

T&SD Technology & Solutions Division

Engine Materials for Clean Diesel Technology An Overview

Diesel Engine Materials Session

M. S. Geissler, Engine Materials Technology Steward **Caterpillar**, Inc

Reduced Friction

T&SD Technology & Solutions Division

Concept

Reduce fuel consumption by reducing parasitic friction loads in PRL

Technology Challenge

Effective validation of PRL life durability/ reliability goals with new technologies

Potential Degradation Modes

- Coating cracking & spall off
- Corrosion assisted wear of coatings and surfaces.
- Adhesive/Abrasive liner & ring wear- oil film retention.

Material Development Needs

- Low friction, durable liner/ring coatings.
- Enhanced liner surfacing

Building Blocks To 50% Thermal Efficiency

HE Aftertreatment

Reduced Heat Rejection

HE Compact Cooling System

Reduced Friction

AMT-Engine Materials Technology

Reduced Flow Restriction

HE Air System

Increased Waste Heat Recovery

Optimized Combustion System

High Efficiency Aftertreatment Nox Reduction Technology (NRT)

High NOx Conversion Efficiency

Low Back Pressure PM Treatment

Technology Challenge

Package Size Vs. Conversion Efficiency

Conversion Vs. Temperature

Package Size Vs. Back pressure

Potential Degradation Modes

- NRT core plugging, fracture, catalyst depletion
- Can/Piping corrosion, mechanical and thermal fatigue

Material Development Needs

- Enhanced Joint Technologies (bolting/gaskets/design)
- Lower Cost High Temperature and Corrosion Resistant Alloys and Coating processes.
- Enhanced Ceramic Core Properties and Design

Reduced Heat Rejection

Concept Ceramic inserts Air Gap Piston

Exhaust Port Liner

Technology Challenge

Insulation versus flow resistance

Thermal expansion management

Product durability & cost

Potential Degradation Modes

- Thermal shock ceramic liners.
- Thermal oxidation/fatigue exhaust port liners.
- Mechanical fatigue (piston crown air gap liners)

Material Development Needs

- Durable, low cost, thermal barrier coating process.
- Ceramic alloys resistant to thermal cycling.
- Easily assembled, durable exhaust port liners

High Efficiency Cooling System

Concept

Intercooling Intake air

Reduce air pressure drop

Improve thermal heat transfer

Technology Challenge

Coolant/Oil temp management

Validation of system assembly, durability, and reliability

Potential Degradation Modes

- Condensate corrosion
- TMF exchanger tubes
- Coolant system cavitation/corrosion
- Wear of oil lubricated components

Material Dev. Needs

- Enhanced corrosion resistant Al exchanger materials & coatings
- Lower cost substitute for austenitic stainless steel.
- Enhanced thermally conductive plastics and fabrication tech.
- Improved piping connection technologies

Reduced Flow Restriction

Concept

Reduce Resistance to Air Flow in Head and Exhaust Manifold Passages

Technology Challenge

Maintaining head stiffness, soundness, strength, and durability

New casting process development & product validation.

Potential Degradation Modes

- Head distortion & cracking.
- Valve and seat insert wear
- Exhaust manifold TMF cracking

Material Development Needs

- Higher strength head material (DI or CGI)
- New lighter, stronger, corrosion resistant valve materials

High Efficiency Air System

Concept

Advanced turbine, housing, and compressor design

Technology Challenge

Turbine/Compressor response, efficiency/durability/cost

Potential Degradation Modes

- HCF/LCF compressor blade
- Bearing wear & seizure
- TMF cracking of housings
- Turbo wheel creep, corrosion

Material Development Needs

- Low cost high temperature alloys for manifolds & housing material.
- Robust bearing system
- High strength-low weight turbo wheel materials
- Higher temperature capability aluminum wheel cast alloys

Increased Waste Heat Recovery

Concepts Turbo-Compound Brayton Cycle Organic Rankine Cycle	Technology Challenge Coupling technology Compact effective heat exchanger technology
Potential Degradation Modes • Gear train wear & fatigue	Material Development NeedsEnhanced gear strength & wear
 Ht Exchanger corrosion, erosion, TMF Attachment (bolt) fatigue 	 Light weight-high strength efficient exchanger materials Supporting fabrication processes

Optimized Combustion

Concept

Increased PCP, Compression Ratio, UI pressure

Optimized Exh Gas recirculation

Optimized nozzle/ bowl design

Technology Challenge

System integration

ECM program complexity Virtual model correlations

Potential Degradation Modes

- Block/bearing cap overload
- Bushing, pin, bearing wear.
- Cylinder head distortion/cracking
- Injector erosion/cavitation/wear
- PRL wear/corrosion/cavitation
- Valve seat/insert wear

Material Development Needs

- Lighter stronger valves
- Deposit resistant pistons/valves
- Enhanced injector materials
- Thermal barrier coatings
- Stronger head & block
- Improved heat transfer materials.
- Reduced friction materials

SUMMARY

- Caterpillar is working on technology to enable engine efficiencies of 50% and on to 55%.
- Many of the technologies are materials enabled.
- Advances in current engine materials will be necessary to reach the final outcome.
- DOE has been and will continue to be a great Caterpillar collaborator to increase engine efficiency.

