[MATHS IV]

|[Engineering Mathematics]

[Partial Differential Equations]

[Partial Differentiation and formation of Partial Differential Equations has already been covered in
Maths Il syllabus. Present chapter is designed as per GGSIPU Applied Maths IV curriculum. ]



Partial Differential Equations Chapter 1

1.1 Introduction
A differential equation which involves partial derivatives is called partial differential equation
(PDE). The order of a PDE is the order of highest partial derivative in the equation and the

degree of PDE is the degree of highest order partial derivative occurring in the equation. Thus

n 3 4
order and degree of the PDE ( o= ) + (El_z) — xz—z = () are respectively 2 and 3.
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If ‘z’ is a function of two independent variables ‘x’ and ‘y’, let us use the following notations for

the partial derivatives of ‘z’ :
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1.2 Linear Partial Differential Equations of 1% Order

If in a 1% order PDE, both ‘¢’ and ‘g’ occur in 1% degree only and are not multiplied together,
then it is called a linear PDE of 1% order, i.e. an equation of the form Pp + Qg = R; P,Q,R are
functions of x, v,z ,is a linear PDE of 1% order.

Langrange’s Method to Solve a Linear PDE of 1* Order (Working Rule) :

- . dx dy dz
1. Form the auxiliary equations - 3 =2

2. Solve the auxiliary equations by the method of grouping or the method of multipliers* or
both to get two independent solutions: # = a,v = b ; where a and b are arbitrary
constants.

3. @ (u,v) = 0 or u= f(v) isthe general solution of the equation Pp + Qg = R.

*Method of multipliers : Consider a
1 2 3

fraction — = — = —
2 4 6

Taking 1,2, 3 as multipliers, each

1x1  2x2  3x3
2x1  4x2 6x3

fraction =




Example 1. Solve the PDE(z% — 2yz — v?)p + (xv + zx)q = xy — zx

Solution: Comparing with general form P = (z2 — 2yz— v?),Q = (xy + zx),

R = (xy— zx)
Step 1.
Auxiliary equations are & = 2=
uxiliary eq (z2—2yz—y2)  (xy+zx)  (cy—zx)
Step 2.
xdx +vdy +zdz

Taking x, v,z as multipliers, each fraction =
g P (xz? —2xyz—xv?+ xy? +xyz+xyz—xz?)

_ xdx+ydy+zdsz
0
= xdx +ydy+zdz=10
Integrating, we get
¢y 2
2 2 2
su= x’+yi+zi=a « - @

This is 1% independent solution.

Now for 2" independent solution, taking last two members of auxiliary equations :
dy dz

x(y+z) - x(y — z)

= —2dy=({y+2dz

= ydy — (zdy +ydz) — zdz =0
= ydy —d(yz)— zdz= 0

Integrating, we get

32 72
5 TYEm 5 =h
= v=y?—2yz—z?=bh e @

Which is 2" independent solution



From @ and @), general solution is :
@ (x*P+yi+z?, yP—2yz—2z%) =0

1.3 Homogenous Linear Equations with Constant Coefficients

An equation of the form

"z "z
1aﬂla+————+k o = F(x,y) oo ®

']‘la.-n

kﬂaﬂ+k

where k's are constant is called a homogeneous linear PDE of n"™ order with constant

coefficients. It is homogeneous because all the terms contain derivatives of the same order.

. 3 :
Putting — = D and 5= D', ® may be written as:
X

(keD™+ k; D™ D'+ ————+k,D'™z=F(x,y)

or f(D,D")z=F(x,y)

1.3.1 Solving Homogenous Linear Equations with Constant Coefficients
Case 1: When F(x,y) =0

8%z 8%z 8’z
i.e. equation is of the form K, Py + ky —— 733y + k, 07 S| — @
or kD> + kDD + k,D? =0
Inthiscase Z= C.F.
Case 2: When F(x,v) + 0
2 2 2
. .. iz a°z @z
i.e. equation is of the form Kk, P ky axdy + k, P F(x,y) -------- G

or kyD*+ k; DD + k,D* = F(x,y)
Inthiscase Z= C.F.+P.lL
Where C.F. denotes complimentary function and P.I. denotes Particular Integral.

Rules for finding C.F. (Complimentary Function)

Stepl: PutD=m and D'=1 in®@ or® asthe case may be
Then A.E. (Auxiliary Equation)is :k, m*> + k,m+ k, =0
Step 2: Solve the A.E. ( Auxiliary Equation):



I. If the roots of A.E. are real and different say m, and m,, then

CF.= fily + myx) + fo(yv + myx)
ii. If the roots of A.E. are equal say m, then
CF.=A0(+ mx)+ x f,(y + mx)
62%_ 4622 _5522 0

Example 1.2 Solve —— axdy ay:

Solution:= (D?*— 4DD —5D%)z=0
Auxiliary equation issm? —4m—5 = 0
= (m-5)(m+1)=0

= m=>5,—-1
CF.=fily + 5x)+ f5(v —x)
=7Z=fily+ 5x)+ f,(y—x)
3%z 8%z 3%z

E le1.3 Sol 2 =0
xample olve —— + 93y + 952

Solution:= (D?+ 2DD +D?*)z =0
Auxiliary equationissm? + 2m+1 =0
= (m+1)*=0

= m=-—1,—-1

CF=ffy—x)+ xf:(y—x)
=2=fi(y —x)+ xfL,(y —x)

Rules for finding P.l. (Particular Integral)




* Applicable only if F(x,v) #=0
Let the given PDE bef ( D,D")z=F(x,y)

F(x,y)

P.I= :
f(D.D")

Case | : When F(x,y) = g t+hy

Put D=a and D' =b

ax+by
If ,b) #0,P.I=
f(a,b) )
Eax+by
and if f(a,b) = 0,P.I = ,
ap/(2:D)

NowputD=a and D' = b

2 2 2
dz iz 87z _ ox+tvy
Example 1.4 Solve —— 5 axay T 6 557 e

Solution:= (D*— 5DD +6D %)z = e**¥
Auxiliary equation is; m> —5m+6 =0
= (m—-2)m—3)=0

= m=23

CF.=filv+ 2x)+ fi(v+ 3x)

E.’X‘+}F

p2—spp'+eD’'2

P.l =



putD=1 D'=1

X+Y A+Y

a e

1-54+6 2

gtV
=z=fily+ 2x)+ f2@+3x1+7

Example 1.5 Solve r —4s + 4t = @2¥T¥

2 2

. 8"z a =z 87z _ S2xiy

=>-——=— 4 + 4 — = e<*™
Solution: 32 axdy 3?2

=(D?— 4DD' +4D'*)z = e***Y

Aucxiliary equation issm? — 4m + 4 = 0
= (m—2)*=0

= m=2,2
CF.=filv+ 2x)+ xfi(y +2x)

e 2X+Y

P.l = D-20')?

Putting D = 2, D' = 1, denominator =0

xezx+}r xe2x+}?

d iz 202D
—50—2D") ( )

P.l =

Putting D = 2, D' = 1, again denominator = 0

o = x2g2X+Y
L=
—52(D-2D")



_ 2 g2X+Y
=>P.l =

Complete solution is Z= C.F. + P.1.

yZglxty

=>Z=fily+ 2x)+ xfo(y +2x) +

Case Il : When F(x,y) = e+ ¢(x,y), @(x,V) is a trigonometric function of sine or
cosine.

1

P.1= e®*by
f(D+a, D'+b)

d(x,y)

Example 1.6 Solve (D3 + D2D’—DD'?2— D'*)z = e* sin 2y
Solution: Auxiliary equation is: m® +m? —m—1=10
=m=1,—-1,-1

CR=fAb+x)+ fHy—x)+xfi(y—x)

e¥ sin 2y

p3+ p2p'—pp'2_p°

P.l =

_ e¥sin 2y _ e* sin 2y

= p2(p+0)-0%(D+0") ~ (D+0)*(D-D)

=e*——sin2y (~ a=1,b=0)

fio+1, D" )

=e* = sin 2y
(D+1+0')2(D+1-D")

1
(D2+1+D"24+2D+2D"' +2DD" Y (D+1-D")

—aX

sin 2y



pt D2—=0 DD'=0,D2= —4

Pl =e* : sin 2y

(0+1—-a+2D+2D" +0)(D+1-D")

1 )
=e sin 2
(—=3+2D+2D")(D+1-D") y

1
—_— x L
=g sin 2
(-3D+2D2+2DD’' —3+2D+2D"+3D"-2DD"-2D"2) Y

1
(-D+04+0-345D' —0+8)

- X

sin 2y

—_— .
"7 (sD'-D)+5 sin 2y

_ , (sD"-D)-5
"~ (sD'-D)2-25%

sin 2y

(5D'-D-5) sin2y
25p’24p2 _q0DpD"—25

—_ X

o (10cos2y—0-5sin2y)
25(—4)+0+0-25

e* :
= (10 cos 2y — 5sin 2y)

g
= (sin 2y — 2 cos 2y)

=Z=fily+x)+ fily—x)+xfi(y—x) +%(sin2y— 2cos2y)

Case Il : When F(x,y) = Sin (ax + by) Or Cos (ax+ by)



Sinlax+by) or Cos (ax+by)

P.I - I{DZJDDI,DIZ}
PUt Dz: _rI':V Df: _ﬂ-b ,Dizz —b:
Hence P.l = sin{ax+bylorCos (ax+by)

fi{—a?,—ab,—b%

3%z 8%z
Example 1.7 Solvea

= Sinx Cos2y
x2 dxdy )

Solution:= (Dz — DDr]z = Sinx Cos2y
Aucxiliary equation issm? —m = 0
= m(m—-1)=0

=m=20,1
CF.=A0)+ fily+x)
Sinx Cos2y _

Pl= — 5o =p2- Dn" Z[Sin (x + 2y) + Sin(x — 2y)]

l

= o7 DD,Sm(x + 2y) 32

Putting D2 = —1, DD' = —2 inthe 1% term, D? = —1, DD’ = 2 in the 2" term

_15in (x+2y) + 15in (x—2v)
T2 —1-(-2) 2 -1-(2)

1 1
=P.I.= 2 Sin(x + 2y) —ESin (x —2y)

Complete solution is Z=C.F +P.1

= Z= 00+ Ay +x) +3 Sin(x+2y)— < Sin (x— 2y)



Case IV: When F(x,y) = x™y"

xm}?ﬂ

f(D,D")

P.l =

= [f(D, D) .x™y"

Expand [f( D,D")]~* in ascending powers of D or D' and operate on x™y™ term by term.

2

2 2
d z iz gz _
Example 1.8 Solve 75+ 555~ 655 =X+

Solution:= (Dz + DD — 6Dr2}z =x+y
Aucxiliary equation ism? + m — 6 = 0
=(m+3)(m—-2)=0

= m=-3,2

CF.=fily —3x)+ f(v+2x)

x+y
D2+ pp'—6p"

P.l =

=1+ 565 Gy

:ﬁ[l—%+ ————— ](x+y)

(4Tt =1t +t -t — ——

=§[(x+y)—%({]+1)]

10



1
=zlx +y -]

S
PI _Dz[y]_ >

Complete solution is Z=C.F +P.1
2
= Z2=fir-30+ fLr+2)+5-

Example 1.9 Solve(D?* —3 D?D")z = x%y
Solution: Auxiliary equationis: m* — 3 m? =0
=>m*(m—3)=0

= m=20,023

CF.=fim)+ xfL(3)+ f(y+3x)

xzy

Pl= ——
D3—-3pp

“5:[1-5] ey

-2l

vt Tt =14ttt — ——
1 3
=GP + 2 @)

_ 1

~ [x%y + x3]

11



= |— + —
Dz L 3
1 [x‘i‘y xE']
DL12 20

2 G
= P.I. :[ﬂ +x—]
&0 120

Complete solution is Z=C.F +P.1

5., 6
= Z=fi(M+ 2L+ +30)+ [%+1%]

Case V: In case of any function of F(x, 1) or when solution fails for any case by above given

methods
F(x,
pl= L)
f(D.D")
1
Resolvef{ > D,}into partial fractions considering f( D, D") as function of D alone.
F(x,
pl= L) [F(x,c — mx)dx

D-mD'
where C is replaced by v+ mx after integration.
Example 1.10 Solve(D? — DD" —2D"*)z = (y — 1)e*
Solution: Auxiliary equationissm? —m—2 =0
=(m-2)(m+1)=0
= m=2-1

CF.=filv+2x)+ f(yv—x)

12



P.I= (y—1e* _ (y—1)e* _ (y-1)e*
" p2—pp'-2p? DZ2-2DD'+DD'-2p7 (D-2D")(D+D")

= oo ED,}I(C +x—1)e*dx

Puttingy =c+x as m=—1

= oo 21)’} [(c+x —1)e* —e*]

= o 20’}[(E + x)e* — 2e”*]

=50 21),,}[(y x + x)e* — 2e%]

Puttingc = v — x

1
=520 [ye* — 2e*]

= 55 [ — 2)e]

= [(c—2x—2)e*dx
Putting y = ¢ — 2x

=(c—2x—2)e* — (=2)e*

= (c — 2x)e*

=(y + 2x — 2x)e”

13



Putting c = v+ 2x
=P.l. =ye*

Complete solution is Z=C.F +P.1
= Z=fily+2x)+ foly —x)+ ye*

2
Example 1.11 Solve zg—i 5 aiai + 2 g}_‘g = bsin(2x+ y)

Solution: = (2D — 5DD'+ 2D*?)z = 5sin(2x +)

Auxiliary equation is:2m? —5m+ 2 =0

= 2m—-1m—-2)=0

1
2
cr=fi(y+3)+ O +2%)

Ssin(2x+y)

P.l =
202 —5pp'+2D7

PuttingD? = —4, DD’ = —2,D'? = —1,denominator =0

~ solution fails as per case IlI, resolving denominator into partial fractions
Ssin(2x+y)
(20-p')(p-2D)

P.l =

= Goo D,}f sin(2x + (¢ — 2x)) dx

Putting v = ¢ — 2x

14



D=~

=7 D, [ sin cdx
(0-3)

= Efx sin[(c — f) + Zx] dx
2 2
Putting v = c—=

2

:Sfx sin(c + Sx) dx

(- cﬂs(c+ x} {—siﬂ(c+gx}
[( ) -()——=
2 4

=—2xcos(c+ %x] +sin(c+ %x)
= —Zx cos{y+%+%x] +Zsin(y+35+ %x)
Puttingc =¥ —I—f

=P.I. =—Zxcos(y+ 2x) + Zsin(y + 2x)

Complete solution is Z=C.F +P.1
> z=f, (y+3)+ A0 +20 - xcos(y+2x) + Zsin(y + 2x)

15



1.3.2 Non Homogeneous Linear Equations

If in the equation (D,D')z = F(x,y) , the polynomial f(D,D") in D, D' is not
homogeneous, then it is called a non-homogeneous partial differential equation.

Working Rule to Solve a Non Homogeneous Linear Equation

Stepl: Resolvef (D, D")into linear factors of the form

(D—m,D'—a,;)(D—m,D" —a,).......... (D—-m,D'—a,)

Step2: Auxiliary equation is

(D—mD"—a;)(D—m,D" —a,).......... (D—m,D'—a,)=0

Step3: C.F.=e®*f (y + myx) + e f(y + myx) + -+ vee v e o + ™77 (y + mpx)

In case of two repeated factors
CF=ef(y + mx) + xe®f, (y + mx)
Step4: Find P.1I. by using usual methods of homogeneous PDE.
Step5: Complete solutionis Z=C.F. + P.l.

Note: If the Auxiliary equation is of the form
(D' —m;D—a,)(D'—m,D—a,).......... (D'—m,D —a,)=0

Example 1.12 Solve (D> —D? — 3D+ 3D )z = e*+2¥

Solution: Auxiliary equation is:(D* — D'* —3D +3D") =0
Clearly D = D'is satisfying the equation, ..(D — D"} is a factor.
Dividing by(D —D") , we get

(D-D")(D+D'—3)=0

=(D-D'—0)(D+D'—3)=0

16



SCF.=filv+ x)+ e¥f,(v—x)

e X+2Y

A= . .
(D*—D2-3D+3D)

Putting D =1, D' =2, f(a,b) =0

P I xex'l'z};" xex+2}?

=P = =
£(D?-D'2-3D+3D")  2D-3

PuttingD =1

Pl = —xe*t2y

Complete solution is Z= C.F. + P.1.
7= fily+ x)+ e¥f(y—x)— xe*¥ T2y
Example 1.13 Solve (2DD" + D' —3D")z = 3 cos(3x — 2y)
Solution: Auxiliary equation is:(2DD' +D'* —3D") =0
=D'(D'+2D—3)=0
> CF.=f(x)+ e¥f(x—2y)

_ 3cos(3x-2y)
" (20D'+D"?-3D"

Putting DD' =6, D'* = —4

= P.l= 3-:1::5{3.::—2;';:] = BCDS{EI_IE}':'
(12—4-3D" PPN

17



3 (8+3D Jcos(3x—2y)
(8—3D')(8+43D")

3 (8+3D Jcos(3x—2y)
(64—9D'%)

3 (8+3D Jcos(3x—2y)
(64 +36)

_ 3
=B+ 3D")cos(3x — 2y)

1:Tu [Bcos(3x — 2y) + 6sin(3x — 2y)]

Z% [4cos(3x — 2y) + 3 sin(3x — 2y)]

Complete solution is Z=C.F. +P.l.

=>7Z=f(x)+ e¥f(x—2y) + % [4cos(3x — 2y) + 3sin(3x — 2y)]

1.4 Applications of PDEs (Partial Differential Equations)

In this Section we shall discuss some of the most important PDEs that arise in various branches
of science and engineering. Method of separation of variables is the most important tool, we will

be using to solve basic PDEs that involve wave equation, heat flow equation and laplace

equation.
) ) ) ) a%u 9 3%u
Wave equation (vibrating string) 3e2 c 922
du 5 8%u

One- dimensional heat flow (in a rod) 3r c 32

) ) ] ] 8%u 2 8%u
Two- dimensional heat flow in steady state (in a rectangular plate ) :ﬁ = 32

Note: Two dimension heat flow equation in steady state is also known as laplace equation.

18



Working Rule for Method of Separation of Variables

Let u be a function of two independent variables xand t.

Stepl. Assume the solution to be the product of two functions each of which involves only
one variable.

Step 2. Calculate the respective partial derivative and substitute in the given PDE.

Step 3. Arrange the equation in the variable separable form and put LHS = RHS = K

(as both xand t are independent variables)

Step 4. Solve these two ordinary differential equations to find the two functions of x and t

alone.

.8 8 i
Example 1.14 Solve the equatlona—u =4 a—q: + u given that u(x,0) = e 2
X

Solution: Stepl.

letu=XT................ O
where X is a function of x alone and T' be a function of t alone.
Step 2.
_x'T, Z=xT

dx at

. du du. . .
Substituting these values of PP the given equation
X

X'T=4XT'+XT = X'T=X(AT' +T)

Step 3.
X' AT 41
= — =—
X T
Putting LHS = RHS = K
Step 4.

19



l.e. ;ZH r
T" 1
= log X = Kx +log C; 73D
T 4
| X P 1
= 108 — = KX
X=C, e ... S
= 18‘ @ = T — CE ga{K_ e @

Using @ and @ in @
u(x, t) = C,C, eﬁxei{ﬁ_ ve @
=u(x,0)=C,Ce*.......... ®

Given thatu(x, 0) = 5e~%*, using in ®

= be % = C,(C,e**

Using ®in @
u(x, t) = 53_(2”3{)

1.4.1 Solution of wave equation using method of separation of variables

a%u 9 atu

Wave equation is given by 32 C

whereugives displacement at distance xfrom origin at any time t. To solve wave equation using

method of separation of variables,
Let u= XT ...................... )

where X is a function of x alone and T be a function of t alone.

2 2
L0y TR
" gt = X1, dx?

2 3%u
d u . . .
—7 g2 the wave equation given by @O

Substituting these values of vl

20



XT" = 2X"'T

Arranging in variable separable form= XT = EifT?

Equating LHS=RHS =K (~ X and T are independent)
x'! "
> = Kand SET? =K
=>X"—KX=0and T — KC?’T=0........ ®
Solving ordinary differential equations given in (3), three cases arise
(i) When K is +ve and = p“say
X = c,eP+c,e™ | T = c,ePlc, e Pt
(ii) When K is -ve and = —p“say
X = c cospx+cysinpx , T = cycoscpt+ ¢, sincpt
(iii)When K =0
X=cx+c,, T = c3t+c,
Again since we are dealing with wave equation, uw must be a periodic function of xand ¢, - the
solution must involve trigonometric terms. Hence the solution given by (ii) i.e. corresponding to
K = —p?®, is the most plausible solution, substituting (ii) in equation @
u(x,t) = (c,cospx + ¢, sinpx) (c;coscpt+ cysinept) ........ @
Which is the required solution of wave equation.

Again if we consider a string of length [ tied at both ends at x = 0 and x = 1,
then displacement of the string at end points at any time t is zero .
>u(0,t) =0
andu(lLt) =0 ............ ®

using ®in @=0 = C,(cycoscpt+ ¢ Sincpt)

Using @ in @ , wave equation reduces to
u(x, t) = c,sinpx (cycoscpt+ cysinept) ........

21



Now using ® in ®= 0 = ¢,sinpl (c;coscpt+ c,sincpt)

=>sinpl=0 ¢, # 0and (c;coscpt+ cysincpt) # 0
ni
=>pl=nn=>p = - n= 1,2,3 e s - ©)

. . . NTX nmct . nuct
using @ in ®= u(x,t) = CaSIM—— (c5 cos — tCaSin— )

Adding up the solutions for different values of n, we get

TITX
] ottt

t ) A
u(x,t) = Yo q (an COS % + bnsmnT )Sm
is also a solution of wave equation
Example 1.15 : A string is stretched and fastened to 2 points I apart. Motion is started by
displacing the string in the form v = a sin ?from which , it is released at time t = 0. Show

that the displacement at any point at a distance x from one end at time t is given by

. mx  T7ct
v(x,t) = asin TCDST
Solution: Let th (on of vibrating string be given by o2 = ¢2 22 ©)
olution: Let the equation of vibrating string be given by ——5 = PYCRNERPRRY
Boundary value conditions are given by :
v(0,t) =0 ............. @)
viLt)=0........ ®
dv .
Bpg U @
y(x,0) = asin™—...... ®
Let the solution of (Mbe given by
v(x,t) = (c,cospx + ¢, sinpx) (c;coscpt+ ¢ sinept)...... ©

Using @ in ©®

= 0 = C,(c3coscpt+ ¢ sincpt)

22



Using @ in ® , wave equation reduces to
v(x, t) = c,sinpx (cycosept+ cysinept) ........
Now using @ in®= 0 = ¢, sinpl (¢, coscpt+ c,sincpt)

=>sinpl=0 ¢, #0 and (cycoscpt+ c,sincpt) = 0

nim

=>pl =nn=>p = o T ©

. . . RITX t P
using @ in ®= y(x,t) = CaSin—- (c5 cos%+ C4SIN— ) R

Now to use @), differentiating 40 partially w.r.t. t

- a_y — ¢ Sinnﬁx (—C m‘rcsinnﬁctl c nﬁccﬂsnﬂct)
at 2 l 3 R l
Puttingt = 0
5 - T T .
2= czsmﬁ(qﬁ) = 0 using@®
:>C4,:D '+'C2i0 ......... @
Using @ in
. NITX nict

= y(x,t) = ¢, C3SIN——COS ——........ ®
Using ® in @

TX - nmx
=a smT = casmT
>c,c;=a,n=1
using in @

. TIX mct

= y(x,t) = asmT CoS T

Note : Above example can also be solved using solution of wave equation given by equation

in section 1.4.1

oo

nmnct . nncty . nmx
y(x,t) = Z (an €0S —— + b, sin E )smT

n=1

23



It is to be noted that boundary value conditions @and (Dhave been already used in this solution.
Example 1.16 A tightly stretched string with fixed end points at x = 0 and x = [ is initially at

rest in its equilibrium position. If it is set vibrating by giving to each of its points a velocity

Ax (I —x), find the displacement of the string at any distance x from one end at any time t.

Solution: Let the equation of vibrating string be given by &?_u = ¢? az—u ...... )
gt dx?
Boundary value conditions are given by :
u(0,t) =0 ............. @
u(l,t) =0.............. ®)
u(x,0)=0........... @
du
e = Ax (I—x)ennn. ®
solution of wave equation as given by equation 0in section 1.4.1 is
u(x, t) = 2o (an cos %ﬁ + bnsinnid) sinnzrx ceen®

It is to be noted that boundary value conditions @and (3 have been already used in this

solution.
Now using @ in ©®
o
. nmux
0= Z aﬂsmT
n=1
# aﬂ —_— 0 ......... @
Using @ in ®
. £ .
H{:X, f] = E'?ln:'l bnSlnnﬂC Sln@ ............

[ [

Now to use ®, differentiating ® partially w.r.t.t

ou Zf‘ nic nmct | nmx
— = oS sin
dt "ol

n=1

[ [
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Putting t = 0,

du _ TIc le Sl'ﬂﬂnx ©
at t:D l l llllllllll
Using ® in @

Ax(l—x) = HTZ bsm

. Nmx
Multiplying both sides by Simn Tand integrating w.r.t. x within the limits 0 to {

nimx c t nmx
= | 2ax(-x)sin—dx = —nbﬂf sin? —dx
[ [ 0 [
2nnx

= —nb f (1— cos )dx

c

= —nb,,
2

= menb, = 2 f; ax (1 - x)siin,?dx
= ZAf (1x — xz)SEﬂ—dl’
—1 nix I nmx
= menb, = 22 [(.Lx —x%). (— cos —) — (1-2x) (— —sin )
nm

E n2 e E
& nmwa\ 1
+ (—2)( ~— COs )]
T T[ o

[

—2F 20
= mcenb, = 22 |—— COSNT + ——,
n Il n 1T

448

= ntenb,, =
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71 i
= menb, = | if niso

0 if niseven

taking n = 2m — 1

using@® in (®, required solution is

8L < 1 . (2m—1)mct . (2m—1)nx
- 7 Sin E sin E

Cm* =1 (2m—1)

ulx,t) =

1.4.2 Solution of heat equation using method of separation of variables

du 9 3% u

One dimensional heat flow equation is given by i = )

whereu(x,t)is temperature function at distance xfrom origin at any time t. To solve heat

equation using method of separation of variables,

Let w= XT .....ooviiii ®
where X is a function of x alone and T be a function of t alone.
2
a»u ' 6 i "
l+l- _— = - - = X T
at XT", dx?

du 9%u
Substituting these values of Py @in the heat equation given by (D
XT'= *X"T

U I

Arranging in variable separable form= XT = —1;?
)

Equating LHS = RHS =K (~ X and T are independent)

X' LT
>— = Kand5 =K
X c< T

=>X" — KX =0andT' — Kc*’T=0 ..ccoveuun. ®

Solving ordinary differential equations given in (3), three cases arise
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(i) When K is +ve and = p*say
X" —p*X = 0andT’' = p*c?T
X = AeP*+BeP* T = Cer ¢t
=ulx,t) = {:Agpx+Bg—ﬂx]C€:ﬂzczt
= u(x,t) = ((c;eP*+c,e P¥)er ot
(i) When K is —ve and = —p?say
X = Acospx +Bsinpx, T = Ce=<"¢'t
= u(x,t) = (Acospx +Bsinpx) Ce= 't
= u(x,t) = (c,cospx + ¢, 5inpx) p—c2r't
(iii)When K =0
X" =0andT' =0
=>X=4x+B,T=C
=u(x,t) = (Ax+ B)C
=u(x,t) = c;x + ¢,
The solution given by (ii) i.e. corresponding to K = —p?, is the most plausible solution for

steady state.

Special case: When the ends of a rod are kept at 0°C
One dimensional heat equation in steady state is given by :
—Czpzt

u(x,t) = (c,cospx+c,sinpx) e™ 7" ... @

Also since ends of a rod are kept at 0°C

Using @ in @ , wave equation reduces to
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u(x,t) = c,sinpxe = ...
Now using ® in ®= 0 = ¢, sinp!e‘czpztzsin pl=20
v o, = 0ande 7t =0

_ nir
=>pl=nn=>p = T on= 1,2,3 ... ... ©)

. . . NITX
using @ in®= u(x,t) = c;sin——e P

Adding up the solutions for different values of n, the most general solution is given by

—c2niglt

u(x,t) = ﬁzlbﬂsinﬂﬁe 2

Example 1.17 :A rod of length I with insulated sides is initially at a uniform temperature . Its
ends are suddenly cooled to 0°C and are kept at that temperature, find the temperature formula
u(x, t).

] e
. . : L u_ 20u
Solution: One dimensional heat flow equation is given by i C 322

Solution of one dimensional heat equation in steady state is given by :

u(x, t) = (c,cospx+ c,sinpx) e F 0)
w(0,t) =0 ............. @
u(l,t)=0............ )

Also initial condition is u(x,0) = uy.......... @

The most general solution of heat equation® using @and®) is given by

—cfn2git
. ntTx
U ) = T, bysin e E 5
USing @in G= Uy = E;?:]_ bﬂsin@ ......... ®

Multiplying both sides of ® by sin E, and integrating w.r.t. x within the limits 0 to I

J:uu sin I dx—b jsm M{i
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2 5l . MIx
= b, = Ifﬂ U sin——dx

!
—2u[ 1 nmwx
= — COS——
Il Inm I 1,

= h = ﬂ[]_(_ljn]_ E; ifﬂiSGdd
oo 0 ifniseven

4
Putting n=2m—1,= b, = ﬁ ............. @

Using (7)in ®, the required temperature formula is

[:Zm ]_]-;r['x —cZ(zm—-1"m2t
u(x, t) = Z 1" E e 2

1.4.3 Solution of laplace equation (two dimensional heat flow) using method of

separation of variables

Consider the heat flow in a uniform rectangular metal plate at any time t; if w(x,v) be the

temperature at time ¢, two dimensional heat flow equation is given by
du 5 3%u 8%u
—=Cc\T=*+ —
at dx? ay?

du
In steady state, u doesn’t change with t and hence 3 =0

aZ
=~ Two dimensional heat flow equation in steady state is given by— + a_z =0......... @
v

where u(x, y)is temperature function at any point (x,v) of the rectangular metal plate. This is

called Laplace equation in two dimensions. To solve Laplace equation using method of

separation of variables,

Let u= XV ... @

where X is a function of x alone and ¥ be a function of ¥ alone.
ﬂzu " azu "
—=XY, —=
dx? " dy* XY
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o %u 9%u ) .
Substituting these values of 322’ 3vZ in the Laplace equation given by
x v

X"Y+ XY" = 0

I I

L . X ¥
Arranging in variable separable form= - = —

Equating LHS=RHS =K (+~ x and v are independent)
¥ !

>—=Kand —=K
X Y

SX"—KX=0and Y'"+KY =0 .vur.... ®

Solving ordinary differential equations given in (3, three cases arise
(i) When K is +ve and = p* say
X = ce?+ce™ Y =cycos py+ cusinpy
= ul(x,y) = (c,e™+ c,e ) (cycos py + c,sinpy)
(ii) When K is —ve and = —p?say
X = (¢ cospx +cysinpx , Y = (3™ + ¢ e™)
= ulx,y) = (c,cospx + c,sinpx)( c;e?¥ + c,e™)
(iii)When K =0
X'"=0and ¥' =0
>X=cx+c,,Y=c3y+c,
su(x, t) = (c1x +c)(cay +cy)
The solution given by (ii) i.e. corresponding to K = —p*, is the most plausible

solution for steady state.
Example 1.18 An infinitely long rectangular uniform plate with breadth m is bounded by two
parallel edges maintained at 0°C. Base of the plate is kept at a temperature u, at all points.
Determine the temperature at any point of the plate in the steady state.

. . : L a2 a2
Solution : In steady state, two dimensional heat flow equation is given bya—i + a—z =0...0
x v

Boundary value conditions are
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ulmy) =0.............. ®
lim,, .., ulx,y) =0, 0<x<m- @
u(x,0)=u, , 0<x<m..........0

Solution of O is given by :
u(x,y) = (c,cospx + c,sinpx)( c.e™ + c,e™™) ...
Using @ in ®

=u(0,y)=0= c,;(ce? + c e )

= c;=0..... @

Using @ in ®

ulx,v) = c,sinpx(c;e™ + cie™™ )
Using @ in

= u(my) =0 = c,sinpn( c;e™ + c,e PY)

= sinpnt=10

=SPT = nm

SP =1 .cveee ©)

Using (9) in

= ulx,y) = c,sinnx(cze™ + c,e”™) ...l
Using (4) in 10

1%1_1'13D u(x,y)=0= ¢, sinnx&i_ﬂ[ cze™ + c,e)

= ;=0 ... @
Using (1) in 10

= ul(x,y) = c,cysinnxe™™
The most general solution of heat equation is given by

u(x,t) == b,sinnx.e™™ . ........ @where ¢,c, = b,
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Using ® in

=>u(x,0) = uy= =, b,sinnx

Multiplying both sides bysin nx, and integrating w.r.t. x within the limits 0 to =

T

2 .
b, = —fu051nnxdx
n
0
4-11'.{:, . "
_2ug [-cosnx|® _|—, Ef?l is odd
=b,= =|amr - ... ®
™ mo-0 0 ifniseven

Letr =2m — 1 as# isodd

Using @) in (12) the required temperature formula is:

duge 1
u(x, t) = HDZ;(Z?H— ljsin (2m— 1)x.e " (2m-1y
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