Engineered Glass Seals for SOFCs

Materials Science & Technology Division Oak Ridge National Laboratory

Alfred University

Lara-Curzio et al. 2014 SECA Workshop. July 22, 2014

Acknowledgments

- Valerie Garcia-Negron, Dan McClurg, Rosa Trejo, Amit Shyam, Hannah Stokes, Beth Armstrong, John Henry
- This research was sponsored by the US Department of Energy, Office of Fossil Energy, SECA Core Technology Program at ORNL under Contract DEAC05-00OR22725 with UT-Battelle, LLC.
- Rin Burke and Briggs White of NETL for guidance and support.

Outline

- Background
- Alfred University
- Mo-Sci
- Engineered Seals with SCN and G6 glasses
 - Characterization
 - Routes to low-cost manufacturing

Background

Requirements for SOFC seals

- Simultaneous fulfillment of thermal, physical, chemical, mechanical and electrical property requirements.
- Phase stability and chemical compatibility without substantial property degradation for 40,000 hours in oxidizing and wet reducing environments.

Objective

• To develop viscous glass seals for SOFCs

Viscous Glass Sealants for Solid Oxide Fuel Cells DE-NT-5177

Executive Summary of 3 Candidate Viscous Glasses

May 2014

Scott Misture and James Shelby, co-PIs Mark Naylor, Ph.D. student Tongan Jin, Postdoctoral researcher

> Alfred University Alfred, NY

Three glasses identified as strong candidates

- All glasses contain Ga_2O_3 up to 15 mole percent to modify the alkaline earth borosilicate base compositions.
- Testing out to 1000 hours in air, dry 4% H₂ in N₂, and wet 100% H₂ show that all three crystallize extensively but retain some amorphous phase to provide viscous behavior.
- Excellent compatibility with alumina and YSZ, but not with spinel.

(see publications and compositions in Int. J. Hydrogen Energy, 2013)

Viscous Sealing Glasses for Solid Oxide Fuel Cells

Summary for SECA Industry Teams

Cheol-Woon (CW) Kim MO-SCI Corporation, Rolla, MO <u>ckim@mo-sci.com</u> Tel: 573-364-2338

Richard K. Brow

Department of Materials Science and Engineering and the Graduate Center for Materials Research Missouri University of Science and Technology, Rolla, MO <u>brow@mst.edu</u> Tel: 573-341-6812

> Alkali-free barium borosilicate

Preferred compositions exhibit promising sealing behavior

> Prepared a total of 105 compositions and measured properties (T_g , T_s , T_{Liq} , and CTE) of all of the compositions

	Phase II				
	Glass 73	Glass 75	Glass 77	Glass 102	
Glass system	BaO-RO-Al ₂ O ₃ -B ₂ O ₃ -SiO ₂				
T _g (°C) measured from CTE curve	624	623	625	604	
Dilatometric T _s (°C)	640	650	656	639	
CTE 40-500°C (/°C)	8.48x10 ⁻⁶	8.17x10 ⁻⁶	9.25x10 ⁻⁶	7.25x10 ⁻⁶	
Liquidus T (°C)	800	810	810	Non-Crystallizing	

(450°)

100

B203

Most promising viscous glass: G102

(alkali-free barium borosilicate)

G102 seal has survived 148 thermal cycles (800°C to RT; cooling rate ~5°C/min, heating rate ~13°C/min) in dry air and wet forming gas at a differential pressure of 0.5 psi (26 torr) over the course of >5,000 hours without failure and the test was deliberately terminated for analysis

G102 seals after thermal cycles

- Excellent wetting and bonding to both aluminized metal and YSZ
- Glass is homogeneous
- > No crystals in glass
- No significant elements from metal or ceramics diffusing into glass
 BaAl₂Si₂O₈ layer at glass/metal interface

148 Thermal Cycles (>5,000 hrs) in Air

148 Thermal Cycles (>5,000 hrs) in Wet Forming Gas

Summary of re-sealing tests (ex-situ)

	Temperature	Time (hr)	Viscosity, log η	Observation	Viscosity, log
	(°C)		(Pa-s)	(# of experiments)	η (Pa-s)
G73	800	2	3.6	Healed (6 tests)	3.6
	750	2	5.0	Healed (2 tests)	5.0
	725	2	5.8	Healed (3 tests)	5.8
	700	2	6.8	Healed once, but	6.8
				not a second time	
G102	850	2	3.0	Healed (1 test)	3.0
	800	2	4.0	Healed (1 test)	4.0
	775	2	4.6	Healed (1 test)	4.6
	773	2	4.6	Healed (1 test)	4.6
	750	2	5.2	Healed (1 test)	5.2
	744	2	5.4	Healed (2 tests)	5.4
	740	2	5.5	Not healed (2 tests)	5.5
	736	2	5.6	Not healed (1 test)	5.6
	730	2	5.8	Not healed (1 test)	5.8

Re-sealing behavior of G102

G102 cracked by thermal quenching

G102 crack healed after re-heating to >744°C for 2 hrs

Composition of G6 and SCN Glasses

	G6 Glass	
	Wei	ght%
Element	ICP-MS	ICP-AES
SCN-1		
Si	51.9	54.8
K	15.0	13.4
Ba	14.0	12.9
Na	9.8	8.3
Ca	3.9	5.0
Al	3.4	3.4
Mg	1.2	1.3
Ti	0.5	0.6
В	0.1	0.1
Zn	0.1	0.0
G6		
Si	50.5	53.4
Na	15.5	12.6
Ba	7.7	7.2
В	6.3	6.0
Zn	5.8	5.8
Al	5.2	5.1
Ca	4.1	5.0
K	3.2	3.2
Mg	1.5	1.6
Fe	0.2	0.1

Table I. Chemical Composition of SCN-1 Glass; G6 Glass

As sintered

13

Microstructural Evolution of multicomponent silicate glasses

CAK RIDGE National Laboratory

SCN glass on Al₂O₃ Substrate

25,000 hrs in air

SCN glass on Al₂O₃ Substrate

25,000 hrs in air

SCN glass on Al₂O₃ Substrate

25,000 hrs in air

G6-YSZ-68

After 25,000 Hours in Air

G6-YSZ-68

After 25,000 Hours in Air

Viscosity of SCN glass containing zirconia hollow spheres

Frangible calcia-stabilized zirconia particles in SCN glass matrix

The viscosity of the seal can be tailored to accommodate the large temperature gradients in SOFCs during transients and steady state operation.

Lara-Curzio et al. 2014 SECA Workshop. July 22, 2014

Engineered Glass Seals

Routes to low-cost manufacturing

- Tape casting
- Screen printing
- Fused deposition (3D Printing)

Tape Casting

Routes to low-cost manufacturing

- Tape casting
- Screen printing

Screen-printed engineered glass seals

National Laboratory

Lara-Curzio et al. 2014 SECA Workshop. July 22, 2014

Screen-printed engineered glass seals

Lara-Curzio et al. 2014 SECA Workshop. July 22, 2014

Routes to low-cost manufacturing

- Tape casting
- Screen printing
- Fused deposition (3D Printing)

Fused Deposition (3D Printing)

PLA/SCN: 70/30

Extruded Wire

Lara-Curzio et al. 2014 SECA Workshop. July 22, 2014

PLA/SCN: 70/30

Viscosity of SCN glass containing zirconia particles

