently locked by T3.

e Task T3 temporarily inherits the priority of T2 and resumes execution.

e Attime t4, T1 enters, preempts T3, and executes until t5, where it tries to lock S1.
Note that T1 is allowed to lock S1 at time t5, as its priority is greater than the priority
ceiling of all the semaphores currently being locked (in this case, it is compared with
S2). Task T1 completes its execution at t6 and lets T3 execute to completion at t7. Task
T2 is then allowed to lock S1, and subsequently S2, and completes at t8.

CHAPTER 2 By Radu Muresan University of Guelph Page 103

ENGG4420 -- CHAPTER 2 -- HOMEWORK

October-26-10
11:44 AM

TYPICAL MESSAGE QUEUE USE

e The following are typical ways to use message queues within
an application: 1) non-interlocked, one-way data
communication; 2) interlocked, one-way data
communication; 3) interlocked, two-way data
communication; 4) broadcast communication

. Non-interlocked, one-way data communication
* One of the simplest

scenarios for
message-based tSourceTask —— —| TSinkTask
communications
requires a sending Theactivities of tSourceTask and tSinkTask are not synchronized
task (also called the
message source), a

tSourceTask () tSinkTask ()
message queue, { {
and a receiving task
(also called a Send message to Receive message from
message sink), as message queue message queue
illustrated in this
figure. } }

Sending task Receiving task

e The type of communication is also called non-interlocked (or loosely coupled), one-
way data communication. The activities of tSourceTask and tSinkTask are not
synchronized. tsourceTask simply sends a message; it does not require
acknowledgment from tSinkTask.

e Q: What happen if tSinkTask has a higher or a lower priority? A: If tSinkTask is set to
a higher priority, it runs first until it blocks on an empty message queue. As soon as
tSourceTask sends a message to the queue, tSinkTask receives the message and
starts to execute again.

e |f tSinkTask is set to a lower priority, tSourceTask fills the message queue with
messages. Eventually, tSourceTask can be made to block when sending a message to
a full message queue.

e |SRs typically use non-interlocked, one-way communication. Remember, when ISRs
send messages to the message queue, they must do so in a non-blocking way. If the
message queue becomes full, any additional messages that the ISR sends tot the
message queue are lost.

CHAPTER 2 By Radu Muresan University of Guelph Page 104

Interlocked, one-way data communication

Interlocked "
F:ol;]qmudnicatir(])n tSourceTask [| TSinkTask
is based on the
handshake process L®I
tSourceTask () tSinkTask ()
{ {
Send message to Receive message from
message queue message queue
Acquire binary semaphore Give binary semaphore
} Sending task } Receiving task

* |[n some designs, a sending task might require a handshake
(acknowledgement) that the receiving task has been successful in
receiving the message. This process is called interlocked
communication, in which the sending task sends a message and
waits to see if the message is received. This requirement can be
useful for reliable communication or task synchronization.

e For example, if the message for some reason is not received
correctly, the sending task can resend it. Using interlock
communication can close a synchronization loop. To do so, you
can construct a continuous loop in which sending and receiving
tasks operate in lockstep with each other.

e An example is presented in this figure, where tSourceTask and
tSinkTask use a binary semaphore initially set to 0 and a message
queue with a length of 1 (mailbox).

o The semaphore in this case acts as a simple synchronization
object that ensures that tSourceTask and tSinkTask are in
lockstep. This synchronization mechanism also acts as a simple
acknowledgement to tSourceTask that it’s okay to send the
next message.

CHAPTER 2 By Radu Muresan University of Guelph Page 105

Interlocked, two-way data communication

Full-duplex or —
tightly coupled tClientTask * tServerTask
communication I
(bidirectional)
tClientTask () tServerTask ()
{ {
Send message to the Receive message from
requests queue the requests queue
Wait for message from Send a message to
the server queue the client queue
} Client task } Severtask

Sometimes data must flow bidirectionally between tasks, which is
called interlocked, two-way data communication (also called full-
duplex or tightly coupled communication). This form of
communication can be useful when designing a client/server-
based system.

A diagram is provided in this figure. In this case, tClientTask sends
a request to tServerTask via a message queue. tServerTask fulfills
that request by sending a message back to tClientTask. Note that
two separate message queues are required for full-duplex
communication.

If any kind of data needs to be exchanged, message queues are
required; otherwise, a simple semaphore can be used to
synchronize acknowledgement.

In the simple client/server example, tServerTask is typically set to
a higher priority, allowing it to quickly fulfill client requests.

Q: How do we deal with a situation where we have multiple
clients? A: All clients can use the client message queue to post
requests, while tServerTask uses a separate message queue to
fulfill the different client’s requests.

CHAPTER 2 By Radu Muresan University of Guelph Page 106

Broadcast communication

Broadcast tSinkTask 1
communication
is a one-to-many- tBroadcastTask —— —| tSinkTask 2
task relationship
> tSinkTask 3
tBroadcastTask () tSignalTask ()
{ {
Send broadcast Receive message on
message to queue queue
} Sending task } Receiving task

e Some message-queue implementations allow developers to
broadcast a copy of the same message to multiple tasks, as shown
in this figure.

e Message broadcasting is a one-to-many-task relationship.
tBroadcastTask sends the message on which multiple tSinkTask
are waiting.

* |n this figure scenario, tSinkTask 1, 2, and 3 have all made calls to
block on the broadcast message queue, waiting for the message.
When tBroadcastTask executes, it sends one message to the
message queue, resulting in all three waiting tasks exiting the
blocked state.

e Note that not all message queue implementations might support
the broadcasting facility.

CHAPTER 2 By Radu Muresan University of Guelph Page 107

SUMMARY OF COMMON PRACTICAL DESIGN
PATTERNS -- HOMEWORK

1. Synchronous activity synchronization
2. Asynchronous event notification using signals
3. Resource synchronization

(1) Synchronous activity synchronization

i h
Taskl] binary semaphore Task 2
|

Task-to-task synchronization using binary semaphores

Interrupt

binary semaphore
ISR

ISR-to-task synchronization using binary semaphores

event register

Task1! /.Illgoooo Task 2
|

Task-to-task synchronization using event registers

Interrupt event register

11010]0|0]0
__________ Task 2

~k

ISR-to-task synchronization using event registers

CHAPTER 2 By Radu Muresan University of Guelph Page 108

Interrupt

counting semaphore

ISR-to-task synchronization using counting semaphores

message queue 1

Task 1 / I "~ Task2
message queue 2

Task-to-task rendezvous using two message queues

Signaled Task

Task | | assssss=sss Signal
q Signal : R Routine
4>®—> SN singal_routine()

asr_return()

}

(2) Asynchronous event notification using signals

(3) Resource Synchronization;

Mutex
Task |----czr-m-mmmmeeee- > € Task
#1 - R E| #2
,"/ shared memory
4—:\—» :

Shared Mem with Mutexes

CHAPTER 2 By Radu Muresan University of Guelph Page 109

Interrupt

Interruptlock
e e E ------- Task
Interrupt
Service / shared memory
Routine L :
‘\ l' '
m I | /

ISR-to-task resource synchronization — shared mem
guarded by interrupt lock

Preemption lock
Task |---c=m-mmmmmmeeee > € Task
#1 [
// \\\‘
/ sharedmemory
| ‘:
e |

shared resource #1

d resource #1

Task Control <
#1 Information \\

Task
#2

cou,r';ting -

\ semaphore
,’,

Task / e

ed resource #1

Task
#N

Sharing multiple instances of resource using counting
semaphores and mutexes

CHAPTER 2 By Radu Muresan University of Guelph Page 110

ENGG4420 -- CHAPTER 2 -- ASSIGNMENTS

October-26-10
12:12 PM

PROBLEM. In a real-time kernel, the tasks can be at any given time in one state
determined by the kernel. Present the finite state machine (FSM) diagram for the
task states supported by the uC/0S-Il kernel. Place all the functions presented in the
Functions List bellow on the corresponding arcs of your FSM.

Functions List: 0SSemPend(), OSTimeDly(), OSIntExit(), OSStart(), OSTaskDel(),
OSTaskCreate, OSSemPost(), OSTaskResume(), OSTimeDIyResume().

NOTE: In order to get full marks for this problem make sure that you present the
uC/0S-1l state machine not the general 3 states FSM.

PROBLEM. A real-time application uses tasks T1, T2, T3, Idle and an ISR. The task
priorities are: T1_prio=4; T2 _prio =6; and T3_prio = 8. At a particular moment in
time t0, the tasks T1, T2 and T3 are waiting for an event E that needs to be set upon
the arrival of an interrupt signal.
Knowing the following:

e the interrupt system is enabled;

e the interrupt signal arrives at time t1 = t0 + 100 ms;

e the interrupt service routing (ISR) sets the event E at time t2 =t0 + 150 ms;

e the user code of the ISR executes for 70 ms;

e interrupt vectoring takes 1 ms;

e saving the CPU context takes 3 ms;

e OSIntEnter() function executes for 2 ms;

e a context restore takes 4 ms;

e the return from interrupt (RTI) takes 2 ms;

e OSIntExit() without context switch takes 3 ms;

e OSIntExit() with context switch takes 9 ms;
(Note: The time values presented above are given only for calculation purposes and
are not necessarily realistic)
Answer the following questions:

a) [1 marks] What task is executing at time t1?

b) [1.5 marks] What is the interrupt response time? Show your calculation by
indicating all the times included in the interrupt response time.

c) [1 marks] What task executes shortly after the event E is set and why,
specifically, at time t0 + 158 ms?

d) [1.5 marks] What is the task response time for this interrupt scenario and what
task executes at the end of the time response? Show your calculation by
indicating all the times included in the task response time.

e) [2 marks] Draw the diagram that captures the service interrupt scenario
presented in this problem. Indicate on your diagram the actions taken by the
system that correspond to each time step.

CHAPTER 2 By Radu Muresan University of Guelph Page 111

PROBLEM. A clock tick is a special interrupt that occurs periodically. The interrupt
can be viewed as the system’s heartbeat. All kernels allow tasks to be delayed for a
certain number of clock ticks. The resolution of delayed tasks is one clock tick;
however, this does not mean that its accuracy is one clock tick.

Consider a system that has 3 tasks T1, T2, and T3 with priorities P1 > P2 > P3,
respectively. We want to introduce a delay of one tick for task T3. For this analysis
consider the following scenario:

e The tick interrupt takes place at every 20 ms;

e The tick ISR has a maximum execution time of 2 ms;

e Tasks T1 and T2 execute each 20 ms cycle for a minimum time of 3 ms and a

maximum time of 12 ms;

e Task T3 has a maximum execution time of 6 ms per 20 ms cycle;

e Task T3 has a system call to delay for 1 tick (20 ms) that is executed at 2 ms

time after task T3 took hold of the CPU;

e Assume that the release time of all tasks is at the beginning of the tick cycle.
(a) Present on Figure 2.1 the worst case scenarios that capture the maximum and
minimum delay that can be incurred by task T3 when we consider the execution
times described above. Show the times on the diagram in ms and show on your
diagram the maximum and minimum delays in ms. Show the execution times for ISR,
Tasks T1&T2 combined, and T3.

Tick

q:— 20ms —
Interrupt | | I

Tick ISR

T1&T2

T3

CHAPTER 2 By Radu Muresan University of Guelph Page 112

DESIGN PROBLEM. Figure below presents a system level diagram for a data
acquisition module. Within this system, the analog inputs must be read at regular
intervals and offer the flexibility of adaptive acquisition. The ADC (Analog to Digital
Conversion) Task is responsible for sampling the data and the INTELL-SAMPLE Task is
responsible for adding intelligence to the system acquisition. The ADC Task must be
able to sample data at regular fixed intervals and at variable intervals controlled
dynamically be the Intelligent Sampling Task (INTELL-Sample). The INTELL-Sample
Task must communicate to the ADC Task the inputs to be sampled, the rate increase
in the sampling interval, and conversion parameters when necessary.

A simple way to accomplish regular interval sampling within a uC/OS-Il environment is
by using the OSTimeDly() function. However, in order to implement the intelligence
capability of the module, you are required to use a message queue instead of the
OSTimeDly() function.

(a) Present a message queue based design for this acquisition module. The message
gueue must be used to solve the sample delay problem and to communicate the
intelligent services that are required.

e Note that the OSQPend service call has a timeout parameter that can be used to
solve the time delay sample problem.

e The design should show the main structure of the main function, and the tasks
ADC and INTELL-SAMPLE. You are required to use the proper uC/0S-Il system
functions that relate to creating the tasks and creating and using the message
queue. Use the example programs shown in the lectures and your labs.

/

MUX

it

INTELL-
SAMPLE
Task

PROCESS

//variable declarations that you can use, you can add more if needed
void *QueueArray [10];

OS_EVENT *QueueSample;

OS_STK ADC_Task_S [1000];

OS_STK INTELL_Sample_Task_S [1000]

// Continue with the program showing the main program and the two tasks

CHAPTER 2 By Radu Muresan University of Guelph Page 113

uC/OS PROBLEM. When a resource is shared in a preemptive kernel, we need to make sure that
only one task has access to the resource at a time. In this problem, you need to develop a
multitask uC/OS-I1 application with 2 tasks (Task 1 and Task 2) that need to write an LCD
display.
o The first task (Task 1) is an ADC (Analog to Digital Conversion) task that needs to display
a processed ADC sample on the first row starting at the first column of an LCD.
e The second task (Task 2) is used to display the elapsed time on the first column of the
second row.
The Task1 and Task2 can use the following LCD functions:
static void LcdMoveCursor(UBYTE row, UBYTE col); /* this function moves the moves the
cursor to the specified (row, col) position */
static void LcdDispDecByte(UBYTE data); /* this function displays the sample in decimal */
static void LcdDispTime(UBYTE hours, UBYTE minutes, UBYTE seconds); /* this function
formats and displays the time */
In order to avoid display errors in this multitask application use a uC/OS-II object that can allow
proper sharing of the resource LCD. Show the structure of the application by completing the
application program including all system initialization, multitasking start-up, the tasks programs,
and correct object usage for resource sharing.

/* PROGRAM APPLICATION. YOU NEED TO FILL IN THE DOTTED LINES WITH
PROPER FUNCTION CALLS */

#include “includes.h”

/* Public event declaration section. Use this to declare all your event objects */

CHAPTER 2 By Radu Muresan University of Guelph Page 114

/* START-UP TASK */
static void StartTask(void *pdata) {

OSTicklnit(); /* Initialize the uC/OS ticker */

Other initialization can take place here
/* Fill the next lines with the appropriate uC/OS functions */

FOREVER() { OSTaskSuspend(STARTTASK_PRIO); }

¥

/* Use the section on the next page to show your two tasks.

The tasks need to show the proper real time task structure but you don’t need to provide
complete application code.

The only code required is function calls related to managing the object used for sharing the LCD
and the related function for the LCD */

static void AtoDProcTask(void *pdata) {

[*extra application code*/

}

static void ETimeTask(void *pdata) {

[*extra application code*/

CHAPTER 2 By Radu Muresan University of Guelph Page 115

PROBLEM (PIP, PCP). Consider the following tasks with their resource requirements
given as:

e T3 =(0, 10, 3; [S1; 7]), where the task executes for two time units, then requests
the resource (critical section) S1.

e T2=(4,8,2;[S2;5][S1; 2][S3; 1]]), where the task executes for one time unit,
then requests the resource (critical section) S2 and holds it for one time unit and
makes a nested request for S1. After finishing with S1 the task makes a nested
request (from S2) for S3.

e T1=(8, 10, 1; [S3; 7 [S1; 3][S2; 2]]), where the task executes for one time unit,
then requests the resource (critical section) S3 and holds it for one time unit and
makes a nested request for S1. After finishing with S1 the task makes a nested
request (from S3) for S2.

Here, the notation Ti = (ri, ei, mi, [R; t]) indicates that the task Ti is released at time ri,
has the execution time ei, priority mi (the lower the value of mi, the higher the
priority), and the critical section [R; t] for the resource R and the execution time t
(total hold time of R).

e Note that ei is the total execution time including the times that the task holds
the resources;

e And the representation [R; t [S; w][U;v]] denotes nested critical sections, that is,
the usage of resource R includes the usage of resource S and U, and time t
includes the time w and v of the critical sections S and U, respectively. Also, this
notation indicates that S and U are nested within critical section R and execute
sequentially in this order.

(a). [3 marks]. Using the grid in Table 4.1 present the schedule of the above tasks
based on the priority inversion protocol (PIP).

(b). [1 mark]. What is the task status within the PIP schedule at time 20?

(c). [1 mark]. Propose a solution to the problem that you identified at (b).

TABLE
Time: 2 4 6 8 10 12 14 16 18 20 22 24 26 28

T1

T2

T3

Time: 2 4 6 8 10 12 14 16 18 20 22 24 26 28

CHAPTER 2 By Radu Muresan University of Guelph Page 116

1.
2

i g

What are the three scenarios in which a running task can be preempted?

AI lﬂ '|'|ﬁ']"'l !'11\ At O0Aa AAAw Lo =

Allhougi we o not use cooperative tasks for a pru,mpuve kernel, we still need to de-
sign tasks that cooperate to some extent. What is the “cooperation” required by the
tasks designed for a preemptive kernel? Which kernel services can be used to realize
this cooperation?

A project uses LLC/OS for six tasks with priorities 4 through 9 available. Given the fol-
lowing tasks and task execution rates, assign priority values based on the rate mono-
tonic scheduling rule:

Task Task Period
StartTask() One time only
TaskA() Ims
TaskB() 20ms
TaskC() 500ms
TaskD() [0ms
TaskE() 1/keypress

After the system in Exercise 3 was tested, it was determined that TaskD had to have an
exact period of 10ms, and with the current priorities, it was longer than 10ms. Read-
just the priorities so TaskD will have an exact period of 10ms. Assume its execution
time is just under one tick period.

Replace the OSTimeDly() call in Source 16.8 with the equivalent OSTimeDIyHMSM()
call.

An on-chip input capture is to be used to count pulses on Timer Channel 1. Design the
input capture’s interrupt service routine so it will run under pC/OS and will signal the
semaphore, NewPulse, every time a pulse is received. Include the code required to
create the semaphone.

Design a task that increments a 16-bit variable, PulseCnt, to count the pulses from
Exercise 6. Use the NewPulse semaphore for intertask communications.

Expand on the task in Exercise 7 to include a timeout so that the function PulseError()
will be called if a pulse is not received within two seconds.

CHAPTER 2 By Radu Muresan University of Guelph Page 117

9. The following definition is used for a message to be displayed by a WC/OS program:

UBYTE HelloMsg[] = {"Hello Happy User"};

(@) Show the code required in a sender task and a receiver task to send a pointer to

this message as a global variable. The receiver task waits for the pointer and dis-
plays it using the Basic I/O routine, PUTSTRG(). Include the code required to

define and initialize the variable.

(b) Show the code required in the two tasks to send the message through a pC/OS
mailbox. Include the code required to create and initialize the mailbox.

(¢) Show the code required in the two tasks to send the message through a nC/OS
queue. Include the code required to create and initialize a queue that can hold
eight messages.

(d) Revise the code in Exercise 9a so the tasks use a semaphore as a resource key to
access the global variable. Include the code required to create and initialize the
semaphore.

10. The following two tasks send messages to the QurStrgSrvrTask() in Source 16.15. As-
suming SendrTsk() has priority 5, Sendr2Tsk() has priority 6, and QutStrgSrvrTsk()
has a priority of 10, what should the resulting display look like? (Assume OQuzStrgQ)
can hold eight messages.)

',**************‘k**

* SendriTask - A task that sends a message to the serial output server
***/
static void SendriTask(void *pdata){
FOREVER() {
0SQPost (OutStrgQ, (void *)"MESSAGES");
0STimeDly(10Q);
0SSemPost (OutFlag);
0SQPost (OutStrgQ, (void *)"Sendri, Msgl");
0SQPost (OutStrgQ, (void *)"Sendril, Msg2");
0SQPost (OutStrgQ, (void *)"Sendri1, Msg3");
0STaskSuspend (SENDR1_PRIO) ;
}
}

f*******************1\'***

* Sendr2Task - A task that sends a message to the serial output server

*******************'k**-k**/
static void Sendr2Task(void *pdata){
UBYTE err;
FOREVER() {
0SSemPend (QutFlag, @, &err);
0SQPost (OutStrgQ, (void *)"Sendr2, Msgil");
0SQPostFront (OutStrgQ, (void *)"Sendr2, Msg2");
0SQPost (OutStrgQ, (void *)"Sendr2, Msg3");
0STaskSuspend (SENDR2_PRIO) ;
¥
b

!****** Ak kA AR AR A AA R AAFRARA AR AN AR T AT A I I AR A AT A AR A A r bk hhhkhhhdk ******/
11. A new design has the following requirements: 5 tasks, 4 semaphores, and 2 message
queues. What are the minimum values for the following configuration constants to
build « C/OS specifically for this project? Assume that the four highest priorities and
four lowest priorities are reserved for the kernel.
0S_MAX_EVENTS
0S_MAX_QS
0S_MAX_TASKS
0S_LOWEST_PRIO

CHAPTER 2 By Radu Muresan University of Guelph Page 118

END OF CHAPTER 2

CHAPTER 2 By Radu Muresan University of Guelph Page 119

