Engineering Formula Sheet

Statistics

Mean

$\mu=\frac{\sum x_{i}}{n}$
$\mu=$ mean value
$\Sigma \mathrm{x}_{\mathrm{i}}=$ sum of all data values ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots$)
$\mathrm{n}=$ number of data values

Standard Deviation

$$
\sigma=\sqrt{\frac{\sum\left(x_{i}-\mu\right)^{2}}{n}}
$$

$\sigma=$ standard deviation
$x_{i}=$ individual data value $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$
$\mu=$ mean value
$\mathrm{n}=$ number of data values

Probability

Frequency

$\mathrm{f}_{\mathrm{x}}=\frac{\mathrm{n}_{\mathrm{x}}}{\mathrm{n}}$
$P_{x}=\frac{f_{x}}{f_{a}}$
$\mathrm{f}_{\mathrm{x}}=$ relative frequency of outcome x
$\mathrm{n}_{\mathrm{x}}=$ number of events with outcome x
$\mathrm{n}=$ total number of events
$\mathrm{P}_{\mathrm{x}}=$ probability of outcome x
$f_{a}=$ frequency of all events

Binomial Probability (order doesn't matter)

Independent Events

$\mathrm{P}(\mathrm{A}$ and B and C$)=\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}}$
$P(A$ and B and $C)=$ probability of independent events A and B and C occurring in sequence $P_{A}=$ probability of event A

Mutually Exclusive Events

$P(A$ or $B)=P_{A}+P_{B}$
$P(A$ or $B)=$ probability of either mutually exclusive
event A or B occurring in a trial
$\mathrm{P}_{\mathrm{A}}=$ probability of event A
$\Sigma x_{i}=$ sum of all data values ($x_{1}, x_{2}, x_{3}, \ldots$)
$P_{k}=\frac{n!\left(p^{k}\right)\left(q^{n-k}\right)}{k!(n-k)!}$
$\mathrm{P}_{\mathrm{k}}=$ binomial probability of k successes in n trials
$\mathrm{p}=$ probability of a success
$q=1-p=$ probability of failure
$k=$ number of successes
$\mathrm{n}=$ number of trials

Mode

Place data in ascending order.
Mode = most frequently occurring value
If two values occur at the maximum frequency the data set is bimodal.
If three or more values occur at the maximum frequency the data set is multi-modal.

Median

Place data in ascending order.
If n is odd, median = central value
If n is even, median = mean of two central values
$\mathrm{n}=$ number of data values

Range

Range $=x_{\text {max }}-x_{\text {min }}$
$x_{\text {max }}=$ maximum data value
$x_{\text {min }}=$ minimum data value
$\mathrm{n}=$ number of data values

Conditional Probability

$P(A \mid D)=\frac{P(A) \cdot P(D \mid A)}{P(A) \cdot P(D \mid A)+P(\sim A) \cdot P(D \mid \sim A)}$
$P(A \mid D)=$ probability of event A given event D
$P(A)=$ probability of event A occurring
$P(\sim A)=$ probability of event A not occurring
$P(D \nmid \sim A)=$ probability of event D given event A did not occur

Plane Geometry

Triangle

Area $=1 / 2$ bh
$a^{2}=b^{2}+c^{2}-2 b c \cdot \cos \angle A$
$\mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}-2 \mathrm{ac} \cdot \cos \angle \mathrm{B}$
$c^{2}=a^{2}+b^{2}-2 a b \cdot \cos \angle C$

Rectangle

Perimeter $=2 a+2 b$
Area $=a b$

Regular Polygons

Area $=\mathrm{n} \frac{\mathrm{s}\left(\frac{1}{2} \mathrm{f}\right)}{2}$

$\mathrm{n}=$ number of sides

Trapezoid

Area $=1 / 2(a+b) h$

Sphere

Volume $=\frac{4}{3} \pi r^{3}$
Surface Area $=4 \pi r^{2}$

Rectangular Prism

Volume = wdh
Surface Area $=2(w d+w h+d h)$

Right Circular Cone

Volume $=\frac{\pi r^{2} h}{3}$
Surface Area $=\pi r \sqrt{r^{2}+h^{2}}$

Pyramid

Volume $=\frac{A h}{3}$
$\mathrm{A}=$ area of base

Cylinder		
Volume $=\pi r^{2} h$ Surface Area $=2 \pi r h+2 \pi r^{2}$		

Irregular Prism

Volume $=\mathrm{Ah}$
$A=$ area of base

Constants

$$
\begin{aligned}
\mathrm{g} & =9.8 \mathrm{~m} / \mathrm{s}^{2}=32.27 \mathrm{ft} / \mathrm{s}^{2} \\
\mathrm{G} & =6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2} \\
\pi & =3.14159
\end{aligned}
$$

Conversions

SI Prefixes

Numbers Less Than One			Numbers Greater Than One		
Power of 10	Prefix	Abbreviation	Power of 10	Prefix	Abbreviation
10^{-1}	deci-	d	10^{1}	deca-	da
10^{-2}	centi-	C	10^{2}	hecto-	h
10^{-3}	milli-	m	10^{3}	kilo-	k
10^{-6}	micro-	μ	10^{6}	Mega-	M
10^{-9}	nano-	n	10^{9}	Giga-	G
10^{-12}	pico-	p	10^{12}	Tera-	T
10^{-15}	femto-	f	10^{15}	Peta-	P
10^{-18}	atto-	a	10^{18}	Exa-	E
10^{-21}	zepto-	z	10^{21}	Zetta-	Z
10^{-24}	yocto-	y	10^{24}	Yotta-	Y

Equations

Mass and Weight
$M=V D_{m}$
$W=m g$
$W=V D_{w}$
$V=$ volume
$D_{m}=$ mass density
$m=$ mass
$D_{w}=$ weight density
$g=$ acceleration due to gravity

Temperature

$\mathrm{T}_{\mathrm{K}}=\mathrm{T}_{\mathrm{C}}+273$
$\mathrm{T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}+460$
$T_{F}=\frac{5}{9} T_{C}+32$
T_{K} = temperature in Kelvin
$\mathrm{T}_{\mathrm{C}}=$ temperature in Celsius
T_{R} = temperature in Rankin
$\mathrm{T}_{\mathrm{F}}=$ temperature in Fahrenheit

Force

$\mathrm{F}=\mathrm{ma}$
F = force
$\mathrm{m}=$ mass
$\mathrm{a}=$ acceleration

Equations of Static Equilibrium

$\Sigma \mathrm{F}_{\mathrm{x}}=0 \quad \Sigma \mathrm{~F}_{\mathrm{y}}=0 \quad \Sigma \mathrm{M}_{\mathrm{p}}=0$
$\mathrm{F}_{\mathrm{x}}=$ force in the x -direction
$F_{y}=$ force in the y-direction
$\mathrm{M}_{\mathrm{P}}=$ moment about point P

Equations (Continued)

Energy: Work
$\mathrm{W}=\mathrm{F}_{\\| 1} \cdot \mathbf{d}$
$\mathrm{~W}=$ work
$\mathrm{F}_{\\| l}=$ force parallel to direction of
displacement
$\mathrm{d}=$ displacement

Power
$P=\frac{E}{t}=\frac{W}{t}$
$P=\frac{\tau \cdot r p m}{5252}$
$P=$ power
$E=$ energy
$W=$ work
$t=$ time
$\tau=$ torque
$r p m=$ revolutions per minute

Efficiency Efficiency $(\%)=\frac{P_{\text {out }}}{P_{\text {in }}} \cdot 100 \%$
$P_{\text {out }}=$ useful power output $P_{\text {in }}=$ total power input
Energy: Potential $U=$ mgh
m = potential energy $g=$ acceleration due to gravity $h=$ height

Energy: Kinetic
$\mathrm{K}=\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{~K}=$ kinetic energy
$\mathrm{m}=$ mass
$\mathrm{V}=$ velocity

Energy: Thermal
$Q=m c \Delta T$
$Q=$ thermal energy
$m=$ mass
$c=$ specific heat
$\Delta T=$ change in temperature

Fluid Mechanics

$p=\frac{F}{A}$
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad$ (Charles' Law)
$\frac{p_{1}}{T_{1}}=\frac{\mathrm{p}_{2}}{\mathrm{~T}_{2}}$ (Gay-Lussanc's Law)
$\mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2} \quad$ (Boyle's Law)
$\mathrm{Q}=\mathrm{A} \mathrm{v}$
$\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$
Horsepower $=\frac{\mathrm{Qp}}{1714}$
absolute pressure = gauge pressure

+ atmospheric pressure
$\mathrm{p}=$ absolute pressure
$\mathrm{F}=$ Force
A = Area
$\mathrm{V}=$ volume
$\mathrm{T}=$ absolute temperature
$\mathrm{Q}=$ flow rate
$\mathrm{v}=$ flow velocity

$$
\begin{array}{l|l}
\hline \text { Mechanics } \\
\overline{\mathrm{s}}=\frac{\mathrm{d}}{\mathrm{t}} \\
\overline{\mathrm{v}}=\frac{\Delta \mathrm{d}}{\Delta \mathrm{t}} \\
\mathrm{a}=\frac{v_{\mathrm{f}}-v_{i}}{\mathrm{t}} \\
\mathrm{X}=\frac{v_{i}^{2} \sin (2 \theta)}{-g}
\end{array} \quad\left\{\begin{array}{l}
\mathrm{P}=\mathrm{Q}^{\prime}=\mathrm{AU} \Delta \mathrm{~T} \\
\mathrm{P}=\frac{\mathrm{Q}}{\Delta \mathrm{t}} \\
\mathrm{U}=\frac{1}{\mathrm{R}}=\frac{\mathrm{k}}{\mathrm{~L}} \\
\mathrm{P}=\frac{\mathrm{kA} \Delta \mathrm{~T}}{\mathrm{~L}} \\
\mathrm{~A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2} \\
\mathrm{P}_{\mathrm{net}}=\sigma \mathrm{Ae}\left(\mathrm{~T}_{2}^{4}-\mathrm{T}_{1}^{4}\right)
\end{array}\right.
$$

$$
\mathrm{v}=\mathrm{v}_{0}+\mathrm{at}
$$

$$
d=d_{0}+v_{0} t+1 / 2 a t^{2}
$$

$$
v^{2}=v_{0}^{2}+2 a\left(d-d_{0}\right)
$$

$$
\tau=\mathrm{dF} \sin \theta
$$

$\overline{\mathrm{s}}=$ average speed
$\overline{\mathbf{v}}=$ average velocity
$\mathrm{v}=$ velocity
$\mathrm{a}=$ acceleration
X = range
$\mathrm{t}=\mathrm{time}$
$\Delta \mathbf{d}=$ change in displacement
d = distance
$g=$ acceleration due to gravity
$\theta=$ angle
$\tau=$ torque

Electricity

Ohm's Law
$\mathrm{V}=\mathrm{IR}$
$P=I V$
R_{T} (series) $=R_{1}+R_{2}+\cdots+R_{n}$
$\mathrm{R}_{\mathrm{T}}($ parallel $)=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}}$

Kirchhoff's Current Law

$\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\cdots+\mathrm{I}_{\mathrm{n}}$

$$
\text { or } \mathrm{I}_{\mathrm{T}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{I}_{\mathrm{k}}
$$

Kirchhoff's Voltage Law

$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}+\mathrm{V}_{2}+\cdots+\mathrm{V}_{\mathrm{n}}$

$$
\text { or } \quad V_{T}=\sum_{k=1}^{n} V_{k}
$$

$\mathrm{V}=$ voltage
$\mathrm{V}_{\mathrm{T}}=$ total voltage
I = current
$\mathrm{I}_{\mathrm{T}}=$ total current
$R=$ resistance
$\mathrm{R}_{\mathrm{T}}=$ total resistance
$\mathrm{P}=$ power

Thermodynamics

$\mathrm{P}=$ rate of heat transfer
$Q=$ thermal energy
A = Area of thermal conductivity
$U=$ coefficient of heat conductivity
(U-factor)
$\Delta T=$ change in temperature
$\Delta t=$ change in time
$\mathrm{R}=$ resistance to heat flow (R-value)
$\mathrm{k}=$ thermal conductivity
$\mathrm{v}=$ velocity
$P_{\text {net }}=$ net power radiated
$\sigma=5.6696 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{k}^{4}}$
e = emissivity constant
$\mathrm{L}=$ thickness

Section Properties

Moment of Inertia
 $I_{x x}=\frac{b h^{3}}{12}$

$\mathrm{I}_{\mathrm{xx}}=$ moment of inertia of a rectangular section about x - x axis

Complex Shapes Centroid

$\bar{x}=\frac{\sum x_{i} A_{i}}{\sum A_{i}}$ and $\bar{y}=\frac{\sum y_{i} A_{i}}{\sum A_{i}}$
$\bar{x}=x$-distance to the centroid
$\bar{y}=y$-distance to the centroid
$x_{i}=x$ distance to centroid of shape i
$y_{i}=y$ distance to centroid of shape i
$\mathrm{A}_{\mathrm{i}}=$ Area of shape i

Material Properties
Stress (axial) $\sigma=\frac{\mathrm{F}}{\mathrm{A}}$ $\sigma=$ stress $\mathrm{F}=$ axial force $\mathrm{A}=$ cross-sectional area

Strain (axial)

$\epsilon=\frac{\delta}{L_{0}}$
$\epsilon=$ strain
$\mathrm{L}_{0}=$ original length
$\delta=$ change in length

Modulus of Elasticity

$E=\frac{\sigma}{\varepsilon}$
$\mathrm{E}=\frac{\left(\mathrm{F}_{2}-\mathrm{F}_{1}\right) \mathrm{L}_{0}}{\left(\delta_{2}-\delta_{1}\right) \mathrm{A}}$
$\mathrm{E}=$ modulus of elasticity
$\sigma=$ stress
$\varepsilon=$ strain
$\mathrm{A}=$ cross-sectional area
$\mathrm{F}=$ axial force
$\delta=$ deformation

Deformation: Axial

$\delta=\frac{\mathrm{FL}_{0}}{\mathrm{AE}}$
$\delta=$ deformation
F = axial force
$\mathrm{L}_{0}=$ original length

Rectangle Centroid

$\bar{x}=\frac{b}{2}$ and $\bar{y}=\frac{h}{2}$

Right Triangle Centroid
$\bar{x}=\frac{b}{3}$ and $\bar{y}=\frac{h}{3}$

Semi-circle Centroid

$\bar{x}=r$ and $\bar{y}=\frac{4 r}{3 \pi}$

$\bar{x}=x$-distance to the centroid
$\bar{y}=y$-distance to the centroid

Structural Analysis

Beam Formulas		
	Reaction Moment Deflection	$\begin{gathered} R_{A}=R_{B}=\frac{P}{2} \\ \mathrm{M}_{\max }=\frac{\mathrm{PL}}{4} \text { (at point of load) } \\ \Delta_{\max }=\frac{\mathrm{PL}}{48 \mathrm{E}} \text { (at point of load) } \end{gathered}$
	Reaction Moment Deflection	$\begin{aligned} & R_{A}=R_{B}=\frac{\omega L}{2} \\ & M_{\max }=\frac{\omega L^{2}}{8} \quad \text { (at center) } \\ & \Delta_{\max }=\frac{5 \omega L^{4}}{384 L I} \quad \text { (at center) } \end{aligned}$
	Reaction Moment Deflection	$\begin{aligned} & R_{A}=R_{B}=P \\ & M_{\max }=P a \\ & \left.\Delta_{\max }=\frac{P a}{24 E I}\left(3 L^{2}-4 a^{2}\right) \quad \text { (at center }\right) \end{aligned}$
	Reaction Moment Deflection	$\begin{aligned} & R_{A}=\frac{P b}{L} \text { and } R_{B}=\frac{P a}{L} \\ & M_{\max }=\frac{\mathrm{Pab}}{L} \quad(a t \text { Point of Load) } \\ & \Delta_{\max }=\frac{\operatorname{Pab}(a+2 b) \sqrt{3 a(a+2 b)}}{27 \mathrm{EL}} \\ & \left(\text { at } x=\sqrt{\frac{a(a+2 b)}{3}} \text { when } a>b\right) \end{aligned}$

A = cross-sectional area
$\mathrm{E}=$ modulus of elasticity

Truss Analysis

$2 J=M+R$
$J=$ number of joints
M =number of members
$R=$ number of reaction forces

Simple Machines

Mechanical Advantage (MA)

Wheel and Axle

Effort at Wheel

Pulley Systems

IMA = Total number of strands of a single string supporting the resistance

IMA $=\frac{D_{E}(\text { string pulled })}{D_{R}(\text { resistance lifted })}$

Wedge

IMA $=\frac{L(\perp \text { to height })}{H}$

Screw

$$
\text { Pitch }=\frac{1}{\mathrm{TPI}}
$$

Pitch

$C=$ Circumference
$r=$ radius
Pitch = distance between threads
TPI = Threads Per Inch

Compound Machines

$M A_{\text {TOTAL }}=\left(\mathrm{MA}_{1}\right)\left(\mathrm{MA}_{2}\right)\left(\mathrm{MA}_{3}\right) \ldots$

Gears; Sprockets with Chains; and Pulleys with Belts Ratios

$$
\begin{aligned}
& G R=\frac{N_{\text {out }}}{N_{\text {in }}}=\frac{d_{\text {out }}}{d_{\text {in }}}=\frac{\omega_{\text {in }}}{\omega_{\text {out }}}=\frac{T_{\text {out }}}{T_{\text {in }}} \\
& \frac{d_{\text {out }}}{d_{\text {in }}}=\frac{\omega_{\text {in }}}{\omega_{\text {out }}}=\frac{T_{\text {out }}}{T_{\text {in }}} \text { (pulleys) }
\end{aligned}
$$

Compound Gears

$\mathrm{GR}_{\text {TOTAL }}=\left(\frac{\mathrm{B}}{\mathrm{A}}\right)\left(\frac{\mathrm{D}}{\mathrm{C}}\right)$

[^0]
[^0]: GR = Gear Ratio
 $\omega_{\text {in }}=$ Angular Velocity - driver
 $\omega_{\text {out }}=$ Angular Velocity - driven
 $\mathrm{N}_{\text {in }}=$ Number of Teeth - driver
 $\mathrm{N}_{\text {out }}=$ Number of Teeth - driven
 $\mathrm{d}_{\text {in }}=$ Diameter - driver
 $\mathrm{d}_{\text {out }}=$ Diameter - driven
 $\mathrm{T}_{\text {in }}=$ Torque - driver
 $\mathrm{T}_{\text {out }}=$ Torque - driven

