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A B S T R A C T

This paper represents a novel online self-learning disturbance observer (SLDO) by benefiting from the
combination of a type-2 neuro-fuzzy structure (T2NFS), feedback-error learning scheme and sliding mode
control (SMC) theory. The SLDO is developed within a framework of feedback-error learning scheme in which a
conventional estimation law and a T2NFS work in parallel. In this scheme, the latter learns uncertainties and
becomes the leading estimator whereas the former provides the learning error to the T2NFS for learning system
dynamics. A learning algorithm established on SMC theory is derived for an interval type-2 fuzzy logic system.
In addition to the stability of the learning algorithm, the stability of the SLDO and the stability of the overall
system are proven in the presence of time-varying disturbances. Thanks to learning process by the T2NFS, the
simulation results show that the SLDO is able to estimate time-varying disturbances precisely as distinct from
the basic nonlinear disturbance observer (BNDO) so that the controller based on the SLDO ensures robust
control performance for systems with time-varying uncertainties, and maintains nominal performance in the
absence of uncertainties.

1. Introduction

One of the most essential requirements for controllers is to be
insensitive to uncertainties. Many control methods have been proposed
to handle different types of uncertainties, (e.g. H∞ control (Glover and
Doyle, 1988; Gahinet and Apkarian, 1994), sliding mode control (SMC)
(Slotine et al., 1991; Li et al., 2013; Xu et al., 2014), adaptive control
(Sun et al., 2013a, 2013b; He et al., 2014; Yao et al., 2015), etc…). In
H∞ control, uncertainties must be bounded in H∞-norm. This implies
that disturbances must disappear suddenly and completely. However,
this is not a realistic assumption for real-time applications. In SMC
theory, integral SMC controller is proposed in the presence of
uncertainties. It is a well known fact that the integral action may cause
unwanted effects such as, large settling time and overshoots. Moreover,
adaptive control systems may not have an ability to control uncertain
systems with highly changing parameters (Chen et al., 2015). As an
alternative method, disturbance observers (DOs) have been proposed
since they are very crucial for control of systems due to the fact that
uncertainties extensively exist in practice and are extremely difficult to
be modeled. These uncertainties, such as parameter variations, noise,
unmodeled dynamics and interactions between subsystems, must be
taken for the controller design into account to have a capability of

getting robustness. For this purpose, different DOs have been designed
in literature to obtain robust control performance for systems (Chen
et al., 2000b, 2000a, 2016).

In DO based control approaches, the model uncertainties and
external disturbances are merged into one term and a control law
contains the estimated disturbance value by a DO. The aims are to
achieve performance specifications while stabilizing the system con-
sidering the nominal model of the system and remove the disturbance
effect on the system (Chen, 2004; Yang et al., 2013; Ginoya et al.,
2014). A nonlinear dynamics inversion control method was designed
for the longitudinal autopilot of a missile in (Chen, 2003). It was
reported that the control method exhibit poor performance in case of
unknown uncertainties while a basic nonlinear DO (BNDO) based
nonlinear dynamics inversion control approach ensured robust perfor-
mance against uncertainty. The same BNDO has been used to design a
robust SMC controller for systems with mismatched uncertainties
(Yang et al., 2013). The main drawback in these studies, the BNDO
is only be able to estimate time-invariant disturbances. If disturbances
are time-varying, then the BNDO gives bias estimates. Furthermore,
there are well known nonlinear observers, such as extended Kalman
filter (EKF), particle filtering and nonlinear moving horizon estimation
methods. EKF works well if linear approximation is valid and noise on
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measurements is small (Haseltine and Rawlings, 2005). Besides,
particle filter and nonlinear moving horizon estimation methods
require very large computation time (Daum, 2005). For this reason,
an observer, computationally cheap, is required to be able to estimate
time-varying disturbances.

Type-2 fuzzy logic systems (T2FLSs) are proposed as the extended
versions of type-1 fuzzy logic systems (T1FLSs) in literature (Kayacan
et al., 2010; Castillo et al., 2012; Lee et al., 2015). It allows us to have
more degrees of freedom for design than their type-1 counterparts so
that it results in better capability of handling uncertainty (Castro et al.,
2011; Castro and Castillo, 2013; Lee et al., 2014; Rubio-Solis and
Panoutsos, 2015; Zaheer et al., 2015). Type-2 fuzzy sets are especially
preferred as the decision of the position of the membership functions
(MFs) precisely is a very troublesome task (Liang et al., 2000; Castillo
et al., 2013). However, the computational complexity of generalized
type-2 fuzzy sets is very high. For this reason, the interval type-2 fuzzy
sets were proposed to decrease computation time and made it feasible
in real-time applications (Liang and Mendel, 2000; Maldonado et al.,
2013; Lin et al., 2014; Chang and Chan, 2014; Castillo et al., 2014;
Zaheer et al., 2015; Wagner et al., 2015).

Neuro-fuzzy structures as a model-free method have been widely
used for control and identification of systems in literature. It is well
know that the stability of systems controlled by model-free controllers
cannot be proven. Therefore, the feedback-error learning scheme has
been proposed for neuro-fuzzy structures to guarantee the global
asymptotic stability of the system in a compact space (Efe et al.,
2000). SMC achieves robustness to parametric uncertainty and high-
frequency unmodeled dynamics; therefore, the SMC theory-based
learning algorithms for neuro-fuzzy structures have been proposed to
ensure the robustness of the overall system (Kaynak et al., 2001; Yu
and Kaynak, 2009). Moreover, they ensure faster convergence rate than
the traditional learning methods, such as gradient descent, Levenberg-
Marquardt and particle swarm optimization, because they are compu-
tationally simple. There are numerous examples for SMC theory-based
learning algorithms for artificial neural networks, type-1 and type-2
neuro-fuzzy structures (Topalov et al., 2009; Kayacan et al., 2012).

The main contribution of this paper is to develop a novel online
SLDO, which can learn the disturbance behavior of systems in time-
varying case as distinct from basic nonlinear DOs (BNDOs), be solved
in the range of millisecond, and robust against uncertainties. For this
purpose, the T2NFS in feedback-error learning scheme is proposed due
to fact that they are very suitable techniques for adaptive learning.
Additionally, computationally efficient sliding mode learning algorithm
is used as the training algorithm of the T2NFS because it is a powerful
approach for the stability issue. Consequently, the use of the combina-
tion of T2NFS, feedback-error learning scheme and sliding mode
control theory harmoniously allow to better handle uncertainties.

The major contributions of this paper are as follows:

1. The first major contribution is that a novel estimation approach in
the feedback-error learning scheme is developed for disturbance
observer design for the first-time.

2. The second major contribution is that the stability of the training
algorithm has been always proven for feedback-error learning
methods in literature. In this paper, in addition to the proof of the
training algorithm, the overall system stability is proven considering
the dynamics of the proposed SLDO by adding a robust term. To the
best knowledge of the author, this is also the first-time such a
stability analysis is ever proven.

The minor contributions of this paper are as follows:

1. The first minor contribution is that the developed SLDO is solved
within milliseconds; therefore, the required computation time for
the SLDO is significantly less than other methods, such as particle
filter and nonlinear moving horizon estimation methods.

2. The second minor contribution is that the learning rate of SMC
theory-based learning algorithm for the T2NFS is adaptive so that it
is possible to estimate the disturbance without the knowledge about
the upper bound of the disturbance and its derivatives.

The paper consists of six sections: The formulation of the BNDO is
given in Section 2. The SLDO benefiting from the T2NFS is developed
in Section 3. The T2NFS and online learning algorithm established on
SMC theory are respectively represented in Sections 3.1 and 3.2. The
stability of the SLDO is proven in Section 3.3. The controller design and
the stability of the system are given in Section 4. The simulation results
are represented in Section 5. Finally, the paper is summarized in
Section 6.

2. Basic nonlinear disturbance observer

A number of physical systems, such as robots, spacecrafts and
mechanical systems, are generally described by second-order differ-
ential equations. A second-order nonlinear system is written in the
following form:

x g x g x u zd ṫ = ( ) + ( ) + ( )1 2 (1)

where x x x= [ , ]T
1 2 is the state vector, u is the control input, d(t) is the

disturbance, z z z= [ , ]T
1 2 is the disturbance coefficients vector,

g x x a x( ) = [ , ( )]T
1 2 and g x b x( ) = [0, ( )]T

2 are the nonlinear system dy-
namics.

The disturbance d(t) in (1) is not measurable in practice. Therefore,
it is required to be estimated in practice to obtain robust control
performance of systems. The following basic nonlinear disturbance
observer (BNDO) dynamics have been proposed in (Chen, 2003; Yang
et al., 2013) as follows:

p l zp l zl x g x g x u

d p l x

̇ = − − ( + ( ) + ( ) )

= +
p p p

BN p

1 2

(2)

where p, lp and dBN denote respectively the internal state, proportional
observer gain and estimated disturbance. By taking time derivative of
the estimated disturbance considering (2), the time derivative of the

estimated disturbance dḂN is obtained as:

d l zė =BN p d (3)

If the time derivative of the actual disturbance d t(̇ ) is added into (3),
the error dynamics of the BNDO are obtained as follows:

d t d l ze d t

e l ze d t

(̇ ) − ̇ = − + (̇ )

̇ = − + (̇ )
BN p d

d p d (4)

where e d t d= ( ) −d BN is the disturbance error.

Assumption 1. The time derivative of the actual disturbance is
bounded and d tlim (̇ ) = 0t→∞ .

If Assumption 1 is satisfied, then (4) is obtained as follows:

e l zė + = 0d p d (5)

Lemma 1. (Chen, 2003)If l zp is positive, i.e. l z > 0p , the disturbance
error dynamics in (5) converge to zero asymptotically.

Lemma 1 implies that the estimated disturbance by the BNDO is
able to track the actual disturbance of the system in (1) asymptotically
in case Assumption 1 is satisfied.

Remark 1. If the time derivative of the actual disturbance d t(̇ ) is not
equal to zero, the error dynamics of th BNDO cannot converge to zero
so that BNDO gives bias. Therefore, there exists always difference
between the estimated and true values of the disturbance. Similar
observers have been designed in literature and the same drawback has
been reported in (Chen, 2003; Yang et al., 2013).
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3. Self-learning disturbance observer

BNDOs cannot give unbiased estimation results in case of time-
varying disturbances; therefore, a fast, computationally efficient,
adaptive and robust disturbance observer is required. A novel estima-
tion law is proposed as follows:

d τ τ τ̇ = + −SL c r n (6)

where τc, τr and τn denote respectively the outputs of the conventional
estimation law, robust term and T2NFS. The schematic diagram of the
SLDO is illustrated in Fig. 1. As seen, the BNDO is working in series
with the feedback-error learning algorithm in which the conventional
and robust estimation laws work in parallel with T2NFS.

The conventional estimation law used in this paper is defined as
follows:

τ d l z
l z

d= ̇ + ¨
c BN

d

p
BN

(7)

where dḂN denotes the time derivative of the estimated value of the
disturbance by the BNDO, lp and ld denote the proportional and
derivative gain vectors, and l zp and l zd are positive, i.e. l z l z, > 0p d .

The robust estimation law is written as follows:

τ l z
l z

d= ̇
r

r

p
BN

(8)

l zr is positive, i.e. l z > 0r , and lr denotes the robust gain vector.

3.1. Type-2 neuro-fuzzy structure

An interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy if-then rule Rij

is written as:

R ξ ξ f Υ: If is 1̃ and is 2 , then =∼
ij i j ij ij1 2 (9)

where ξ d= ḂN1 and ξ d= B̈N2 denote the inputs while 1̃i and 2∼j denote
type-2 fuzzy sets for inputs. The function fij is the output of the rules
and the total number of the rules are equal to K I J= × in which I and
J are the total number of the inputs.

The upper and lower Gaussian membership functions for type-2
fuzzy logic systems are written as follows:

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟ξ ξ c

σ
μ ( ) = exp − −

i
i

i
1 1

1 1

1

2

(10)

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟μ ξ ξ c

σ
( ) = exp − −

i
i

i
1 1

1 1

1

2

(11)

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟μ ξ

ξ c
σ

( ) = exp −
−

j
j

j
2 2

2 2

2

2

(12)

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟μ ξ

ξ c
σ

( ) = exp −
−

j
j

j
2 2

2 2

2

2

(13)

where c c σ σ, , , denote respectively the lower and upper mean, and the
lower and upper standard deviation of the membership functions.
These parameters are adjustable for the T2NFS.

The lower and upper membership functions μ and μ of A2-C0 fuzzy
system employed in this paper are determined for every signal. Then,
the firing strength of rules are calculated as follows:

w μ ξ μ ξ w μ ξ μ ξ= ( ) ( ) and = ( ) ( )ij i j ij i j1 1 2 2 1 1 2 2 (14)

The output of the every fuzzy rule is a linear function fij formulated
in (9). The output of the network is formulated below:

∑ ∑ ∑ ∑τ q f w q f w= + (1 − )͠ ͠n
i

I

j

J

ij ij
i

I

j

J

ij ij
=1 =1 =1 =1 (15)

where w͠ij and w͠ij are the normalized firing strengths of the lower and
upper output signals of the neuron ij are written as follows:

w
w

w
w

w

w
=

∑ ∑
and =

∑ ∑
͠ ͠ij

ij

i
I

j
J

ij
ij

ij

i
I

j
J

ij=1 =1 =1 =1 (16)

The design parameter q weights the participation of the lower and
upper firing levels and is generally set to 0.5. In this paper, it is
formulated as a time-varying parameter in the next subsection.

The vectors are defined as:

W t w t w t w t w t w t

W t w t w t w t w t w t
F f f f f f

( ) = [ ( ) ( )… ( )… ( )… ( )]

( ) = [ ( ) ( )… ( )… ( )… ( )]
= [ … … … ]

͠ ͠ ͠ ͠ ͠
͠ ͠ ͠ ͠ ͠

ij IJ
T

ij IJ
T

ij IJ

11 12 21

11 12 21

11 12 21

where these normalized firing strengths are between 0 and 1, i.e.
w0 < ≤ 1͠ ij and w0 < ≤ 1͠ ij . In addition, w∑ ∑ = 1͠i

I
j
J

ij=1 =1 and

w∑ ∑ = 1͠
i
I

j
J

ij=1 =1 .

3.2. SMC theory-based learning algorithm

The sliding surface s is formulated as follows:

s τ τ( ) =c c (17)

where τc is the output of the conventional estimation law and used as a
sliding surface. It is to be noted that the sliding surface is used as
learning error to train the SMC theory-based learning algorithm.

The adaptation rules of the T2NFS parameters are given by the
following equations:

c ξ ξ c α ṡ = ̇ + ( − ) sgn( )i i1 1 1 1 (18)

c ξ ξ c α ṡ = ̇ + ( − ) sgn( )i i1 1 1 1 (19)

c ξ ξ c α ṡ = ̇ + ( − ) sgn( )j j2 2 2 2 (20)

c ξ ξ c α ṡ = ̇ + ( − ) sgn( )j j2 2 2 2 (21)

⎛
⎝⎜

⎞
⎠⎟σ σ σ

ξ c
α ṡ = − + ( )

( − )
sgn( )i i

i

i
1 1

1
3

1 1
2 (22)

⎛
⎝⎜

⎞
⎠⎟σ σ σ

ξ c
α ṡ = − + ( )

( − )
sgn( )i i

i

i
1 1

1
3

1 1
2 (23)

⎛
⎝⎜

⎞
⎠⎟σ σ

σ
ξ c

α ṡ = − +
( )

( − )
sgn( )j j

j

j
2 2

2
3

2 2
2

(24)Fig. 1. Schematic diagram of the self-learning disturbance observer (SLDO).
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⎛
⎝⎜

⎞
⎠⎟σ σ

σ
ξ c

α ṡ = − +
( )

( − )
sgn( )j j

j

j
2 2

2
3

2 2
2

(25)

f
qw q w

q W q W q W q W
αsgn ṡ = −

+ (1 − )

( + (1 − ) ) ( + (1 − ) )
( )

͠ ͠
ij

ij ij

T (26)

q
F W W

αsgn ṡ = − 1
( − )

( )
T (27)

α γ ṡ = α (28)

where α and γα denote respectively the learning rate and the coefficient
of the adaptation for the learning rate, and they must be positive, i.e.
α γ, > 0α .

Theorem 1 (Stability of the learning algorithm). If adaptations rules
are proposed as in (18)– (28) and the final value of the learning rate

α* is large enough, i.e. α τ d* > *̇ + ¨*r SL where τ*̇r and d̈ *SL are respectively

the upper bounds of τṙ and d̈SL, this ensures that τc will converge to
zero in finite time for a given arbitrary initial condition τ (0)c .

Proof. The Lyapunov function is written as follows:

V τ
γ

α α= 1
2

+ 1 ( − *)c
α

2 2

(29)

By taking the time derivative of the Lyapunov function in (29), it is
obtained as follows:

V τ τ α
γ

α α̇ = ̇ + 2 ̇ ( − *)c c
α (30)

If the (28) is inserted into the equation above:

V τ τ τ d s α α̇ = ( ̇ − ̇ + ¨ ) + 2 ( − *)c n r SL (31)

The calculation of τṅ in (A.9) is inserted into (31), it is obtained as
follows:

V τ α s τ d s α α̇ = (−2 sgn( ) − ̇ + ¨ ) + 2 ( − *)c r SL (32)

If (17) is inserted into the equation above:

V τ α τ τ d τ α α̇ = (−2 sgn( ) − ̇ + ¨ ) + 2 ( − *)c c r SL c (33)

If it is assumed that d̈SL and τṙ are upper bounded by d̈ *SL and τ*̇r , (33) is
obtained as follows:

V τ α τ d τ α α τ α τ ḋ = (−2 + *̇ + ¨* ) + 2 ( − *) = (−2 * + *̇ + ¨* )c r SL c c r SL (34)

As stated in Theorem 1, if the final value of the learning rate α* is large

enough, i.e. α τ d* > *̇ + ¨*r SL, then the time derivative of the Lyapunov
function is negative, i.e. V ̇ < 0 so that the SMC theory-based learning
algorithm is stable and τc will converge to zero in finite time.□

Remark 2. Since the adaptation rules in (28) are enforced, the final
value of the learning rate of the T2NFS is determined during the
adaptation of learning rate, and it is able to reach large values to make
learning algorithm stable. This is a superiority of the proposed
approach in this study as distinct from previous studies in which the
upper bounds are needed to be foreknown.

SMC theory endures high-frequency oscillations, i.e. chattering. In
this paper, the function in (35) has been proposed to remove the
chattering effect as the sign function in (18)–(28).

s s
s δ

sgn( ) ≔
+ (35)

where δ = 0.05.

Remark 3. The usage of the sliding surface s in (17) as learning error
for the T2NFS with the adaptation laws in (18)–(28) accomplishes the
desired sliding regime for the observer.

3.3. Stability analysis

The proposed SLDO law in (6) is re-written considering (7) and (8)
as:

⎛
⎝⎜

⎞
⎠⎟d l z

l z
d l z

l z
d τ̇ = 1 + ̇ + ¨ −SL

r

p
BN

d

p
BN n

(36)

The error dynamics for the SLDO are obtained by adding the actual
disturbance rate d ̇ into the estimated disturbance rate in (36) and
considering the calculated time derivative of the estimated disturbance
by BNDO in (3):

d d l l ze l ze τ d

e
l l ze τ d

l z

̇ − ̇ = −( + ) − ̇ + + ̇

̇ =
−( + ) + + ̇

1 +

SL p r d d d n

d
p r d n

d (37)

By taking the time derivative of (37), it is obtained as follows:

e
l l ze τ d

l z
¨ =

−( + ) ̇ + ̇ + ¨

1 +d
p r d n

d (38)

As calculated in (A.9), τ αsgn ṡ = −2 ( )n is inserted into (38);

e
l l ze αsgn s d

l z
¨ =

−( + ) ̇ − 2 ( ) + ¨

1 +d
p r d

d (39)

If τc in (7) is inserted into (17), the sliding surface is obtained as
follows:

s d d l z
l z

d λd( ̇ , ¨ ) = ( ¨ + ̇ )BN BN
d

p
BN BN

(40)

where λ = l z
l z
p

d
is the slope of the sliding surface. The time derivative of

the sliding surface is obtained as

⎛
⎝⎜

⎞
⎠⎟s l z

l z
d

l z
l z

ḋ = + ¨d

p
BN

p

d
BN

…

(41)

Theorem 2 (Stability of the SLDO). The estimation law in (6) is
employed as a DO, the closed-loop error dynamics for the SLDO are

stable if the robust gain lr is equal to
l
l z

p

d
, i.e. l =r

l
l z

p

d
, and the final value

of the learning rate of T2NFS α* is large enough, α d* > ¨* where the
acceleration of the actual disturbance d̈ is upper bounded by d̈*.

Proof. The Lyapunov function is written as follows:

V s l z
γ l z

α α= 1
2

+
(1 + )

( − *)d

α d

2 2

(42)

By taking the time derivative of the Lyapunov function above
considering (28), it is obtained as

V ss l z s
l z

α α̇ = ̇ + 2
1 +

( − *)d
d (43)

If the time derivative of the sliding surface is inserted into the
aforementioned equation, it is obtained as follows:

⎛
⎝⎜

⎞
⎠⎟V s l z

l z
d

l z
l z

d l z s
l z

α α̇ = + ¨ + 2
1 +

( − *)d

p
BN

p

d
BN d

d

…

(44)

It is obtained considering (3).

V s l ze l ze l z s
l z

α α̇ = ( ¨ + ̇ ) + 2
1 +

( − *)d d p d d
d (45)

(39) is inserted into (45), it is obtained as follows:

⎛
⎝⎜

⎞
⎠⎟V s l z

l l ze αsgn s d
l z

l ze l z s
l z

α α̇ =
−( + ) ̇ − 2 ( ) + ¨

1 +
+ ̇ + 2

1 +
( − *)d

p r d

d
p d d

d

(46)

If it is assumed that d̈ is upper bounded by d̈*:
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⎛
⎝⎜

⎞
⎠⎟V s l z α d

l z
se l z

l l z
l z

l z l z s
l z

α α̇ = ∣ ∣ (−2 + ¨*)
1 +

+ ̇
−( + )

1 +
+ + 2

1 +
( − *)d

d
d d

p r

d
p d

d

(47)

⎛
⎝⎜

⎞
⎠⎟s l z α d

l z
se l z

l l z
l z

l z=∣ ∣ (−2 * + ¨*)
1 +

+ ̇
−( + )

1 +
+d

d
d d

p r

d
p

0 (48)

As stated in Theorem 2, if lr is equal to
l
l z

p

d
, i.e. l =r

l
l z

p

d
, and the final

value of the learning algorithm α* is large enough, i.e. α d* > ¨*, then the
time derivative of the Lyapunov function is negative, i.e. V ̇ < 0, so that
the SLDO is stable.□

Remark 4. The main advantage of the SLDO is to be able to prove the
stability in case of not only time-invariant disturbances, such as
BNDOs, but also time-varying disturbances.

4. Controller design

The control objective is to find a control law so that the system
states can track a desired trajectory. One of the most commonly used
method for nonlinear systems is feedback linearization control (FLC).
The traditional FLC method for nonlinear systems is formulated
considering a second-order nonlinear system in (1) where there exists
no disturbance:

u b x x a x k x x k x x= − ( )( ¨ + ( ) − ( ̇ − ) − ( − ))d d d
−1

2 2 1 1 (49)

where the controller coefficients k k,1 2 are positive, i.e. k k, > 01 2 . If the
control law in (49) is applied to the system in (1), the closed-loop error
dynamics are obtained as follows:

e k e k e zd t¨ + ̇ + = − ( )2 1 (50)

where e x x= −d 1 and e x ẋ = ̇ −d 2.

Lemma 2. (Khalil and Grizzle, 1996) If a nonlinear system F x u( , ) is
input-to - state stable and the input satisfies u tlim ( ) = 0t→∞ , then the
state satisfies x tlim ( ) = 0t→∞ .

Remark 5. As seen in (50), if the disturbance d(t) is different from
zero, the closed-loop error dynamics cannot converge to zero in finite
time. This shows that the traditional FLC is sensitive to disturbances.

The FLC based on the SLDO by taking the estimated disturbance
value into account is formulated as follows:

u b x x a x k x x k x x zd= − ( )( ¨ + ( ) − ( ̇ − ) − ( − ) + )d d d SL
−1

2 2 1 1 (51)

If the control law in (51) is applied to the system in (1), the closed-loop
error dynamics are obtained as follows:

e k e k e ze¨ + ̇ + = − d2 1 (52)

where e d t d t= ( ) − ( )d SL . As stated in Theorem 2, the disturbance error
dynamics for the SLDO can converge to zero asymptotically. As stated
in Lemma 2, if the disturbance error ed satisfies e tlim ( ) = 0t d→∞ , then
the system error satisfies e tlim ( ) = 0t→∞ . As a result, the closed-loop
error dynamics of the system can converge to zero asymptotically in
finite time under the control law in (51) if the controller coefficients k1
and k2 are positive, i.e. k k, > 01 2 .

Remark 6. If there exists no disturbance, i.e. d t( ) = 0, then the
estimated value of the disturbance in the control law (51) will be zero,
i.e. d = 0SL . This results in the traditional FLC in (49) so that it
maintains the nominal performance the absence of disturbances.

5. Simulation studies

The following nonlinear system, i.e., chaotic Duffing oscillator, is
considered for the simulation studies (Hsu, 2012):

x x

x x x x t u d

̇ =

̇ = 1.1 − 0.4 − + 2.1cos(1.8 ) + +
1 2

2 1 2 1
3 (53)

where a x x x x t( ) = 1.1 − 0.4 − + 2.1cos(1.8 )1 2 1
3 , b x( ) = 1 and z = [0, 1]T as

can be seen from (1).
The desired states values are defined as x x x¨ = ̇ = = 0d d d . The initial

conditions on the states of the system and the controller coefficients are
respectively selected as x(0) = [1, −1]T and k = 501 , k = 252 . Since the
disturbance coefficient vector in (53) is equal to z = [0, 1]T , the
proportional, derivative and robust gains for DOs must be positive,
i.e., l l l, , > 0p d r . The proportional gain is selected as l = [0, 3]p

T while
the derivative gain is selected as l = [0, 1.2]d

T . As stated in Theorem 2,

since the robust gain must be equal to
l
l z

p

d
, i.e. l = = 2.5r

l
l z

p

d
, the robust

gain is selected as l = [0, 2.5]r
T . The coefficient γα to adjust the learning

rate α for the SLDO is selected as 0.001. The initial conditions on the
learning rate α and parameter q are set to 0.05 and 0.5, respectively. To
benchmark different disturbance observers in the presence and ab-
sence of uncertainties, no disturbance is imposed on the system at the
beginning, a step external disturbance d=3 is imposed on the system at
t=10 s and a sinusoidal external disturbance d sin t= 3 ( ) is imposed on
the system at t=20 s as formulated below:

⎧
⎨⎪
⎩⎪

d t
t d
t d
t d t

( ) =
0≤ <10 = 0
10≤ <20 = 3
20≤ <30 = 3sin( ) (54)

In simulation studies, the control performance of the FLC based on
the SLDO is firstly compared with the traditional FLC and the FLC
based on the BNDO. Then, the SLDO is analyzed under noisy
conditions and compared with its type-1 counterpart. Throughout
simulation studies, the sampling time is set to 0.001 s while the
number of membership functions are selected as I J= = 3. In the
presence of plant uncertainties, the adaptation of the learning rate of
sliding mode learning algorithm must be a robust adaptation law to
avoid having infinite values. Therefore, a dead-zone has been proposed
in literature to handle this problem. In this paper, if the sliding surface
is smaller than the dead-zone parameter ϵ = 0.05, i.e., s < ϵ, then the
learning rate α is not updated.

The states responses x x,1 2 are shown in Figs. 2(a) and 2(b). Firstly,
the FLC controller can control the system without steady-state error
while there exists no disturbance on the system. However, after the
disturbances are imposed on the system, it is observed that it is not
robust against any external disturbance and gives steady-state error as
seen in Fig. 2(a) and stated in Remark 5. Secondly, the FLC based on
the BNDO can control the system without any steady-state error while
there exist no disturbance and a time-invariant disturbance. However,
it is seen that it is not robust against a time-varying disturbance as
stated in Remark 1. Thirdly, the FLC based on the SLDO can control
system without steady-state error and it is robust against time-
invariant and time-varying disturbances. Moreover, the FLCs based
on the BNDO and SLDO maintain the nominal performance while
there exists no disturbance between t=0–10 s as stated in Remark 6.

The actual and estimated disturbances are shown in Fig. 2(c). As can be
observed, the SLDO can estimate time-varying disturbances while BNDO is
only able to estimate only time-invariant disturbances as stated in Remark
4. This fact results in the robust control performance of the FLC based on
the SLDO against time-varying uncertainties. Thanks to learning process by
the feedback-error learning algorithm, the T2NFS takes the overall
estimation signal while the conventional estimation signal converges to
zero in finite time as shown in Fig. 2(d). Inasmuch as the total generated
estimation signal by the feedback-error learning structure is equal to
τ τ−c n, the output of the T2NFS τn is multiplied by −1 in Fig. 2(d) not to
cause the reader to become perplexed. The T2NFS becomes the leading
estimator after a short time period. The output of the conventional
estimation law τc becomes nonzero only during the time intervals when
the T2NFS is learning.
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The adaptation of the learning rate α is shown in Fig. 2(e). As
seen, the initial condition on the learning rate α is set to 0.05 and
the learning rate is constant while the output of the conventional
estimation law τc is equal to zero due to the fact that learning is not
required. When the disturbances are imposed on the system, the
learning rate is increasing for a short time period till τc becomes
zero. Moreover, the adaptation of the parameter q is shown in
Fig. 2(f). The initial condition on the parameter q is set to 0.5,
which is the general case. Thanks to the adaptation rule in (27), the

proportion of the upper and lower membership functions is
adjusted throughout the simulations.

Type-2 fuzzy membership functions are used in the proposed
estimation structure and it is possible to downgrade them to type-1
counterparts by equalizing the upper and lower values of parameters
in (18)– (25). In literature, it is claimed that the type-2 fuzzy logic
system gives better performance than its type-1 counterpart in the
presence of noise and uncertainty in the system. The initial condi-
tions on the states of the system are set to x(0) = [1, 1]T . In order to

Fig. 2. (a) Responses of state x1(b) Responses of state x2 (c) True and estimated values of the disturbance (d) Estimation signals (e) Learning parameter α (f) Parameter q.
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compare the performance of T2NFS with its type-1 counterpart
under noisy conditions, the actual disturbance d with different noise
levels SNR, which are equal to 20 dB, 40 dB and 60 dB, is applied the
system. The mean squared errors for the different noise levels are
given in Table 1. As seen from this table, the T2NFS gives less error
than the type-1 neuro-fuzzy structure (T1NFS) and the performance
of T2NFS is more remarkable while the noise level is increasing.
Fig. 3(a) shows the absolute disturbance error responses with a noise
level of 20 dB for T1NFS and T2NFS. As can be observed, T2NFS
gives less disturbance error when compared to its type-1 counter-
part. Moreover, the system states under noisy condition are shown
in Figs. 3(b) and 3(c). The FLC with the SLDO based on T2NFS
exhibits better control performance. These results verify previous
results seen in (Mendel, 2000; Hsiao et al., 2008; Khanesar et al.,

2011). Type-2 fuzzy systems have more degrees of freedom so that
they have capability of dealing with noisy measurements and
uncertainties in the system more effectively.

The simulations are executed on the computer, which is equipped
with 3.1 GHz Intel Core i U7 − 5557 CPU and 16 GB of RAM. It is to be
noted that the sampling and simulation times are set to 0.001 and 30 s
in the sense that total number of sample is equal to 30,000. The total
required computation time is calculated as 5.531993 s so that the
required computation time for each sampling time instant is around
0.18 millisecond. The required computation time of the sliding mode
learning algorithm is significantly lower than the one of the other
methods, such as gradient descent, Levenberg-Marquardt, particle
swarm optimization and extended Kalman filter (Kayacan et al.,
2015a). The reason is that the sliding mode learning algorithm does
not contain any high-order matrices, matrix manipulations or calcula-
tions of the partial derivatives. Moreover, particle filter becomes
infeasible in real-time due to large number of states and moving
horizon estimation requires solving nonlinear optimization problem
which results in large computation times (Daum, 2005). Recent
developed numerical methods have reduced required computation
times for solving nonlinear optimization problems around 5 ms.
However, even this is 25 times more than our proposed algorithms
in the paper (Kayacan et al., 2015b). Therefore, it can be concluded
that the proposed method in this paper is more practical in real-time
applications.

Table 1
Mean Squared Error.

20 (dB) 40 (dB) 60 (dB)

T1NFS 1.3112 0.0288 0.0034
T2NFS 1.2352 0.0276 0.0033

Decrease in Disturbance Error 6.14% 4.35% 3.03%

Fig. 3. (a) Disturbance error when the actual disturbance with a noise level SNR=20 db (b) Responses of state x1 when the actual disturbance with a noise level SNR=20 db (c)
Responses of state x2 when the actual disturbance with a noise level SNR=20 db.
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6. Conclusion

A novel SLDO is developed by benefiting from the T2NFS with
online sliding mode learning algorithm in feedback-error learning
scheme. In addition to the stability of the SMC-theory learning
algorithm, the stability of the SLDO by taking the system dynamics
into account and the stability of the FLC based on the SLDO are proven
by using separation principle. The simulations results show that the
traditional FLC is sensitive to disturbances and the FLC based on the
BNDO is only robust to time-invariant disturbance while the FLC based
on the SLDO is robust against any kind of disturbances by performing
precise online estimation of the immeasurable time-varying distur-
bances. Moreover, the FLC based on the SLDO maintains the nominal
control performance in the absence of uncertainties. Thanks to online

sliding mode learning algorithm, the parameters of the T2NFS are
spontaneously adjusted to learn disturbances and this makes systems
robust to cope with uncertainties. Moreover, the developed SMC-theory
based learning algorithm requires significantly less computation time
than the traditional ones, e.g. gradient descent and evolutionary
training algorithms, so that it is more practical in real-time applica-
tions.
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Appendix A. Calculation of τṅ

By taking the time derivative of (10)–(13), the following equations are obtained as:

μ ξ N N μ ξ

μ ξ N N μ ξ
μ ξ N N μ ξ

μ ξ N N μ ξ

̇ ( ) = −2 ̇ ( )
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It is obtained from (A.2).

N N N N N N N N αsgn ṡ = ̇ = ̇ = ̇ = ( )i i j j i i j j1 1 2 2 1 1 2 2 (A.3)

By taking the time derivative of (16), the following equations are obtained as follows:
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where

K N N N N αsgn ṡ = 2( ̇ + ̇ ) = 4 ( )ij i i j j1 1 2 2

Similarly, it is readily obtained that:
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where

K N N N N αsgn ṡ = 2( ̇ + ̇ ) = 4 ( )ij i i j j1 1 2 2

The time derivative of (15) is obtained to find τṅ as follows:
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If (A.5) and (A.6) are inserted into the aforementioned equation:
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Since w∑ ∑ = 1͠
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ij=1 =1 , the aforementioned equation becomes by using (26) and (27) as follows:
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