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a b s t r a c t

We present an extended finite element formulation for dynamic fracture of piezo-electric
materials. The method is developed in the context of linear elastic fracture mechanics. It is
applied to mode I and mixed mode-fracture for quasi-steady cracks. An implicit time inte-
gration scheme is exploited. The results are compared to results obtained with the bound-
ary element method and show excellent agreement.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Piezo-electric materials are used as sensors, actuators or transducers in many engineering applications [7,8,18]. For an
example, piezo-electric materials are used as an accelerator, distance or knock-sensors in automotive industry and as sonar
transducers for navigation purposes. Piezo-electric transducers are applied extensively in medical engineering for destroying
kidney stones and for plaque removal. However the limited knowledge about the fracture of these smart materials is essen-
tial for their effective use, particularly for applications with high stress concentrations applications, ex: ultrasound cleaning
or valve control in common-rail diesel engines [26].

Studies on fracture of piezo-electric materials are limited to static applications using linear elastic fracture mechanics
(LEFMs) [29,38,41]. The influence of permeable and impermeable boundary conditions was studied by Fan and Gao [15]
and Shindo et al. [37]. Fracture criteria that take the influence of the electric field into account were done by Fulton and
Gao [14], Gao et al. [16] and Park and Sun [30]. The fracture criterion of Park and Sun [30] agreed well with experimental
results. Fulton and Gao [14] and Gao et al. [16] extended this criterion to non-linear effects and in [3] to fatigue cracks.

The extended finite element (XFEM) method was originally developed to model arbitrary crack growth without reme-
shing [5,25]. XFEM is based on a local partition of unity (PU) enrichment. The basic idea of XFEM is the enrichment of the
finite element (FE)-interpolation with information of the analytical solution. For example, cracks will create discontinuities
in the displacement field and therefore a discontinuous function such as the Heaviside-function or the step function is used
as an enrichment function. It is also known that in LEFM, there exists a stress singularity at the crack tip. Sometimes, the
near-crack tip solution is known and this information can be also included through the enrichment function in the
. All rights reserved.
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approximation. In the general case, these functions are not known a priori, and XFEM can be use equally well with numer-
ically determined enrichment functions, as, for example in [44,45,46,47,48,49]. XFEM can be considered as an extension of
the Partition of Unity Finite Element Method (PUFEM) [24] to discontinuous problems. Meanwhile, XFEM has been extended
and applied to a variety of problems such as two-phase-flow [10,11], fluid–structure interaction [1,21,22,50,51] and thermo-
mechanical problems [2] as well as moving boundary problems such as biofilm growth [52].

An XFEM-formulation for modeling the fracture of piezo-electric materials under static conditions using LEFM was pre-
sented by Béchet et al. [4]. They derived novel enrichment functions around the crack tip for the displacement and for the
electric potential field. They also presented an efficient way to compute the generalized stress intensity factors. Verhoosel
et al. [42] proposed a multiscale approach for modeling the fracture of piezo-electric materials based on cohesive cracks.
An excellent overview article on modeling fracture of piezo-electric materials is given by Kuna [20]. Alternative methods
to model intact piezo-electric materials including the Smoothed Finite Element Method (SFEM) [6,27,28] and meshfree
methods [31] were presented by various authors. Note the recent work on enriched residual free bubble for coupled advec-
tion diffusion problems arising in nanoelectronics simulations [53]. Open source extended finite element codes in C++ [54]
and enriched meshless method codes in MATLAB [55] are available for download.1

To our best knowledge, there are no studies concerning the dynamic behavior of piezoelectric materials using XFEM
which are essential for utilizing smart materials for different engineering applications. In this paper, we present an extension
of the work of Béchet et al. [4] to dynamic fracture of piezoelectric materials. We have developed the method using linear
elastic fracture mechanics and it is validated by comparing numerical results with boundary element method (BEM) results.

1.1. Governing equations and weak form

The governing equations for the coupled electro-mechanical problem are given in weak form: Find u 2 U 8 du 2 U0 und
U 2 V 8 dU 2 V0 such thatZ Z Z Z
1 http
X
rijd�ijdX�

X
biduidX�

Ct

�tiduidC�
X
.€uiduidC ¼ 0 8 x 2 X ð1ÞZ

X
DidEidX�

Z
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dU�qdC ¼ 0 8 x 2 X ð2Þ
where rij is the Cauchy-stress tensor, ui the displacement field, bi the body forces, ti the traction and U the electric potential;
d denotes the ‘variation’ and an overline superimposed quantities, e.g �ti is the von Neumann traction. The domain is denoted
by X with boundary C, where the indices u, t,q (U), and c denote ‘displacement’, ‘traction’, ‘electric’ and ‘crack’ boundaries,
respectively, see Fig. 1. The approximation of the test and trial functions is given by
U ¼ fuju 2 H1; u ¼ �u on Cu; u discontinuous on Ccg
U0 ¼ fdujdu 2 H1; du ¼ 0 on Cu; du discontinuous on Ccg
V ¼ fUjU 2 H1; U ¼ U on Cq; U discontinuous on Ccg
V ¼ fdUjdU 2 H1; dU ¼ 0 on Cq; dU discontinuous on Ccg ð3Þ
where H1 denotes the first Hilbert space. The compatibility conditions and the constitutive model are imposed in strong
form by
�ij ¼ 1=2ðui;j þ uj;iÞ
Ei ¼ �U;i

rij ¼ CE
ijkl�kl � ekijEk

Di ¼ eikl�kl þ j�ikEk ð4Þ
where �ij is the strain tensor derived from the displacement field ui, Ei is the electric field depending on the electric potential
U;CE

ijkl is the first-order elasticity tensor, j�ik is the dielectric Tensor and ekij is the piezo-electric tensor.

2. XFEM for piezo-electric materials

The approximation of the displacement field in the XFEM [5,25,39,40] is given by
uhðxÞ ¼
X
I2S

NIðxÞuI þ
Xnc

N¼1

X
I2Sc

NIðxÞwðNÞI aðNÞI þ
Xmt

M¼1

X
I2St

NIðxÞ
XNK

K¼1

/ðMÞKI bðMÞKI ð5Þ
and in matrix form:
uhðXÞ ¼ NDþ eN eD þ bN bD ð6Þ
://cmechanicsos.users.sourceforge.net/.
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Fig. 2. Enriched nodes and definitions.

Fig. 1. Definitions.
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where S is the set of all nodes, St is the set of nodes around the crack tip and Sc is the set of nodes for elements that are
completely cut by the crack (Fig. 2); nc denotes the number of cracks, wðNÞI is the associated enrichment function for discon-
tinuity N, mt is the number of crack tips and NK is the number of enrichment functions in /KI; the unknowns uI, aI and bKI are
stored in the vectors D; eD and bD.

We choose the step function as enrichment function in Sc that ensures the jump in the displacement field
wðNÞI;Riss ¼ sign½f ðNÞðXÞ� � sign½f ðNÞðXIÞ� ð7Þ
with
f ðNÞðXÞ ¼ sign½n � ðX� XðNÞÞ�minðX� XðNÞÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
XN2CðNÞc

ð8Þ
where n is the normal of the crack. The second term on the RHS of Eq. (7) is called shifting and ensures that the enriched
shape function NIðxÞwðNÞI vanishes in the blending element. The shifting also guarantees the Kronecker-delta property of
the XFEM-interpolation. In other words: the nodal parameters uI remain the physical displacements.

For electro-mechanical problems, Bechet et al. [4] have developed a crack tip enrichment function in 2D for LEFM prob-
lems. In this manuscript, we employ the standard mechanical enrichment function (Fig. 3)



Fig. 3. Definitions for the crack tip enrichment.
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and the electro-mechanical enrichment that has the form
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as proposed by Béchet et al. [4]; more details on the complex enrichment functions fi (i = 1, . . . ,6) are given in [4]. The struc-
ture of the test-functions is similar:
duhðXÞ ¼ NdDþ eNdeD þ bNdbD ð11Þ
The approximation of the electric potential is similar to the approximation of the displacement field:
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or in matrix form
UhðXÞ ¼ NUþ eN eU þ bN bU ð13Þ
where the unknown UI;aðNÞI and bðMÞKI are stored in the vectors U; eU and bU. The approximation of the test function reads:
dUhðXÞ ¼ NdUþ eNd eU þ bNd bU ð14Þ
The spatial derivatives of the trial functions are obtained by formal differentiation
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that can be given in matrix form by
ruhðXÞ ¼ B Dþ eB eD þ bB bD
E ¼ BUþ eB eU þ bB bU ð16Þ
Similarly, we obtain the derivatives of the test functions:
rduhðXÞ ¼ BdDþ eBdeD þ bBdbD
dE ¼ BdUþ eBd eU þ bBd bU ð17Þ
3. Discrete equations

The discrete equations are obtained by substituting the approximations of the test and trial-functions, Eqs. (6), (11), (13)
and (14), and their derivatives, Eqs. (16) and (17), into the weak form, Eqs. (1) and (2). With the compatibility condition and
the constitutive model, Eq. (4), we obtain
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where numele is the number of elements in the domain X and numrandt and numrandq are the number of boundary elements
in Ct, Cq, respectively; sym denotes the symmetric part of a tensor. Defining
D ¼ ½D; eD; bD;U; eU; bU�T
dD ¼ ½dD; deD; dbD; dU; d eU; d bU�T ð19Þ
and factoring out the nodal parameters of the test functions gives after some algebra the final (semi-) discrete system of
equations:
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where the superimposed indices e and m indicate electrical and mechanical quantities, superscript u, a and b refer to ‘usual’,
‘step-enriched’ and ‘tip-enriched’ nodes and capital indices refer to node numbers. For many applications, it is sufficient to
neglect the coupled damping terms and the electrical damping Cme, Cem and Cee, but instead use only the mechanical Ray-
leigh-damping [23]:
Cmm ¼ cKmm þ hMmm ð29Þ
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The semi-discrete equations are integrated in time using the implicit b-Newmark scheme. More details regarding time inte-
gration in XFEM are given by Cavin et al. [9], Combescure et al. [12], Réthoré et al. [35,36].
4. Computation of the stress intensity factors

The stress intensity factors (SIFs) can be evaluated through the displacement field and the electrical field or the crack
opening displacement, for a discussion see De Luycker et al. [13], Garcia-Sanchez et al. [17], Wünsche et al. [43]. Alterna-
tively, they can be obtained through the J-integral or the interaction integral. For a piezo-electric material, the domain form
of the dynamic J-integral can be written as
J ¼
Z

AðCÞ
rij

@ui

@x1
þ Dj
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� Hd1j
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where H is the electric enthalpy density for electromechanical loading, q is a smooth function chosen to be unity at the crack
tip and nj is the jth component of the outward unit vector normal to an arbitrary contour C enclosing the crack tip. For linear
piezoelectric solids under mixed-mode loading conditions, the relation of the stress intensity factors (SIFs) and the J-integral
can be written as [19]
J ¼ 1
2

KT YK ð31Þ
where K = (KII KI KIII KIV) is the vector of the four field intensity factors, and Y is the Irwin matrix for piezo-electric materials:
Y ¼

Y11 Y12 Y13 Y14

Y21 Y22 Y23 0
Y31 Y32 Y33 0
Y41 0 0 Y44

26664
37775 ð32Þ
The Irwin matrix is basically derived from the constitute relationship with the boundary conditions �ti ¼ 0 and niDi = 0 on Cc.
The left upper 3 � 3 matrix refers to the mechanical behavior of the piezo-electric material, Y44 is related to the permittivity
and Y14 = Y41 to the piezo-electricity. More details can be found in the excellent paper by Suo et al. [41].

The stress intensity factors KI, KII and KIII refer to the crack opening mode, crack sliding mode and tearing mode, respec-
tively. The SIF KIV, also called the electric displacement intensity factor, characterizes the concentration of the electrical dis-
placement fields. Note that in a two-dimensional setting, the SIF KIII vanishes.

The drawback of the J-integral is that it can only be converted into single mode stress intensity factors. However, the crack
is generally subjected to a mixed mode loading conditions with an additional electrical mode IV. A possibility in overcoming
the limitation is given by the interaction integral method which is based on two load cases: (1) defines the actual loading of
the structure and is assumed to be an auxiliary fields on the entire domain and (2) represents the electromechanical loading
along a vanishingly small contour around the crack tip. The interaction integral for a homogeneous piezoelectric material is
defined as [34]
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The stress intensity factor can be defined as
Ið1;2Þ ¼ Kð1ÞII Kð2ÞII Y11 þ Kð1ÞI Kð2ÞI Y22 þ Kð1ÞIV Kð2ÞIV Y44 þ Kð1ÞI Kð2ÞII þ Kð1ÞII Kð2ÞI
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The SIFs are then obtained by judiciously choosing the auxiliary state in a way that two SIFs vanish and one is set to 1. More
details are found in the excellent paper by Rao and Kuna [34].



Fig. 4. Set up of the center crack problem.
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5. Examples

5.1. Center crack

Let us consider a plate with a center crack under impact loading as illustrated in Fig. 4 with h = 40 mm and a = 2.4 mm.
Plain strain conditions are assumed. The impact is caused either by a mechanical loading �rðtÞ or by an electrical loading DðtÞ
or by a combination of both as shown in Fig. 4. This problem has been studied previously by Garcia-Sanchez et al. [17] in the
context of the BEM and is used here as a validation example. They assumed a homogeneous linear piezo-electric solid with
the following material parameters: C11 = 126 GPa; C12 = 84.1 GPa and C22 = 117 GPa and C66 = 23 GPa; e21 = 6.5 C/m2,
e22 = 23.3 C/m2 and e16 = 17 C/m2; j11 = 15.04 C/(GV m) and e22 = 13 C/(GV m); density . = 7500 kg/m3. In order to facilitate
a direct comparison, we adopt the presentation of the results in [17] who introduced normalized dynamic stress intensity
factors and a normalized dynamic electrical displacement intensity factor:
Fig. 5.
enriche
K�I ¼
KIðtÞ
Kst

I

; K�IV ¼ K
KIV ðtÞ

Kst
IV

ð36Þ
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K ¼ e22

j22
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ffiffiffiffiffiffi
pa
p

ð37Þ
Normalized dynamic KI factor for the mode I-fracture problem Section 5.1 compared to the results in [17], k = 1; XFEM-m refers to a mechanical tip
d XFEM formulation, Eq. (9); XFEM-p refers to a ‘piezo-electric’ tip enriched XFEM formulation as proposed by Bechet et al. [4].



Fig. 6. Normalized dynamic KIV factor for the mode I-fracture problem Section 5.1 compared to the results in [17], k = 1; XFEM-m refers to a mechanical tip
enriched XFEM formulation, Eq. (9); XFEM-p refers to a ‘piezo-electric’ tip enriched XFEM formulation as proposed by Bechet et al. [4].
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Moreover, the ratio between electric impact and mechanical impact is defined as
k ¼ K
D22

r22
ð38Þ
The plate is discretized with different refinements on Cartesian grids using standard 4-node elements starting from approx-
imately 1500 elements up to almost 12,000 (155 � 76) elements. At least 77 � 38 elements were needed in order to obtain
convergent results. Afterwards, the results were very similar. As an analytical solution is not available and therefore a thor-
ough convergence study cannot be performed, we present only the results for 77 � 38 elements in this manuscript. We also
ensured that the time step has no critical influence on the numerical results. Though it would reduce computational costs, no
symmetry conditions have been used.

Figs. 5 and 6 compare the results obtained with XFEM to the results of the BEM obtained in [17]. Therefore, we have
adopted the illustration from Garcia-Sanchez et al. [17] and presented the results in normalized form where cL is the longi-
tudinal wave speed. The results agree reasonably well. The results of XFEM with pure ‘mechanical’ tip enrichment (XFEM-m),
Eq. (9), are also compared with the results of an XFEM-formulation using the enrichment proposed by Bechet et al. [4]
(XFEM-p). There are only minor differences in the results. We note that the key advantage of XFEM is its ability to model
crack growth without re-meshing. This capability can also be used in the context of inverse analysis where the detection
of cracks or inclusions in piezo-electric materials is of interest. However, in this manuscript, our main goal is to develop a
dynamics XFEM-formulation for stationary cracks.

Fig. 7 shows the influence of the electrical impact intensity on the results. For dynamic problems, the dynamic stress
intensity factor is larger than the static stress intensity factor. It can also be seen that an electric impact can cause negative
values of the dynamic stress intensity factor. The maximum values of the normalized dynamic stress intensity factor is re-
duced with increasing k-value, i.e. increasing influence of electrical impact. Fig. 8 shows the results for a pure electrical im-
pact when the direction of impact is reversed. The magnitudes of the normalized dynamic stress intensity factor remain the
same but the signs change, meaning that change in the direction of the impact does not cause the absolute value of the dy-
namic stress intensity factor to change.
Fig. 7. Normalized dynamic KI factor for the mode I-fracture problem Section 5.1 for different k-values.



Fig. 8. Effect of the direction of electrical impact on the normalized dynamic KI-factor for the mode I-fracture problem Section 5.1.

Fig. 9. Set up of the slanter crack problem.

Fig. 10. Normalized dynamic KI factor for the slanted crack problem for different k-values.
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5.2. Slanted crack

The last example was also extracted from Garcia-Sanchez et al. [17]. Therefore, consider a homogeneous and linear piezo-
electric specimen that contains a slanted crack as shown in Fig. 9 with h = 22 mm, w = 32 mm, c = 6 mm and a = 22.63 mm.
Plain strain conditions are assumed and the material parameters from the previous section are used. We tested again differ-
ent refinements as in the previous example and achieved convergence with 4000 elements, which agrees well with the



Fig. 11. Normalized dynamic KI factor for the slanted crack problem for different k-values. Comparison between XFEM with pure ‘mechanical’ tip
enrichment, Eq. (9), XFEM-m versus XFEM with ‘piezo-electric’ tip enrichment [4], XFEM-p.

Fig. 12. Normalized dynamic KII factor for the slanted crack problem for different k-values.

Fig. 13. Normalized dynamic KII factor for the slanted crack problem for different k-values. Comparison between XFEM with pure ‘mechanical’ tip
enrichment, Eq. (9), XFEM-m versus XFEM with ‘piezo-electric’ tip enrichment [4], XFEM-p.
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previous results. Therefore, we present only results of a discretization with 75 � 54(=4050) elements and compare those to
the BEM results presented in Garcia-Sanchez et al. [17].

Fig. 10 shows the normalized dynamic stress intensity factor KI for different values of k. The results agree well with those
obtained in Garcia-Sanchez et al. [17]. The same observations are made when comparisons are done with the normalized
dynamic stress intensity factor KII, Fig. 12. Comparisons between different tip-enrichments (XFEM-m versus XFEM-p) are



30 H. Nguyen-Vinh et al. / Engineering Fracture Mechanics 92 (2012) 19–31
illustrated in Figs. 11 and 13. The differences are minor. One can also observe that the electrical impact has in general a ‘po-
sitive’ effect on the normalized dynamic stress intensity factor. In other words, both, K�I as well as K�II decrease with increas-
ing k.
6. Conclusion

We have presented an extended finite element method for dynamic fracture of piezo-electric materials. The method ex-
ploits the partition of unity enrichment and therefore allows crack propagation without remeshing. It can be considered as
an extension of the method by Bechet et al. [4] to dynamics. The b-Newmark implicit time integration scheme is adopted.

We have tested different crack tip enrichment functions, i.e. the pure mechanical enrichment function and the more com-
plex enrichment function from Bechet et al. [4] for piezo-electric materials. We found that the results differ only slightly
when the more complex enrichment functions from Bechet et al. [4] are used. However it is not possible to make a general
statement regarding the accuracy as there are no analytical solutions for dynamic problems of piezo-electric materials.

The method was applied to two examples with mechanical and electrical boundary conditions, that concern with quasi-
steady cracks. Since no analytical results are available for dynamic fracture problems of piezo-electric materials, the XFEM
results were compared to results obtained by the BEM [17] and they show excellent agreement.

In the future, we will extend the method to non-linear materials involving cohesive cracks and inverse problems, i.e. to
detect inclusions and cracks in piezo-electric materials. XFEM seems to be ideally suited for inverse problems as shown by
[32,33].
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