Engineering Curves - I

1. Classification
2. Conic sections - explanation
3. Common Definition
4. Ellipse - (six methods of construction)
5. Parabola - (Three methods of construction)
6. Hyperbola - (Three methods of construction)
7. Methods of drawing Tangents \& Normals (four cases)

Engineering Curves - II

1. Classification
2. Definitions
3. Involutes - (five cases)
4. Cycloid
5. Trochoids - (Superior and Inferior)
6. Epic cycloid and Hypo - cycloid
7. Spiral (Two cases)
8. Helix - on cylinder \& on cone
9. Methods of drawing Tangents and Normals (Three cases)

ENGINEERING CURVES
 Part- I \{Conic Sections\}

ELLIPSE

1.Concentric Circle Method
2.Rectangle Method
3.Oblong Method
4.Arcs of Circle Method
5.Rhombus Metho
6.Basic Locus Method
(Directrix - focus)

PARABOLA
1.Rectangle Method

2 Method of Tangents (Triangle Method)
3.Basic Locus Method (Directrix - focus)

HYPERBOLA

1.Rectangular Hyperbola (coordinates given)

2 Rectangular Hyperbola (P-V diagram - Equation given)
3.Basic Locus Method
(Directrix - focus)

Methods of Drawing Tangents \& Normals
To These Curves.

CONIC SECTIONS

ELLIPSE, PARABOLA AND HYPERBOLA ARE CALLED CONIC SECTIONS BECAUSE
 THESE CURVES APPEAR ON THE SURFACE OF A CONE WHEN IT IS CUT BY SOME TYPICAL CUTTING PLANES.

COMMON DEFINATION OF ELLIPSE, PARABOLA \& HYPERBOLA:

These are the loci of points moving in a plane such that the ratio of it's distances
from a fixed point And a fixed line always remains constant.
The Ratio is called ECCENTRICITY. (E)
A) For Ellipse $\quad \mathbf{E}<1$
B) For Parabola $\mathrm{E}=1$
C) For Hyperbola $\mathbf{E}>1$

Refer Problem nos. 6. 9 \& 12

SECOND DEFINATION OF AN ELLIPSE:-

It is a locus of a point moving in a plane such that the SUM of it's distances from TWO fixed points always remains constant.
\{And this sum equals to the length of major axis.\} These TWO fixed points are FOCUS $1 \&$ FOCUS 2

Refer Problem no. 4 Ellipse by Arcs of Circles Method.

Problem 1:-

Draw ellipse by concentric circle method.

Take major axis 100 mm and minor axis 70 mm long.
Steps:

1. Draw both axes as perpendicular bisectors of each other \& name their ends as shown.
2. Taking their intersecting point as a center, draw two concentric circles considering both as respective diameters.
3. Divide both circles in 12 equal parts \& name as shown.
4. From all points of outer circle draw vertical lines downwards and upwards respectively.
5.From all points of inner circle draw horizontal lines to intersect those vertical lines.
5. Mark all intersecting points properly as those are the points on ellipse.
6. Join all these points along with the ends of both axes in smooth possible curve. It is required ellipse.

Steps:

1 Draw a rectangle taking major and minor axes as sides.
2. In this rectangle draw both axes as perpendicular bisectors of each other..
3. For construction, select upper left part of rectangle. Divide vertical small side and horizontal long side into same number of equal parts.(here divided in four parts)
4. Name those as shown..
5. Now join all vertical points $1,2,3,4$, to the upper end of minor axis. And all horizontal points i.e. $1,2,3,4$ to the lower end of minor axis.
6. Then extend C-1 line upto D-1 and mark that point. Similarly extend C-2, C-3, C-4 lines up to D-2, D-3, \& D-4 lines.
7. Mark all these points properly and join all along with ends A and D in smooth possible curve. Do similar construction in right side part.along with lower half of the rectangle.Join all points in smooth curve.
It is required ellipse.

Problem 2
 Draw ellipse by Rectangle method. Take major axis 100 mm and minor axis 70 mm long.

Problem 3:-
Draw ellipse by Oblong method.
Draw a parallelogram of 100 mm and 70 mm long sides with included angle of 75°. Inscribe Ellipse in it.

STEPS ARE SIMILAR TO
THE PREVIOUS CASE
(RECTANGLE METHOD)
ONLY IN PLACE OF RECTANGLE,
HERE IS A PARALLELOGRAM.

PROBLEM 4.

MAJOR AXIS AB \& MINOR AXIS CD ARE
ELLIPSE
BY ARCS OF CIRCLE METHOD 100 AMD 70MM LONG RESPECTIVELY .DRAW ELLIPSE BY ARCS OF CIRLES METHOD.

STEPS:

1.Draw both axes as usual.Name the ends \& intersecting point
2.Taking AO distance I.e.half major axis, from C, mark $\mathrm{F}_{1} \& \mathrm{~F}_{2} \mathrm{On} \mathrm{AB}$ (focus 1 and 2.)
3.On line $\mathrm{F}_{1}-\mathrm{O}$ taking any distance, mark points $1,2,3, \& 4$
4.Taking F_{1} center, with distance $\mathrm{A}-1$ draw an arc above AB and taking F_{2} center, with $\mathrm{B}-1$ distance cut this arc. Name the point p_{1}
5.Repeat this step with same centers but taking now A-2 \& B-2 distances for drawing arcs. Name the point p_{2}
6.Similarly get all other P points.

With same steps positions of P can be located below AB.
7.Join all points by smooth curve to get an ellipse/

As per the definition Ellipse is locus of point P moving in a plane such that the SUM of it's distances from two fixed points $\left(F_{1} \& F_{2}\right)$ remains constant and equals to the length of major axis AB.(Note A.1+B.1=A . 2 + B. 2 = AB)

PROBLEM 5.
DRAW RHOMBUS OF 100 MM \& 70 MM LONG
ELLIPSE DIAGONALS AND INSCRIBE AN ELLIPSE IN IT.

STEPS:

1. Draw rhombus of given dimensions.
2. Mark mid points of all sides \& name Those A,B,C,\& D
3. Join these points to the ends of smaller diagonals.
4. Mark points $1,2,3,4$ as four centers.
5. Taking 1 as center and $1-\mathrm{A}$ radius draw an arc AB .
6. Take 2 as center draw an arc CD.
7. Similarly taking $3 \& 4$ as centers and 3-D radius draw arcs DA \& BC

PROBLEM 6:- POINT F IS 50 MM FROM A LINE AB.A POINT P IS MOVING IN A PLANE SUCH THAT THE RATIO OF IT'S DISTANCES FROM F AND LINE AB REMAINS CONSTANT AND EQUALS TO $2 / 3$ DRAW LOCUS OF POINT P. $\{$ ECCENTRICITY $=2 / 3\}$

ELLIPSE

DIRECTRIX-FOCUS METHOD

STEPS:

1.Draw a vertical line AB and point F 50 mm from it.
2 .Divide 50 mm distance in 5 parts.
3 .Name $2^{\text {nd }}$ part from F as V. It is 20 mm and 30 mm from F and $A B$ line resp. It is first point giving ratio of it's distances from F and AB 2/3 i.e 20/30
4 Form more points giving same ratio such as $30 / 45,40 / 60,50 / 75$ etc.
5.Taking 45,60 and 75 mm distances from line $A B$, draw three vertical lines to the right side of it.
6. Now with 30,40 and 50 mm distances in compass cut these lines above and below, with F as center.
7. Join these points through V in smooth curve.
This is required locus of P.It is an ELLIPSE.

ELLIPSE

PROBLEM 7: A BALL THROWN IN AIR ATTAINS 100 M HIEGHT AND COVERS HORIZONTAL DISTANCE 150 M ON GROUND.

PARABOLA

RECTANGLE METHOD

Draw the path of the ball (projectile)-

STEPS:

1.Draw rectangle of above size and divide it in two equal vertical parts 2.Consider left part for construction. Divide height and length in equal number of parts and name those 1,2,3,4,5\& 6
3.Join vertical $1,2,3,4,5 \& 6$ to the top center of rectangle
4.Similarly draw upward vertical lines from horizontal 1,2,3,4,5 And wherever these lines intersect previously drawn inclined lines in sequence Mark those points and further join in smooth possible curve 5.Repeat the construction on right side rectangle also.Join all in sequence. This locus is Parabola.

Problem no.8: Draw an isosceles triangle of 100 mm long base and 110 mm long altitude.Inscribe a parabola in it by method of tangents.

PARABOLA
METHOD OF TANGENTS

Solution Steps:

1. Construct triangle as per the given dimensions.
2. Divide it's both sides in to same no.of equal parts.
3. Name the parts in ascending and descending manner, as shown.
4. Join 1-1, 2-2,3-3 and so on.
5. Draw the curve as shown i.e.tangent to all these lines. The above all lines being tangents to the curve, it is called method of tangents.

PROBLEM 9: Point F is 50 mm from a vertical straight line AB .
Draw locus of point P , moving in a plane such that it always remains equidistant from point F and line $A B$.

SOLUTION STEPS:

1.Locate center of line, perpendicular to AB from point F . This will be initial point P and also the vertex.
2.Mark 5 mm distance to its right side, name those points 1,2,3,4 and from those
draw lines parallel to AB .
3.Mark 5 mm distance to its left of P and name it 1 .
4. Take $\mathrm{O}-1$ distance as radius and F as center draw an arc
cutting first parallel line to AB . Name upper point P_{1} and lower point P_{2}.
($\mathrm{FP}_{1}=\mathrm{O} 1$)
5.Similarly repeat this process by taking again 5 mm to right and left and locate $\mathrm{P}_{3} \mathrm{P}_{4}$.
6.Join all these points in smooth curve.

It will be the locus of P equidistance from line $A B$ and fixed point F.

Problem No.10: Point P is 40 mm and 30 mm from horizontal

Solution Steps:

1) Extend horizontal line from P to right side.
2) Extend vertical line from P upward.
3) On horizontal line from P, mark some points taking any distance and name them after P-1, 2,3,4 etc.
4) Join 1-2-3-4 points to pole O. Let them cut part [P-B] also at 1,2,3,4 points.
5) From horizontal 1,2,3,4 draw vertical lines downwards and
6) From vertical $1,2,3,4$ points [from P-B] draw horizontal lines.
7) Line from 1 horizontal and line from 1 vertical will meet at P_{1}. Similarly mark $\mathrm{P}_{2}, \mathrm{P}_{3}$, P_{4} points.
8) Repeat the procedure by marking four points on upward vertical line
 from P and joining all those to pole O. Name this points $\mathrm{P}_{6}, \mathrm{P}_{7}, \mathrm{P}_{8}$ etc. and join them by smooth curve.

Problem no.11: A sample of gas is expanded in a cylinder from 10 unit pressure to 1 unit pressure. Expansion follows law $\mathrm{PV}=$ Constant. If initial volume being 1 unit, draw the curve of expansion. Also Name the curve.

Form a table giving few more values of $\mathbf{P} \& \mathbf{V}$

$\mathrm{P} \times \mathrm{V}=\mathrm{C}$
$10 \times 1=10$
$5 \times 2=10$
$4 \times 2.5=10$
$2.5 \times 4=10$
$2 \times 5=10$
$1 \times 10=10$

Now draw a Graph of Pressure against Volume. It is a PV Diagram and it is Hyperbola.
Take pressure on vertical axis and Volume on horizontal axis.

PROBLEM 12:- POINT F IS 50 MM FROM A LINE AB.A POINT P IS MOVING IN A PLANE SUCH THAT THE RATIO OF IT'S DISTANCES FROM F AND LINE AB REMAINS CONSTANT AND EQUALS TO $2 / 3$ DRAW LOCUS OF POINT P. $\{$ ECCENTRICITY $=2 / 3\}$

HYPERBOLA DIRECTRIX FOCUS METHOD

STEPS:

1. Draw a vertical line AB and point F 50 mm from it.
2 .Divide 50 mm distance in 5 parts.
3 .Name $2^{\text {nd }}$ part from F as V. It is 20 mm and 30 mm from F and AB line resp. It is first point giving ratio of it's distances from F and $\mathrm{AB} 2 / 3$ i.e 20/30
4 Form more points giving same ratio such as $30 / 45,40 / 60,50 / 75$ etc.
5.Taking 45,60 and 75 mm distances from line $A B$, draw three vertical lines to the right side of it.
2. Now with 30,40 and 50 mm distances in compass cut these lines above and below, with F as center.
3. Join these points through V in smooth curve.
This is required locus of P.It is an ELLIPSE.

Problem 13:

ELLIPSE

TANGENT \& NORMAL

TO DRAW TANGENT \& NORMAL TO THE CURVE FROM A GIVEN POINT (Q)

1. JOIN POINT Q TO $F_{1} \& F_{2}$

2. BISECT ANGLE $F_{1} Q F_{2}$ THE ANGLE BISECTOR IS NORMAL
3. A PERPENDICULAR LINE DRAWN TO IT IS TANGENT TO THE CURVE.

Problem 14:

ELLIPSE

TO DRAW TANGENT \& NORMAL TO THE CURVE FROM A GIVEN POINT (Q)

```
1.JOIN POINT Q TO F.
2.CONSTRUCT 900 ANGLE WITH
    THIS LINE AT POINT F
3.EXTEND THE LINE TO MEET DIRECTRIX AT T
4. JOIN THIS POINT TO Q AND EXTEND. THIS IS TANGENT TO ELLIPSE FROM Q
5.TO THIS TANGENT DRAW PERPENDICULAR LINE FROM Q. IT IS NORMAL TO CURVE.
```


Problem 15:

TO DRAW TANGENT \& NORMAL TO THE CURVE FROM A GIVEN POINT (Q)

```
1.JOIN POINT Q TO F.
2.CONSTRUCT 90
    THIS LINE AT POINT F
3.EXTEND THE LINE TO MEET DIRECTRIX
    AT T
4. JOIN THIS POINT TO Q AND EXTEND. THIS IS
    TANGENT TO THE CURVE FROM Q
5.TO THIS TANGENT DRAW PERPENDICULAR
    LINE FROM Q. IT IS NORMAL TO CURVE.
```


Problem 16

TO DRAW TANGENT \& NORMAL TO THE CURVE FROM A GIVEN POINT (Q)

1.JOIN POINT Q TO F.

2.CONSTRUCT 90° ANGLE WITH THIS LINE AT POINT F
3.EXTEND THE LINE TO MEET DIRECTRIX AT T
4. JOIN THIS POINT TO Q AND EXTEND. THIS IS TANGENT TO CURVE FROM Q
5.TO THIS TANGENT DRAW PERPENDICULAR LINE FROM Q. IT IS NORMAL TO CURVE.

HYPERBOLA

TANGENT \& NORMAL

ENGINEERING CURVES Part-II

(Point undergoing two types of displacements)

INVOLUTE

1. Involute of a circle
a)String Length $=\pi D$
b) String Length $>\pi \mathrm{D}$
c)String Length $<\pi \mathrm{D}$
2. Pole having Composite shape.
3. Rod Rolling over a Semicircular Pole.

CYCLOID

1. General Cycloid
2. Trochoid
(superior)
3. Trochoid
(Inferior)
4. Epi-Cycloid
5. Hypo-Cycloid

SPIRAL

1. Spiral of One Convolution.
2. Spiral of Two Convolutions.
3. On a Cone

HELIX

1. On Cylinder

DEFINITIONS

CYCLOID:

IT IS A LOCUS OF A POINT ON THE PERIPHERY OF A CIRCLE WHICH ROLLS ON A STRAIGHT LINE PATH.

INVOLUTE:

IT IS A LOCUS OF A FREE END OF A STRING WHEN IT IS WOUND ROUND A CIRCULAR POLE

SP|RALE

IT IS A CURVE GENERATED BY A POINT WHICH REVOLVES AROUND A FIXED POINT AND AT THE SAME MOVES TOWARDS IT.

SUPERIORTROCHOID: IF THE POINT IN THE DEFINATION OF CYCLOID IS OUTSIDE THE CIRCLE

INFERIOR TROCHOID.:

 IF IT IS INSIDE THE CIRCLEEPI-CYCLOID
IF THE CIRCLE IS ROLLING ON ANOTHER CIRCLE FROM OUTSIDE

HYPO-CYCLOID.

IF THE CIRCLE IS ROLLING FROM INSIDE THE OTHER CIRCLE,

HELIX:

IT IS A CURVE GENERATED BY A POINT WHICH MOVES AROUND THE SURFACE OF A RIGHT CIRCULAR CYLINDER / CONE AND AT THE SAME TIME ADVANCES IN AXIAL DIRECTION AT A SPEED BEARING A CONSTANT RATIO TO THE SPPED OF ROTATION.
(for problems refer topic Development of surfaces)

Problem no 17: Draw Involute of a circle.

String length is equal to the circumference of circle.

Solution Steps:

1) Point or end P of string $A P$ is exactly πD distance away from A. Means if this string is wound round the circle, it will completely cover given circle. B will meet A after winding.
2) Divide $\pi \mathrm{D}$ (AP) distance into 8 number of equal parts.
3) Divide circle also into 8 number of equal parts.
4) Name after A, 1, 2, 3, 4, etc. up to 8 on $\pi \mathrm{D}$ line AP as well as on circle (in anticlockwise direction).
5) To radius $\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-3$ up to $\mathrm{C}-8$ draw tangents (from 1,2,3,4,etc to circle).
6) Take distance 1 to P in compass and mark it on tangent from point 1 on circle (means one division less than distance AP).
7) Name this point P1
8) Take 2-B distance in compass and mark it on the tangent from point 2. Name it point P2.
9) Similarly take 3 to $P, 4$ to $P, 5$ to P up to 7 to P distance in compass and mark on respective tangents and locate P3, P4, P5 up to P8 (i.e.
 A) points and join them in smooth curve it is an INVOLUTE of a given circle.

Problem 18: Draw Involute of a circle.

String length is MORE than the circumference of circle.

Solution Steps:

In this case string length is more than Π D.

But remember!

Whatever may be the length of string, mark Π D distance horizontal i.e.along the string and divide it in 8 number of equal parts, and not any other distance. Rest all steps are same as previous INVOLUTE. Draw the curve completely.

Problem 19: Draw Involute of a circle.

INVOLUTE OF A CIRCLE

String length is LESS than the circumference of circle.

String length LESS than $\pi \mathrm{D}$

Solution Steps:

In this case string length is Less than П D.

But remember!
Whatever may be the length of string, mark Π D distance horizontal i.e.along the string and divide it in 8 number of equal parts, and not any other distance. Rest all steps are same as previous INVOLUTE. Draw the curve completely.

OF
COMPOSIT SHAPED POLE

SOLUTION STEPS:

Draw pole shape as per dimensions.
Divide semicircle in 4 parts and name those along with corners of hexagon.
Calculate perimeter length.
Show it as string AP. On this line mark 30 mm from A
Mark and name it 1
Mark $\pi \mathrm{D} / 2$ distance on it from 1
And dividing it in 4 parts name 2,3,4,5.
Mark point 6 on line 30 mm from 5
Now draw tangents from all points of pole and proper lengths as done in all previous involute's problems and complete the curve.

PROBLEM 21 : Rod AB 85 mm long rolls over a semicircular pole without slipping from it's initially vertical position till it becomes up-side-down vertical.
Draw locus of both ends A \& B.

Solution Steps:

1) From center C draw a horizontal line equal to πD distance.
2) Divide πD distance into 8 number of equal parts and name them $C 1, C 2, C 3 \ldots$ etc.
3) Divide the circle also into 8 number of equal parts and in clock wise direction, after P name $1,2,3$ up to 8 .
4) From all these points on circle draw horizontal lines. (parallel to locus of C)
5) With a fixed distance C-P in compass, C1 as center, mark a point on horizontal line from 1. Name it P.
6) Repeat this procedure from C2, C3, C4 upto C8 as centers. Mark points P2, P3, P4, P5 up to P8 on the horizontal lines drawn from 2, 3, 4, 5, 6, 7 respectively.
7) Join all these points by curve. It is Cycloid.

Solution Steps:

1) Draw circle of given diameter and draw a horizontal line from it's center C of length ΠD and divide it in 8 number of equal parts and name them $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$, up to C 8 .
2) Draw circle by CP radius, as in this case CP is larger than radius of circle.
3) Now repeat steps as per the previous problem of cycloid, by dividing this new circle into 8 number of equal parts and drawing lines from all these points parallel to locus of C and taking CP radius wit different positions of C as centers, cut these lines and get different positions of P and join
4) This curve is called Superior Trochoid.

Solution Steps:

1) Draw circle of given diameter and draw a horizontal line from it's center C of length ΠD and divide it in 8 number of equal parts and name them $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$, up to C 8 .
2) Draw circle by CP radius, as in this case CP is SHORTER than radius of circle.
3) Now repeat steps as per the previous problem of cycloid, by dividing this new circle into 8 number of equal parts and drawing lines from all these points parallel to locus of C and taking CP radius with different positions of C as centers, cut these lines and get different positions of P and join those in curvature.
4) This curve is called Inferior Trochoid.

PROBLEM 25: DRAW LOCUS OF A POINT ON THE PERIPHERY OF A CIRCLE WHICH ROLLS ON A CURVED PATH. Take diameter of rolling Circle $\mathbf{5 0} \mathbf{~ m m}$ And radius of directing circle i.e. curved path, 75 mm .

Solution Steps:

1) When smaller circle will roll on larger circle for one revolution it will cover Π D distance on arc and it will be decided by included arc angle θ.
2) Calculate θ by formula $\theta=(r / R) x$ 3600.
3) Construct angle θ with radius $O C$ and draw an arc by taking O as center OC as radius and form sector of angle θ.
4) Divide this sector into 8 number of equal angular parts. And from C onward name them C1, C2, C3 up to C8.
5) Divide smaller circle (Generating circle) also in 8 number of equal parts. And next to P in clockwise direction name those 1, 2, 3, up to 8 .
6) With O as center, $\mathrm{O}-1$ as radius draw an arc in the sector. Take 0-2, $0-$ $3,0-4,0-5$ up to $0-8$ distances with center O , draw all concentric arcs in sector. Take fixed distance C-P in compass, C 1 center, cut arc of 1 at P1. Repeat procedure and locate P2, P3, P4, P5 unto P8 (as in cycloid) and join them by smooth curve. This is EPI CYCLOID.

PROBLEM 26: DRAW LOCUS OF A POINT ON THE PERIPHERY OF A CIRCLE
$\square \|<|>| D$ WHICH ROLLS FROM THE INSIDE OF A CURVED PATH. Take diameter of rolling circle $\mathbf{5 0} \mathbf{~ m m}$ and radius of directing circle (curved path) $\mathbf{7 5} \mathbf{~ m m}$.

Solution Steps:

1) Smaller circle is rolling here, inside the larger circle. It has to rotate anticlockwise to move ahead.
2) Same steps should be taken as in case of EPI CYCLOID. Only change is in numbering direction of 8 number of equal parts on the smaller circle.
3) From next to P in anticlockwise direction, name $1,2,3,4,5,6,7,8$.
4) Further all steps are that of epi - cycloid. This is called HYPO - CYCLOID.

IMPORTANT APPROACH FOR CONSTRUCTION! FIND TOTAL ANGULAR AND TOTAL LINEAR DISPLACEMENT AND DIVIDE BOTH IN TO SAME NUMBER OF EQUAL PARTS.

Solution Steps

1. With PO radius draw a circle and divide it in EIGHT parts. Name those $1,2,3,4$, etc. up to 8
2 . Similarly divided line PO also in EIGHT parts and name those $1,2,3,--$ as shown.
2. Take o-1 distance from op line and draw an arc up to O 1 radius vector. Name the point P_{1}
3. Similarly mark points $\mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}$ up to P_{8}
And join those in a smooth curve. It is a SPIRAL of one convolution.

Problem 28

Point P is 80 mm from point O . It starts moving towards O and reaches it in two revolutions around.it Draw locus of point P (To draw a Spiral of TWO convolutions).

IMPORTANT APPROACH FOR CONSTRUCTION! FIND TOTAL ANGULAR AND TOTAL LINEAR DISPLACEMENT AND DIVIDE BOTH IN TO SAME NUMBER OF EQUAL PARTS.

SOLUTION STEPS:

Total angular displacement here is two revolutions And Total Linear displacement here is distance PO.
Just divide both in same parts i.e. Circle in EIGHT parts.
(means total angular displacement in SIXTEEN parts)
Divide PO also in SIXTEEN parts. Rest steps are similar to the previous problem.

PROBLEM: Draw a helix of one convolution, upon a cylinder.
Given 80 mm pitch and 50 mm diameter of a cylinder.
(The axial advance during one complete revolution is called The pitch of the helix)

SOLUTION:

Draw projections of a cylinder.
Divide circle and axis in to same no. of equal parts. (8)
Name those as shown.
Mark initial position of point ' P '
Mark various positions of P as shown in animation.
Join all points by smooth possible curve.
Make upper half dotted, as it is going behind the solid and hence will not be seen from front side.

PROBLEM: Draw a helix of one convolution, upon a cone, diameter of base 70 mm , axis 90 mm and 90 mm pitch.
(The axial advance during one complete revolution is called The pitch of the helix)

SOLUTION:

Draw projections of a cone
Divide circle and axis in to same no. of equal parts. (8)
Name those as shown.
Mark initial position of point ' P '
Mark various positions of P as shown in animation.
Join all points by smooth possible curve.
Make upper half dotted, as it is going behind the solid and hence will not be seen from front side.

STEPS:
DRAW INVOLUTE AS USUAL.

MARK POINT Q ON IT AS DIRECTED.

JOIN Q TO THE CENTER OF CIRCLE C. CONSIDERING CQ DIAMETER, DRAW A SEMICIRCLE AS SHOWN.

MARK POINT OF INTERSECTION OF THIS SEMICIRCLE AND POLE CIRCLE AND JOIN IT TO Q.

THIS WILL BE NORMAL TO INVOLUTE.

DRAW A LINE AT RIGHT ANGLE TO THIS LINE FROM Q.

IT WILL BE TANGENT TO INVOLUTE.

STEPS:

DRAW CYCLOID AS USUAL. MARK POINT Q ON IT AS DIRECTED.

WITH CP DISTANCE, FROM Q. CUT THE POINT ON LOCUS OF C AND JOIN IT TO Q.

FROM THIS POINT DROP A PERPENDICULAR

JOIN N WITH Q.THIS WILL BE NORMAL TO CYCLOID.

DRAW A LINE AT RIGHT ANGLE TO THIS LINE FROM Q.

IT WILL BE TANGENT TO CYCLOID.

SPIRAL (ONE CONVOLUSION.)

 Spiral.

Method of Drawing

 Tangent \& NormalDifference in length of any radius vectors
Constant of the Curve $=$
Angle between the corresponding radius vector in radian.

$$
=\frac{\mathrm{OP}-\mathrm{OP}_{2}}{\pi / 2}=\frac{\mathrm{OP}-\mathrm{OP}_{2}}{1.57}
$$

$=3.185 \mathrm{~m} . \mathrm{m}$.

STEPS:

*DRAW SPIRAL AS USUAL.
DRAW A SMALL CIRCLE OF RADIUS EQUAL TO THE CONSTANT OF CURVE CALCULATED ABOVE.

* LOCATE POINT Q AS DISCRIBED IN PROBLEM AND THROUGH IT DRAW A TANGENTTO THIS SMALLER CIRCLE.THIS IS A NORMAL TO THE SPIRAL.
*DRAW A LINE AT RIGHT ANGLE
*TO THIS LINE FROM Q.
IT WILL BE TANGENT TO CYCLOID.

