Problem 10-1

Determine the moment of inertia for the shaded area about the x axis.

Given:

$$
\begin{aligned}
& a=2 \mathrm{~m} \\
& b=4 \mathrm{~m}
\end{aligned}
$$

Solution:

$$
I_{X}=2 \int_{0}^{b} y^{2} a \sqrt{1-\frac{y}{b}} \mathrm{~d} y \quad I_{X}=39.0 \mathrm{~m}^{4}
$$

Problem 10-2

Determine the moment of inertia for the shaded area about the y axis.

Given:
$a=2 \mathrm{~m}$
$b=4 \mathrm{~m}$

Solution: $\quad I_{y}=2 \int_{0}^{a} x^{2} b\left[1-\left(\frac{x}{a}\right)^{2}\right] \mathrm{d} x \quad I_{y}=8.53 \mathrm{~m}^{4}$

Problem 10-3

Determine the moment of inertia for the thin strip of area about the x axis. The strip is oriented at an angle θ from the x axis. Assume that $t \ll l$.

Solution:

$$
\begin{aligned}
& I_{X}=\int_{A} y^{2} \mathrm{~d} A=\int_{0}^{l} s^{2} \sin ^{2}(\theta) t \mathrm{~d} s \\
& I_{X}=\frac{1}{3} t l^{3} \sin ^{2}(\theta)
\end{aligned}
$$

Problem 10-4

Determine the moment for inertia of the shaded area about the x axis.

Given:

$$
\begin{aligned}
& a=4 \text { in } \\
& b=2 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
I_{X} & =\int_{0}^{a} \frac{1}{3}\left[b\left(\frac{x}{a}\right)^{3}\right]^{3} \mathrm{~d} x \\
I_{X} & =1.07 \mathrm{in}^{4}
\end{aligned}
$$

Problem 10-5

Determine the moment for inertia of the shaded area about the y axis.

Given:

$$
\begin{aligned}
& a=4 \text { in } \\
& b=2 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I_{y}=\int_{0}^{a} x^{2} b\left(\frac{x}{a}\right)^{3} \mathrm{~d} x \\
& I_{y}=21.33 \text { in }^{4}
\end{aligned}
$$

Problem 10-6

Determine the moment of inertia for the shaded area about the x axis.

Solution:

$$
I_{X}=\int_{0}^{b} \frac{\left(h \sqrt{\frac{x}{b}}\right)^{3}}{3} \mathrm{~d} x=\frac{2}{15} b h^{3} \quad I_{X}=\frac{2}{15} b h^{3}
$$

Alternatively

$$
I_{X}=\int_{0}^{h} y^{2}\left(b-b \frac{y^{2}}{h^{2}}\right) \mathrm{d} y=\frac{2}{15} b h^{3} \quad I_{X}=\frac{2}{15} b h^{3}
$$

Problem 10-7

Determine the moment of inertia for the shaded area about the x axis.

Solution:

$$
I_{X}=\int_{0}^{b} A y^{2}\left[a-a\left(\frac{y}{b}\right)^{\frac{1}{n}}\right] \mathrm{d} y \quad I_{X}=\frac{a b^{3}}{3(1+3 n)}
$$

Problem 10-8

Determine the moment of inertia for the shaded area about the y axis.

Solution:

$$
\begin{aligned}
& I_{y}=\int x^{2} \mathrm{~d} A=\int_{0}^{a} x^{2} y \mathrm{~d} x \\
& I_{y}=\frac{b}{a^{n}} \int_{0}^{a} x^{n+2} \mathrm{~d} x=\left[\left(\frac{b}{a^{n}}\right) \frac{x^{n+3}}{n+3}\right]_{0}^{a} \\
& I_{y}=\frac{b a^{3}}{n+3}
\end{aligned}
$$

Problem 10-9

Determine the moment of inertia for the shaded area about the x axis.

Given:

$$
a=4 \text { in }
$$

$$
b=2 \text { in }
$$

Solution:

$$
\begin{aligned}
& I_{X}=\int_{0}^{b} y^{2}\left[a-a\left(\frac{y}{b}\right)^{2}\right] \mathrm{d} y \\
& I_{X}=4.27 \mathrm{in}^{4}
\end{aligned}
$$

Problem 10-10

Determine the moment of inertia for the shaded area about the y axis.

Given:

$$
\begin{aligned}
& a=4 \text { in } \\
& b=2 \text { in }
\end{aligned}
$$

Solution:

$$
I_{y}=\int_{0}^{a} x^{2} b \sqrt{\frac{x}{a}} \mathrm{~d} x
$$

$$
I_{y}=36.6 \text { in }\left.^{4}\right|_{x} ^{y}
$$

Problem 10-11

Determine the moment of inertia for the shaded area about the x axis

Given:

$$
\begin{aligned}
& a=8 \text { in } \\
& b=2 \text { in }
\end{aligned}
$$

Solution:

$$
I_{X}=\int_{0}^{b} y^{2}\left(a-a \frac{y^{3}}{b^{3}}\right) \mathrm{d} y \quad I_{X}=10.67 \mathrm{in}^{4}
$$

Problem 10-12

Determine the moment of inertia for the shaded area about the x axis

Given:

$$
\begin{aligned}
& a=2 \mathrm{~m} \\
& b=1 \mathrm{~m}
\end{aligned}
$$

Solution:

$$
I_{X}=\int_{-b}^{b} y^{2} a\left(1-\frac{y^{2}}{b^{2}}\right) \mathrm{d} y \quad I_{X}=0.53 \mathrm{~m}^{4}
$$

Problem 10-13

Determine the moment of inertia for the shaded area about the y axis

Given:
$a=2 \mathrm{~m}$
$b=1 \mathrm{~m}$

Solution:
$I_{y}=\int_{0}^{a} x^{2} 2 b \sqrt{1-\frac{x}{a}} \mathrm{~d} x \quad I_{y}=2.44 \mathrm{~m}^{4}$

Problem 10-14

Determine the moment of inertia for the shaded area about the x axis.

Given:

$$
a=4 \text { in } \quad b=4 \text { in }
$$

Solution:

$$
I_{X}=\int_{0}^{b} y^{2}\left[a-a\left(\frac{y}{b}\right)^{2}\right] \mathrm{d} y
$$

$$
I_{X}=34.1 \text { in }^{4}
$$

Problem 10-15

Determine the moment of inertia for the shaded area about the y axis.

Given:

$$
\begin{aligned}
& a=4 \text { in } \\
& b=4 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I_{y}=\int_{0}^{a} x^{2} b \sqrt{\frac{x}{a}} \mathrm{~d} x \\
& I_{y}=73.1 \mathrm{in}^{4}
\end{aligned}
$$

Problem 10-16

Determine the moment of inertia of the shaded area about the x axis.

Given:

$$
\begin{aligned}
& a=2 \text { in } \\
& b=4 \text { in }
\end{aligned}
$$

Solution:

$$
I_{X}=\int_{-a}^{a} \frac{1}{3}\left(b \cos \left(\frac{\pi x}{2 a}\right)\right)^{3} \mathrm{~d} x
$$

$$
I_{X}=36.2 \mathrm{in}^{4}
$$

Problem 10-17

Determine the moment of inertia for the shaded area about the y axis.
Given:

$$
\begin{aligned}
& a=2 \text { in } \\
& b=4 \text { in }
\end{aligned}
$$

Solution:

$$
I_{y}=\int_{-a}^{a} x^{2} b \cos \left(\frac{\pi x}{2 a}\right) \mathrm{d} x
$$

$$
I_{y}=7.72 \text { in }^{4}
$$

Problem 10-18

Determine the moment of inertia for the shaded area about the x axis.

Given:

$$
\begin{aligned}
& a=4 \text { in } \\
& b=2 \text { in }
\end{aligned}
$$

Solution:
$I_{X}=\int_{-a}^{a} \frac{\left(b \cos \left(\frac{\pi x}{2 a}\right)\right)^{3}}{3} d x$

$$
I_{X}=9.05 \text { in }^{4}
$$

Problem 10-19

Determine the moment of inertia for the shaded area about the y axis.
Given:

$$
\begin{aligned}
& a=4 \text { in } \\
& b=2 \text { in }
\end{aligned}
$$

Solution:

$$
I_{y}=\int_{-a}^{a} x^{2} b \cos \left(\frac{\pi x}{2 a}\right) \mathrm{d} x \quad I_{y}=30.9 \text { in }^{4}
$$

Problem 10-20

Determine the moment for inertia of the shaded area about the x axis.

Given:

$$
\begin{aligned}
& a=2 \text { in } \\
& b=4 \text { in } \\
& c=\sqrt{12} \text { in }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I_{X}=\int_{a}^{a+b} \frac{1}{3}\left(\frac{c^{2}}{x}\right)^{3} \mathrm{~d} x \\
& I_{X}=64.0 \mathrm{in}^{4}
\end{aligned}
$$

Problem 10-21

Determine the moment of inertia of the shaded area about the y axis.

Given:

$$
\begin{aligned}
& a=2 \text { in } \\
& b=4 \text { in } \\
& c=\sqrt{12} \text { in }
\end{aligned}
$$

Solution:

$$
I_{y}=\int_{a}^{a+b} x^{2}\left(\frac{c^{2}}{x}\right) \mathrm{d} x
$$

$$
I_{y}=192.00 \text { in }^{4}
$$

Problem 10-22

Determine the moment of inertia for the shaded area about the x axis.

Given:

$$
\begin{aligned}
& a=2 \mathrm{~m} \\
& b=2 \mathrm{~m}
\end{aligned}
$$

Solution:

$$
I_{X}=\int_{0}^{b} y^{2} a\left(\frac{y^{2}}{b^{2}}\right) \mathrm{d} y \quad I_{X}=3.20 \mathrm{~m}^{4}
$$

Problem 10-23

Determine the moment of inertia for the shaded area about the y axis. Use Simpson's rule to evaluate the integral.

Given:
$a=1 \mathrm{~m}$
$b=1 \mathrm{~m}$

Solution:

$$
I_{y}=\int_{0}^{a} x^{2} b e^{\left(\frac{x}{a}\right)^{2}} \mathrm{~d} x \quad I_{y}=0.628 \mathrm{~m}^{4}
$$

Problem 10-24

Determine the moment of inertia for the shaded area about the x axis. Use Simpson's rule to evaluate the integral.

Given:
$a=1 \mathrm{~m}$
$b=1 \mathrm{~m}$

Solution:

$$
I_{y}=\int_{0}^{a} \frac{\left[b e^{\left(\frac{x}{a}\right)^{2}}\right]^{3}}{3} \mathrm{~d} x \quad I_{y}=1.41 \mathrm{~m}^{4}
$$

Problem 10-25

The polar moment of inertia for the area is I_{C} about the z axis passing through the centroid C.
The moment of inertia about the x axis is I_{x} and the moment of inertia about the y^{\prime} axis is $I_{y^{\prime}}$.
Determine the area A.

Given:

$$
I_{C}=28 \text { in }^{4}
$$

$$
\begin{aligned}
& I_{X}=17 \text { in }^{4} \\
& I_{y^{\prime}}=56 \text { in }^{4} \\
& a=3 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I_{C}=I_{X}+I_{y} \\
& I_{y}=I_{C}-I_{X} \\
& I_{y^{\prime}}=I_{y}+A a^{2} \\
& A=\frac{I_{y^{\prime}}-I_{y}}{a^{2}} \quad A=5.00 \mathrm{in}^{2}
\end{aligned}
$$

Problem 10-26

The polar moment of inertia for the area is $J_{c c}$ about the z^{\prime} axis passing through the centroid C. If the moment of inertia about the y^{\prime} axis is $I_{y^{\prime}}$ and the moment of inertia about the x axis is I_{x}.
Determine the area A.

Given:

$$
\begin{aligned}
& J_{C C}=548 \times 10^{6} \mathrm{~mm}^{4} \\
& I_{y^{\prime}}=383 \times 10^{6} \mathrm{~mm}^{4} \\
& I_{X}=856 \times 10^{6} \mathrm{~mm}^{4} \\
& h=250 \mathrm{~mm}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I_{x^{\prime}}=I_{X}-A h^{2} \\
& J_{C C}=I_{X^{\prime}}+I_{y^{\prime}} \\
& J_{C C}=I_{X}-A h^{2}+I_{y^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{I_{x}+I_{y^{\prime}}-J_{C C}}{h^{2}} \\
& A=11.1 \times 10^{3} \mathrm{~mm}^{2}
\end{aligned}
$$

Problem 10-27

Determine the radius of gyration k_{x} of the column's cross-sectional area.

Given:

$$
\begin{aligned}
& a=100 \mathrm{~mm} \\
& b=75 \mathrm{~mm} \\
& c=90 \mathrm{~mm} \\
& d=65 \mathrm{~mm}
\end{aligned}
$$

Solution:

Cross-sectional area:

$$
A=(2 b)(2 a)-(2 d)(2 c)
$$

Moment of inertia about the x axis:

$$
I_{X}=\frac{1}{12}(2 b)(2 a)^{3}-\frac{1}{12}(2 d)(2 c)^{3}
$$

Radius of gyration about the x axis:

$$
k_{X}=\sqrt{\frac{I_{X}}{A}} \quad k_{X}=74.7 \mathrm{~mm}
$$

Problem 10-28

Determine the radius of gyration k_{y} of the column's cross-sectional area.

Given:

$$
\begin{aligned}
a & =100 \mathrm{~mm} \\
b & =75 \mathrm{~mm}
\end{aligned}
$$

$c=90 \mathrm{~mm}$
$d=65 \mathrm{~mm}$

Solution:

Cross-sectional area:

$$
A=(2 b)(2 a)-(2 d)(2 c)
$$

Moment of inertia about the y axis:

Radius of gyration about the y axis:

$$
k_{y}=\sqrt{\frac{I_{y}}{A}} \quad k_{y}=59.4 \mathrm{~mm}
$$

Problem 10-29

Determine the moment of inertia for the beam's cross-sectional area with respect to the x^{\prime} centroidal axis. Neglect the size of all the rivet heads, R, for the calculation. Handbook values for the area, moment of inertia, and location of the centroid C of one of the angles are listed in the figure.

Solution:

$$
\begin{aligned}
I_{E}= & \frac{1}{12}(15 \mathrm{~mm})(275 \mathrm{~mm})^{3}+4\left[1.32\left(10^{6}\right) \mathrm{mm}^{4}+1.36\left(10^{3}\right) \mathrm{mm}^{2}\left(\frac{275 \mathrm{~mm}}{2}-28 \mathrm{~mm}\right)^{2}\right] \ldots \\
& +2\left[\frac{1}{12}(75 \mathrm{~mm})(20 \mathrm{~mm})^{3}+(75 \mathrm{~mm})(20 \mathrm{~mm})\left(\frac{275 \mathrm{~mm}}{2}+10 \mathrm{~mm}\right)^{2}\right]
\end{aligned}
$$

$$
I_{E}=162 \times 10^{6} \mathrm{~mm}^{4}
$$

Problem 10-30

Locate the centroid y_{c} of the cross-sectional area for the angle. Then find the moment of inertia $I_{x^{\prime}}$ about the x^{\prime} centroidal axis.

Given:

$$
\begin{aligned}
& a=2 \text { in } \\
& b=6 \text { in } \\
& c=6 \text { in } \\
& d=2 \text { in }
\end{aligned}
$$

Solution:

$$
y_{C}=\frac{a c\left(\frac{c}{2}\right)+b d\left(\frac{d}{2}\right)}{a c+b d} \quad y_{C}=2.00 \mathrm{in}
$$

$$
I_{x^{\prime}}=\frac{1}{12} a c^{3}+a c\left(\frac{c}{2}-y_{C}\right)^{2}+\frac{1}{12} b d^{3}+b d\left(y_{C}-\frac{d}{2}\right)^{2} \quad I_{x^{\prime}}=64.00 \mathrm{in}^{4}
$$

Problem 10-31

Locate the centroid x_{C} of the cross-sectional area for the angle. Then find the moment
of inertia $I_{y^{\prime}}$ about the centroidal y^{\prime} axis.

Given:

$$
\begin{aligned}
& a=2 \text { in } \\
& b=6 \text { in } \\
& c=6 \text { in } \\
& d=2 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& x_{C}=\frac{a c\left(\frac{a}{2}\right)+b d\left(a+\frac{b}{2}\right)}{a c+b d} \quad x_{C}=3.00 \text { in } \\
& I_{y^{\prime}}=\frac{1}{12} c a^{3}+c a\left(x_{C}-\frac{a}{2}\right)^{2}+\frac{1}{12} d b^{3}+d b\left(a+\frac{b}{2}-x_{C}\right)^{2} \quad I_{y^{\prime}}=136.00 \text { in }^{4}
\end{aligned}
$$

Problem 10-32

Determine the distance x_{c} to the centroid of the beam's cross-sectional area: then find the moment of inertia about the y^{\prime} axis.

Given:

$$
\begin{aligned}
& a=40 \mathrm{~mm} \\
& b=120 \mathrm{~mm} \\
& c=40 \mathrm{~mm} \\
& d=40 \mathrm{~mm}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& x_{C}=\frac{2(a+b) c\left(\frac{a+b}{2}\right)+2 a d \frac{a}{2}}{2(a+b) c+2 d a} \quad x_{C}=68.00 \mathrm{~mm} \\
& I_{y^{\prime}}=2\left[\frac{1}{12} c(a+b)^{3}+c(a+b)\left(\frac{a+b}{2}-x_{C}\right)^{2}\right]+\frac{1}{12} 2 d a^{3}+2 d a\left(x_{C}-\frac{a}{2}\right)^{2} \\
& I_{y^{\prime}}=36.9 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Problem 10-33

Determine the moment of inertia of the beam's cross-sectional area about the x^{\prime} axis.

Given:

$$
\begin{aligned}
a & =40 \mathrm{~mm} \\
b & =120 \mathrm{~mm} \\
c & =40 \mathrm{~mm} \\
d & =40 \mathrm{~mm}
\end{aligned}
$$

Solution:

$$
I_{x^{\prime}}=\frac{1}{12}(a+b)(2 c+2 d)^{3}-\frac{1}{12} b(2 d)^{3} \quad I_{x^{\prime}}=49.5 \times 10^{6} \mathrm{~mm}^{4}
$$

Problem 10-34

Determine the moments of inertia for the shaded area about the x and y axes.

Given:
$a=3$ in
$b=3$ in
$c=6$ in
$d=4$ in
$r=2$ in

Solution:

$I_{X}=\frac{1}{3}(a+b)(c+d)^{3}-\left[\frac{1}{36} b c^{3}+\frac{1}{2} b c\left(d+\frac{2 c}{3}\right)^{2}\right]-\left(\frac{\pi r^{4}}{4}+\pi r^{2} d^{2}\right)$

$$
\begin{aligned}
& I_{X}=1192 \text { in }^{4} \\
& I_{y}=\frac{1}{3}(c+d)(a+b)^{3}-\left[\frac{1}{36} c b^{3}+\frac{1}{2} b c\left(a+\frac{2 b}{3}\right)^{2}\right]-\left(\frac{\pi r^{4}}{4}+\pi r^{2} a^{2}\right) \\
& I_{y}=364.84 \text { in }^{4}
\end{aligned}
$$

Problem 10-35

Determine the location of the centroid y^{\prime} of the beam constructed from the two channels and the cover plate. If each channel has a cross-sectional area A_{c} and a moment of inertia about a horizontal axis passing through its own centroid C_{c}, of $I_{x^{\prime} c,}$, determine the moment of inertia of the beam's cross-sectional area about the x^{\prime} axis.

Given:

$$
\begin{aligned}
& a=18 \mathrm{in} \\
& b=1.5 \mathrm{in} \\
& c=20 \mathrm{in} \\
& d=10 \mathrm{in} \\
& A_{C}=11.8 \mathrm{in}^{2} \\
& I_{X^{\prime} C}=349 \mathrm{in}^{4}
\end{aligned}
$$

Solution:

$$
\begin{gathered}
y_{C}=\frac{2 A_{C} d+a b\left(c+\frac{b}{2}\right)}{2 A_{C}+a b} \quad y_{C}=15.74 \text { in } \\
I_{X^{\prime}}=\left[I_{X^{\prime} C}+A_{C}\left(y_{C}-d\right)^{2}\right] 2+\frac{1}{12} a b^{3}+a b\left(c+\frac{b}{2}-y_{C}\right)^{2} \quad I_{X^{\prime}}=2158 \mathrm{in}^{4}
\end{gathered}
$$

Problem 10-36

Compute the moments of inertia I_{x} and I_{y} for the beam's cross-sectional area about
the x and y axes.

Given:

$$
\begin{aligned}
& a=30 \mathrm{~mm} \\
& b=170 \mathrm{~mm} \\
& c=30 \mathrm{~mm} \\
& d=140 \mathrm{~mm} \\
& e=30 \mathrm{~mm} \\
& f=30 \mathrm{~mm} \\
& g=70 \mathrm{~mm}
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
I_{X}=\frac{1}{3} a(c+d+e)^{3}+\frac{1}{3} b c^{3}+\frac{1}{12} g e^{3}+g e\left(c+d+\frac{e}{2}\right)^{2} & I_{X}=154 \times 10^{6} \mathrm{~mm}^{4} \\
I_{y}=\frac{1}{3} c(a+b)^{3}+\frac{1}{3} d f^{3}+\frac{1}{3} c(f+g)^{3} & I_{y}=91.3 \times 10^{6} \mathrm{~mm}^{4}
\end{array}
$$

Problem 10-37

Determine the distance y_{c} to the centroid C of the beam's cross-sectional area and then compute the moment of inertia $I_{c x^{\prime}}$ about the x^{\prime} axis.
Given:

$$
\begin{array}{ll}
a=30 \mathrm{~mm} & e=30 \mathrm{~mm} \\
b=170 \mathrm{~mm} & f=30 \mathrm{~mm} \\
c=30 \mathrm{~mm} & g=70 \mathrm{~mm} \\
d=140 \mathrm{~mm} &
\end{array}
$$

Solution:

$$
\begin{aligned}
& y_{C}= \frac{(a+b) c\left(\frac{c}{2}\right)+d f\left(c+\frac{d}{2}\right)+(f+g) e\left(c+d+\frac{e}{2}\right)}{(a+b) c+d f+(f+g) e} \\
& y_{C}=80.7 \mathrm{~mm} \\
& I_{X^{\prime}}= \frac{1}{12}(a+b) c^{3}+(a+b) c\left(y_{C}-\frac{c}{2}\right)^{2}+\frac{1}{12} f d^{3}+f d\left(c+\frac{d}{2}-y_{C}\right)^{2} \ldots \\
&+\frac{1}{12}(f+g) e^{3}+(f+g) e\left(c+d+\frac{e}{2}-y_{C}\right)^{2} \\
& I_{X^{\prime}}=67.6 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Problem 10-38

Determine the distance x_{c} to the centroid C of the beam's cross-sectional area and then compute the moment of inertia $I_{y^{\prime}}$ about the y^{\prime} axis.

Given:

$$
\begin{aligned}
& a=30 \mathrm{~mm} \\
& b=170 \mathrm{~mm} \\
& c=30 \mathrm{~mm} \\
& d=140 \mathrm{~mm} \\
& e=30 \mathrm{~mm} \\
& f=30 \mathrm{~mm} \\
& g=70 \mathrm{~mm}
\end{aligned}
$$

Solution:

$$
\begin{gathered}
x_{C}=\frac{b c\left(\frac{b}{2}+a\right)+(c+d) f\left(\frac{f}{2}\right)+(f+g) e \frac{f+g}{2}}{b c+b c+(f+g) e} \\
x_{C}=61.6 \mathrm{~mm}
\end{gathered}
$$

$$
\begin{aligned}
I_{y^{\prime}}= & \frac{1}{12} c(a+b)^{3}+c(a+b)\left(\frac{a+b}{2}-x_{C}\right)^{2}+\frac{1}{12} d f^{3}+d f\left(x_{C}-\frac{f}{2}\right)^{2} \ldots \\
& +\frac{1}{12} e(f+g)^{3}+e(f+g)\left(x_{c}-\frac{f+g}{2}\right)^{2} \\
& I_{y^{\prime}}=41.2 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Problem 10-39

Determine the location y_{C} of the centroid C of the beam's cross-sectional area. Then compute the moment of inertia of the area about the x^{\prime} axis

Given:

$$
\begin{aligned}
& a=20 \mathrm{~mm} \\
& b=125 \mathrm{~mm} \\
& c=20 \mathrm{~mm} \\
& f=120 \mathrm{~mm} \\
& g=20 \mathrm{~mm} \\
& d=\frac{f-c}{2} \\
& e=\frac{f-c}{2}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& y_{C}=\frac{(a+g) f\left(\frac{a+g}{2}\right)+c b\left(a+g+\frac{b}{2}\right)}{(a+g) f+c b} \\
& y_{C}=48.25 \mathrm{~mm} \\
& I_{X^{\prime}}=\frac{1}{12} f(a+g)^{3}+(f)(a+g)\left(y_{C}-\frac{a+g}{2}\right)^{2}+\frac{1}{12} c b^{3}+c b\left(\frac{b}{2}+a+g-y_{C}\right)^{2} \\
& I_{X^{\prime}}=15.1 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Problem 10-40

Determine y_{c}, which locates the centroidal axis x^{\prime} for the cross-sectional area of the T-beam, and then find the moments of inertia $I_{x^{\prime}}$ and $I_{y^{\prime}}$.

Given:

$$
\begin{aligned}
& a=25 \mathrm{~mm} \\
& b=250 \mathrm{~mm} \\
& c=50 \mathrm{~mm} \\
& d=150 \mathrm{~mm}
\end{aligned}
$$

Solutuion:

$$
y_{C}=\frac{\left(\frac{b}{2}\right) b 2 a+\left(b+\frac{c}{2}\right) 2 d c}{b 2 a+c 2 d}
$$

$$
y_{C}=207 \mathrm{~mm}
$$

$$
I_{X^{\prime}}=\frac{1}{12} 2 a b^{3}+2 a b\left(y_{c}-\frac{b}{2}\right)^{2}+\frac{1}{12} 2 d c^{3}+c 2 d\left(b+\frac{c}{2}-y_{C}\right)^{2}
$$

$$
I_{X^{\prime}}=222 \times 10^{6} \mathrm{~mm}^{4}
$$

$$
I_{y^{\prime}}=\frac{1}{12} b(2 a)^{3}+\frac{1}{12} c(2 d)^{3}
$$

$$
I_{y^{\prime}}=115 \times 10^{6} \mathrm{~mm}^{4}
$$

Problem 10-41

Determine the centroid y^{\prime} for the beam's cross-sectional area; then find $I_{\mathrm{x}^{\prime}}$.
Given:

$$
a=25 \mathrm{~mm}
$$

$$
\begin{aligned}
& b=100 \mathrm{~mm} \\
& c=25 \mathrm{~mm} \\
& d=50 \mathrm{~mm} \\
& e=75 \mathrm{~mm}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
y_{C}= & \frac{2(a+e+d) c\left(\frac{c}{2}\right)+2 a b\left(c+\frac{b}{2}\right)}{2(a+e+d) c+2 a b} \\
I_{X^{\prime}}= & \frac{2}{12}(a+e+d) c^{3}+2(a+e+d) c\left(y_{C}-\frac{c}{2}\right)^{2} \ldots \\
& +2\left[\frac{1}{12} a b^{3}+a b\left(c+\frac{b}{2}-y_{C}\right)^{2}\right] \\
I_{X^{\prime}}= & 16.3 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Problem 10-42

Determine the moment of inertia for the beam's cross-sectional area about the y axis.

Given:
$a=25 \mathrm{~mm}$
$b=100 \mathrm{~mm}$
$c=25 \mathrm{~mm}$
$d=50 \mathrm{~mm}$
$e=75 \mathrm{~mm}$

Solution:

$$
\begin{aligned}
& l_{y}=\frac{1}{12} 2^{3}(a+d+e)^{3} c+2\left[\frac{1}{12} b a^{3}+a b\left(e+\frac{a}{2}\right)^{2}\right] \\
& l_{y}=94.8 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Problem 10-43

Determine the moment for inertia I_{x} of the shaded area about the x axis.

Given:

$$
\begin{aligned}
& a=6 \text { in } \\
& b=6 \text { in } \\
& c=3 \text { in }
\end{aligned}
$$

$$
d=6 \text { in }
$$

Solution:

$$
I_{X}=\frac{b a^{3}}{3}+\frac{1}{12} c a^{3}+\frac{1}{12}(b+c) d^{3} \quad I_{X}=648 \text { in }^{4}
$$

Problem 10-44

Determine the moment for inertia I_{y} of the shaded area about the y axis.

Given:

$$
\begin{aligned}
& a=6 \text { in } \\
& b=6 \text { in } \\
& c=3 \text { in } \\
& d=6 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I_{y}=\frac{a b^{3}}{3}+\frac{1}{36} a c^{3}+\frac{1}{2} a c\left(b+\frac{c}{3}\right)^{2}+\frac{1}{36} d(b+c)^{3}+\frac{1}{2} d(b+c)\left[\frac{2(b+c)}{3}\right]^{2} \\
& I_{y}=1971 \mathrm{in}^{4}
\end{aligned}
$$

Problem 10-45

Locate the centroid y_{c} of the channel's cross-sectional area, and then determine the moment of inertia with respect to the x^{\prime} axis passing through the centroid.

Given:

$$
\begin{aligned}
& a=2 \text { in } \\
& b=12 \text { in } \\
& c=2 \text { in } \\
& d=4 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& y_{C}=\frac{\frac{c}{2} b c+2\left(\frac{c+d}{2}\right)(c+d) a}{b c+2(c+d) a} \\
& y_{C}=2 \text { in } \\
& I_{X}=\frac{1}{12} b c^{3}+b c\left(y_{C}-\frac{c}{2}\right)^{2}+\frac{2}{12} a(c+d)^{3}+2 a(c+d)\left(\frac{c+d}{2}-y_{C}\right)^{2} \\
& I_{X}=128 \text { in }^{4}
\end{aligned}
$$

Problem 10-46

Determine the moments for inertia I_{x} and I_{y} of the shaded area.

Given:

$$
r_{1}=2 \mathrm{in}
$$

$$
r_{2}=6 \text { in }
$$

Solution:

$$
\begin{array}{ll}
I_{X}=\left(\frac{\pi r_{2}^{4}}{8}-\frac{\pi r_{1}^{4}}{8}\right) & I_{X}=503 \mathrm{in}^{4} \\
I_{y}=\left(\frac{\pi r_{2}^{4}}{8}-\frac{\pi r_{1}^{4}}{8}\right) & I_{y}=503 \mathrm{in}^{4}
\end{array}
$$

Problem 10-47

Determine the moment of inertia for the parallelogram about the x^{\prime} axis, which passes through the centroid C of the area.

Solution:

$$
\begin{aligned}
& h=(a) \sin (\theta) \\
& I_{X C}=\frac{1}{12} b h^{3}=\frac{1}{12} b[(a) \sin (\theta)]^{3}=\frac{1}{12} a^{3} b \sin (\theta)^{3} \\
& I_{X C}=\frac{1}{12} a^{3} b \sin (\theta)^{3}
\end{aligned}
$$

Problem 10-48

Determine the moment of inertia for the parallelogram about the y^{\prime} axis, which passes through the centroid C of the area.

Solution:

$$
\begin{aligned}
A= & b(a) \sin (\theta) \\
x_{C}= & \frac{1}{b(a) \sin (\theta)}\left[\begin{array}{l}
\left.\left.b(a) \sin (\theta) \frac{b}{2}-\frac{1}{2}(a) \cos (\theta)(a) \sin (\theta) \frac{(a) \cos (\theta)}{3}\right] \cdots\right]=\frac{b+(a) \cos (\theta)}{2} \\
+\frac{1}{2}(a) \cos (\theta)(a) \sin (\theta)\left[b+\frac{(a) \cos (\theta)}{3}\right]
\end{array}\right] \\
I_{y^{\prime}}= & \frac{1}{12}(a) \sin (\theta) b^{3}+(a) \sin (\theta) b\left(\frac{b}{2}-x_{C}\right)^{2} \ldots \\
& +-\left[\frac{1}{36}(a) \sin (\theta)[(a) \cos (\theta)]^{3}+\frac{1}{2}(a) \sin (\theta)(a) \cos (\theta)\left[x_{C}-\frac{(a) \cos (\theta)}{3}\right]^{2}\right] \ldots \\
& +\frac{1}{36}(a) \sin (\theta)[(a) \cos (\theta)]^{3}+\frac{1}{2}(a) \sin (\theta)(a) \cos (\theta)\left[b+\frac{(a) \cos (\theta)}{3}-x_{C}\right]^{2}
\end{aligned}
$$

Simplifying we find.

$$
I_{y^{\prime}}=\frac{a b}{12}\left(b^{2}+a^{2} \cos (\theta)^{2}\right) \sin (\theta)
$$

Problem 10-49

Determine the moments of inertia for the triangular area about the x^{\prime} and y^{\prime} axes, which pass through the centroid C of the area.

Solution:

$$
\begin{aligned}
& I_{x^{\prime}}=\frac{1}{36} b h^{3} \\
& x_{C}=\frac{\frac{2}{3} a \frac{1}{2} h a+\left(a+\frac{b-a}{3}\right) \frac{1}{2} h(b-a)}{\frac{1}{2} h a+\frac{1}{2} h(b-a)}=\frac{b+a}{3} \\
& I_{y^{\prime}}=\frac{1}{36} h a^{3}+\frac{1}{2} h a\left(\frac{b+a}{3}-\frac{2}{3} a\right)^{2}+\frac{1}{36} h(b-a)^{3}+\frac{1}{2} h(b-a)\left(a+\frac{b-a}{3}-\frac{b+a}{3}\right)^{2} \\
& I_{y^{\prime}}=\frac{1}{36} h b\left(b^{2}-a b+a^{2}\right)
\end{aligned}
$$

Problem 10-50

Determine the moment of inertia for the beam's cross-sectional area about the x^{\prime} axis passing through the centroid C of the cross section.

Given:
$a=100 \mathrm{~mm}$
$b=25 \mathrm{~mm}$
$c=200 \mathrm{~mm}$
$\theta=45 \mathrm{deg}$

Solution:

Problem 10-51

Determine the moment of inertia of the composite area about the x axis.

Given:

$$
a=2 \text { in }
$$

$$
b=4 \text { in }
$$

$$
c=1 \text { in }
$$

$$
d=4 \text { in }
$$

Solution:

$$
\begin{aligned}
& I_{X}=\frac{1}{3}(a+b)(2 a)^{3}-\left(\frac{\pi c^{4}}{4}+\pi c^{2} a^{2}\right)+\int_{0}^{d} \frac{1}{3}\left[2 a\left[1-\left(\frac{x}{d}\right)^{2}\right]^{3} \mathrm{~d} x\right. \\
& I_{X}=153.7 \mathrm{in}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& I_{X^{\prime}}=\frac{1}{12}\left[2 a[2(c \sin (\theta)+b)]^{3}\right] \ldots \\
& +4\left[\frac{1}{12}(c \cos (\theta))(c \sin (\theta))^{3}\right]-2\left[\frac{1}{4} c^{4}\left(\theta-\frac{1}{2} \sin (2 \theta)\right)\right] \\
& I_{X^{\prime}}=520 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Problem 10-52

Determine the moment of inertia of the composite area about the y axis.

Given:

$$
\begin{aligned}
& a=2 \text { in } \\
& b=4 \text { in } \\
& c=1 \text { in } \\
& d=4 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I_{y}=\frac{1}{3}(2 a)(a+b)^{3}-\left(\frac{\pi c^{4}}{4}+\pi c^{2} b^{2}\right)+\int_{0}^{d} x^{2} 2 a\left[1-\left(\frac{x}{d}\right)^{2}\right] \mathrm{d} x \\
& I_{y}=271.1 \mathrm{in}^{4}
\end{aligned}
$$

Problem 10-53

Determine the radius of gyration k_{x} for the column's cross-sectional area.

Given:
$a=200 \mathrm{~mm}$
$b=100 \mathrm{~mm}$

Solution:
$I_{X}=\frac{1}{12}(2 a+b) b^{3}+2\left[\frac{1}{12} b a^{3}+b a\left(\frac{a}{2}+\frac{b}{2}\right)^{2}\right]$
$k_{X}=\sqrt{\frac{I_{X}}{b(2 a+b)+2 a b}} \quad k_{X}=109 \mathrm{~mm}$

Problem 10-54

Determine the product of inertia for the shaded portion of the parabola with respect to the x and y axes.

Given:
$a=2$ in
$b=1$ in

$I_{x y}=\int_{-a}^{a} \int_{b\left(\frac{x}{a}\right)^{2}}^{b} x y \mathrm{~d} y \mathrm{~d} x \quad I_{x y}=0.00 \mathrm{~m}^{4}$

Also because the area is symmetric about the y axis, the product of inertia must be zero.

Problem 10-55

Determine the product of inertia for the shaded area with respect to the x and y axes.

Solution:

$$
I_{x y}=\int_{0}^{b} \int_{0}^{h\left(\frac{x}{b}\right)^{\frac{1}{3}}} x y \mathrm{~d} y \mathrm{~d} x=\frac{3}{16} b^{2} h^{2}
$$

$$
I_{x y}=\frac{3}{16} b^{2} h^{2}
$$

Problem 10-56

Determine the product of inertia of the shaded area of the ellipse with respect to the x and y axes.

Given:

$$
\begin{aligned}
& a=4 \text { in } \\
& b=2 \text { in }
\end{aligned}
$$

Solution:

$$
I_{x y}=\int_{0}^{a} x\left[\frac{b \sqrt{1-\left(\frac{x}{a}\right)^{2}}}{2}\right] b \sqrt{1-\left(\frac{x}{a}\right)^{2}} \mathrm{~d} x \quad I_{x y}=8.00 \mathrm{in}^{4}
$$

Problem 10-57

Determine the product of inertia of the parabolic area with respect to the x and y axes.

Solution:

$$
I_{x y}=\int_{0}^{a} x\left(\frac{b \sqrt{\frac{x}{a}}}{2}\right) b \sqrt{\frac{x}{a}} \mathrm{~d} x=\frac{1}{6} a^{3} \frac{b^{2}}{a} \quad I_{x y}=\frac{1}{6} a^{2} b^{2}
$$

Problem 10-58

Determine the product of inertia for the shaded area with respect to the x and y axes.

Given:

$$
\begin{aligned}
& a=8 \text { in } \\
& b=2 \text { in }
\end{aligned}
$$

Solution:

$$
I_{x y}=\int_{0}^{a} x \frac{b\left(\frac{x}{a}\right)^{\frac{1}{3}}}{2} b\left(\frac{x}{a}\right)^{\frac{1}{3}} \mathrm{~d} x \quad I_{x y}=48.00 \text { in }^{4}
$$

Problem 10-59

Determine the product of inertia for the shaded parabolic area with respect to the x and y axes.

Given:

$$
\begin{aligned}
& a=4 \text { in } \\
& b=2 \text { in }
\end{aligned}
$$

Solution:

$$
I_{x y}=\int_{0}^{a} x \frac{b}{2} \sqrt{\frac{x}{a}} b \sqrt{\frac{x}{a}} \mathrm{~d} x
$$

$$
I_{x y}=10.67 \mathrm{in}^{4}
$$

Problem 10-60

Determine the product of inertia for the shaded area with respect to the x and y axes.

Given:

$$
\begin{aligned}
& a=2 \mathrm{~m} \\
& b=1 \mathrm{~m}
\end{aligned}
$$

Solution:

$$
I_{x y}=\int_{0}^{a} x\left(\frac{b}{2} \sqrt{1-\frac{x}{a}}\right) b \sqrt{1-\frac{x}{a}} \mathrm{~d} x \quad I_{x y}=0.333 \mathrm{~m}^{4}
$$

Problem 10-61

Determine the product of inertia for the shaded area with respect to the x and y axes.

Solution:

$$
I_{x y}=\int_{0}^{h} y \frac{1}{2}\left[b\left(\frac{y}{h}\right)^{\frac{1}{3}}\right]^{2} \mathrm{~d} y=\frac{3}{16} b^{2} h^{2}
$$

$$
I_{x y}=\frac{3}{16} h^{2} b^{2}
$$

Problem 10-62

Determine the product of inertia of the shaded area with respect to the x and y axes.

Given:

$$
\begin{aligned}
& a=4 \text { in } \\
& b=2 \text { in }
\end{aligned}
$$

Solution:

Problem 10-63

Determine the product of inertia for the shaded area with respect to the x and y axes.

Solution:

$$
I_{x y}=\int_{0}^{a} x\left(\frac{b}{2} \frac{x^{n}}{a^{n}}\right) b \frac{x^{n}}{a^{n}} \mathrm{~d} x \quad I_{x}=\frac{a^{2} b^{2}}{4(n+1)} \quad \text { provided } n \neq-1
$$

Problem 10-64

Determine the product of inertia for the shaded area with respect to the x and y axes.

Given:

$$
a=4 \mathrm{ft}
$$

Solution:

$$
\begin{aligned}
& I_{x y}=\int_{0}^{a} x \frac{(\sqrt{a}-\sqrt{x})^{2}}{2}(\sqrt{a}-\sqrt{x})^{2} \mathrm{~d} x \\
& I_{x y}=0.91 \mathrm{ft}^{4}
\end{aligned}
$$

Problem 10-65

Determine the product of inertia for the shaded area with respect to the x and y axes. Use Simpson's rule to evaluate the integral.

Given:

$$
\begin{aligned}
a & =1 \mathrm{~m} \\
b & =0.8 \mathrm{~m}
\end{aligned}
$$

Solution:

$$
I_{x y}=\int_{0}^{a} x\left(\frac{b}{2}\right) e^{\left(\frac{x}{a}\right)^{2}} b e^{\left(\frac{x}{a}\right)^{2}} \mathrm{~d} x \quad I_{x y}=
$$

Problem 10-66

Determine the product of inertia for the parabolic area with respect to the x and y axes.

Given:

$$
a=1 \text { in }
$$

$b=2$ in
Solution:

Due to symmetry about y axis

$$
I_{x y}=0
$$

$$
I_{x y}=\int_{-a}^{a} x \frac{b+b \frac{x^{2}}{a^{2}}}{2}\left(b-b \frac{x^{2}}{a^{2}}\right) \mathrm{d} x
$$

$$
I_{x y}=0.00 \mathrm{~m}^{4}
$$

Problem 10-67

Determine the product of inertia for the cross-sectional area with respect to the x and y axes that have their origin located at the centroid C.

Given:

$$
\begin{aligned}
& a=20 \mathrm{~mm} \\
& b=80 \mathrm{~mm} \\
& c=100 \mathrm{~mm}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I_{x y}=2 b a \frac{c}{2}\left(\frac{b}{2}-\frac{a}{2}\right) \\
& I_{x y}=4800000.00 \mathrm{~mm}^{4}
\end{aligned}
$$

Problem 10-68

Determine the product of inertia for the beam's cross-sectional area with respect to the x and y axes.

Given:
$a=12$ in
$b=8$ in
$c=1$ in
$d=3$ in

Solution:

$$
I_{x y}=\left(\frac{c}{2}\right)\left(\frac{b}{2}\right) c b+\left(\frac{a}{2}\right)\left(\frac{c}{2}\right)(a-2 c) c+d c\left(a-\frac{c}{2}\right)\left(\frac{d}{2}\right) \quad I_{x y}=97.75 \mathrm{in}^{4}
$$

Problem 10-69

Determine the location $\left(x_{c}, y_{c}\right)$ of the centroid C of the angle's cross-sectional area, and then
compute the product of inertia with respect to the x^{\prime} and y^{\prime} axes.

Given:

$$
\begin{aligned}
& a=18 \mathrm{~mm} \\
& b=150 \mathrm{~mm}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& x_{C}=\frac{\left(\frac{a}{2}\right) a b+a(b-a)\left(\frac{a+b}{2}\right)}{a b+a(b-a)} \\
& x_{C}=44.1 \mathrm{~mm} \\
& y_{C}=\frac{\left(\frac{b}{2}\right) a b+\left(\frac{a}{2}\right) a(b-a)}{a b+a(b-a)}
\end{aligned}
$$

$$
y_{C}=44.1 \mathrm{~mm}
$$

$$
I_{x^{\prime} y^{\prime}}=a b \cdot-\left(x_{C}-\frac{a}{2}\right)\left(\frac{b}{2}-y_{C}\right)+a(b-a) \cdot-\left(y_{C}-\frac{a}{2}\right)\left(\frac{b}{2}+\frac{a}{2}-x_{C}\right)
$$

$$
I_{x^{\prime} y^{\prime}}=-6.26 \times 10^{6} \mathrm{~mm}^{4}
$$

Problem 10-70

Determine the product of inertia of the beam's cross-sectional area with respect to the x and y axes that have their origin located at the centroid C.

Given:

$$
\begin{aligned}
& a=5 \mathrm{~mm} \\
& b=30 \mathrm{~mm} \\
& c=50 \mathrm{~mm}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& x_{C}=\frac{a(b-a)\left(\frac{a+b}{2}\right)+c a\left(\frac{a}{2}\right)}{a(b-a)+a c} \\
& x_{C}=7.50 \mathrm{~mm} \\
& y_{C}=\frac{a(b-a)\left(\frac{a}{2}\right)+c a\left(\frac{c}{2}\right)}{a(b-a)+c a} \\
& y_{C}=17.50 \mathrm{~mm} \\
& I_{x y}=(b-a) a\left(\frac{a}{2}-y_{C}\right)\left(\frac{a+b}{2}-x_{C}\right)+a c\left(\frac{a}{2}-x_{C}\right)\left(\frac{c}{2}-y_{C}\right) \\
& I_{x y}=-28.1 \times 10^{3} \mathrm{~mm}^{4}
\end{aligned}
$$

Problem 10-71

Determine the product of inertia for the shaded area with respect to the x and y axes.

Given:
$a=2$ in
$b=1$ in
$c=2$ in
$d=4$ in

Solution:

$$
\begin{aligned}
& l_{x y}=2 a(c+d) a\left(\frac{c+d}{2}\right)-\pi b^{2} a d \\
& l_{x y}=119 \mathrm{in}^{4}
\end{aligned}
$$

Problem 10-72

Determine the product of inertia for the beam's cross-sectional area with respect to the x and y axes that have their origin located at the centroid C.

Given:

$$
a=1 \text { in } \quad b=5 \text { in } \quad c=5 \text { in }
$$

Solution:

$$
\begin{aligned}
& I_{x y}=2 b a\left(\frac{a}{2}-\frac{b}{2}\right)\left(c+\frac{a}{2}\right) \\
& I_{x y}=-110 \text { in }^{4}
\end{aligned}
$$

Problem 10-73

Determine the product of inertia for the cross-sec-tional area with respect to the x and y axes.

Given:

$$
\begin{aligned}
& a=4 \mathrm{in} \\
& b=1 \mathrm{in} \\
& c=6 \mathrm{in}
\end{aligned}
$$

Solution:

$$
l_{x y}=b a\left(\frac{a}{2}\right)\left(c+\frac{3 b}{2}\right)+c b\left(b+\frac{c}{2}\right)\left(\frac{b}{2}\right) \quad l_{x y}=72 \text { in }^{4}
$$

Problem 10-74

Determine the product of inertia for the beam's cross-sectional area with respect to the u and v axes.

Given:

$$
\begin{aligned}
& a=150 \mathrm{~mm} \\
& b=200 \mathrm{~mm} \\
& t=20 \mathrm{~mm} \\
& \theta=20 \mathrm{deg}
\end{aligned}
$$

Solution:

Moments of inertia I_{x} and I_{y} :

$$
\begin{array}{ll}
I_{X}=\frac{1}{12} 2 a(2 b)^{3}-\frac{1}{12}(2 a-t)(2 b-2 t)^{3} & I_{X}=511.36 \times 10^{6} \mathrm{~mm}^{4} \\
I_{y}=\frac{2}{12} t(2 a)^{3}+\frac{2}{12}(b-t) t^{3} & I_{y}=90240000.00 \mathrm{~mm}^{4}
\end{array}
$$

The section is symmetric about both x and y axes;

$$
I_{x y}=0 \mathrm{~mm}^{4}
$$

therefore $I_{x y}=0$.

$$
I_{u v}=\left(\frac{I_{x}-I_{y}}{2}\right) \sin (2 \theta)+I_{x y} \cos (2 \theta) \quad I_{u v}=135 \times 10^{6} \mathrm{~mm}^{4}
$$

Problem 10-75

Determine the moments of inertia I_{u} and I_{v} and the product of inertia $I_{u v}$ for the rectangular area. The u and v axes pass through the centroid C.

Given:
$a=40 \mathrm{~mm}$
$b=160 \mathrm{~mm}$
$\theta=30 \mathrm{deg}$

Solution:

$$
\begin{aligned}
& I_{x}=\frac{1}{12} a b^{3} \quad I_{y}=\frac{1}{12} b a^{3} \quad I_{x y}=0 \mathrm{~mm}^{4} \\
& I_{u}=\frac{I_{x}+I_{y}}{2}+\left(\frac{I_{x}-I_{y}}{2}\right) \cos (2 \theta)-I_{x y} \sin (2 \theta) \\
& I_{u}=10.5 \times 10^{6} \mathrm{~mm}^{4} \\
& I_{V}=\left(\frac{I_{x}+I_{y}}{2}\right)-\left(\frac{I_{x}-I_{y}}{2}\right) \cos (2 \theta)-I_{x y} \sin (2 \theta) \\
& I_{v}=4.05 \times 10^{6} \mathrm{~mm}^{4} \\
& I_{u v}=\left(\frac{I_{x}-I_{y}}{2}\right) \sin ^{2}(2 \theta)+I_{x y} \cos (2 \theta) \\
& I_{u v}=5.54 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Problem 10-76

Determine the distance y_{c} to the centroid of the area and then calculate the moments of inertia I_{u} and I_{v} for the channel`s cross-sectional area. The u and v axes have their origin at the centroid C. For the calculation, assume all corners to be square.

Given:

$$
\begin{aligned}
& a=150 \mathrm{~mm} \\
& b=10 \mathrm{~mm} \\
& c=50 \mathrm{~mm} \\
& \theta=20 \mathrm{deg}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
y_{C} & =\frac{2 a b \frac{b}{2}+2 c b\left(b+\frac{c}{2}\right)}{2 a b+2 c b} \\
I_{X} & =\frac{1}{12} 2 a b^{3}+2 a b\left(y_{C}-\frac{b}{2}\right)^{2}+2\left[\frac{1}{12} b c^{3}+b c\left(b+\frac{c}{2}-y_{C}\right)^{2}\right]
\end{aligned}
$$

$$
y_{C}=12.50 \mathrm{~mm}
$$

$$
I_{X}=908.3 \times 10^{3} \mathrm{~mm}^{4}
$$

$$
I_{y}=\frac{1}{12} b(2 a)^{3}+2\left[\frac{1}{12} c b^{3}+c b\left(a-\frac{b}{2}\right)^{2}\right] \quad I_{y}=43.53 \times 10^{6} \mathrm{~mm}^{4}
$$

(By symmetry)

$$
I_{x y}=0 \mathrm{~mm}^{4}
$$

$$
\begin{array}{ll}
I_{u}=\left(\frac{I_{x}+I_{y}}{2}\right)+\left(\frac{I_{x}-I_{y}}{2}\right) \cos (2 \theta)-I_{x y} \sin (2 \theta) & I_{u}=5.89 \times 10^{6} \mathrm{~mm}^{4} \\
I_{V}=\left(\frac{I_{x}+I_{y}}{2}\right)-\left(\frac{I_{x}-I_{y}}{2}\right) \cos (2 \theta)+I_{x y} \sin (2 \theta) & I_{V}=38.5 \times 10^{6} \mathrm{~mm}^{4}
\end{array}
$$

Problem 10-77

Determine the moments of inertia for the shaded area with respect to the u and v axes.

Given:

$$
\begin{aligned}
& a=0.5 \mathrm{in} \\
& b=4 \mathrm{in} \\
& c=5 \mathrm{in} \\
& \theta=30 \mathrm{deg}
\end{aligned}
$$

Solution:

Moment and Product of Inertia about x and y Axes: Since the shaded area is symmetrical about the x axis,

$$
I_{x y}=0 \text { in }^{4}
$$

$$
\begin{array}{rlr}
I_{X}=\frac{1}{12} 2 a c^{3}+\frac{1}{12} b(2 a)^{3} & I_{X}=10.75 \text { in }^{4} \\
I_{y}=\frac{1}{12} 2 a b^{3}+2 a b\left(a+\frac{b}{2}\right)^{2}+\frac{1}{12} c(2 a)^{3} & I_{y}=30.75 \text { in }^{4}
\end{array}
$$

Moment of Inertia about the Inclined u and v Axes

$$
\begin{array}{ll}
I_{u}=\left(\frac{I_{x}+I_{y}}{2}\right)+\left(\frac{I_{x}-I_{y}}{2}\right) \cos (2 \theta)-I_{x y} \sin (2 \theta) & I_{u}=15.75 \mathrm{in}^{4} \\
I_{V}=\left(\frac{I_{x}+I_{y}}{2}\right)-\left(\frac{I_{x}-I_{y}}{2}\right) \cos (2 \theta)+I_{x y} \sin (2 \theta) & I_{v}=25.75 \mathrm{in}^{4}
\end{array}
$$

Problem 10-78

Determine the directions of the principal axes with origin located at point O, and the principal moments of inertia for the rectangular area about these axes.

Given:

$$
\begin{aligned}
& a=6 \text { in } \\
& b=3 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
I_{X}=\frac{1}{3} b a^{3} & I_{X}=216 \mathrm{in}^{4} \\
I_{y}=\frac{1}{3} a b^{3} & I_{y}=54 \text { in }^{4} \\
I_{x y}=\frac{a}{2} \frac{b}{2} a b & I_{x y}=81 \text { in }^{4}
\end{array}
$$

$$
\begin{array}{ll}
\tan (2 \theta)=\frac{-2 I_{x y}}{I_{x}-I_{y}} \quad \theta=\frac{1}{2} \operatorname{atan}\left(2 \frac{I_{x y}}{-I_{x}+I_{y}}\right) & \theta=-22.5 \mathrm{deg} \\
I_{\max }=\frac{I_{x}+I_{y}}{2}+\sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)^{2}+I_{x y}{ }^{2}} & I_{\max }=250 \mathrm{in}^{4} \\
I_{\min }=\frac{I_{x}+I_{y}}{2}-\sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)^{2}+I_{x y}{ }^{2}} & I_{\min }=20.4 \mathrm{in}^{4}
\end{array}
$$

Problem 10-79

Determine the moments of inertia I_{u}, I_{v} and the product of inertia $I_{u v}$ for the beam's cross-sectional area.

Given:

$$
\begin{aligned}
& \theta=45 \mathrm{deg} \\
& a=8 \mathrm{in} \\
& b=2 \mathrm{in} \\
& c=2 \mathrm{in} \\
& d=16 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
I_{X}=\frac{2}{3}(a+b) c^{3}+\frac{1}{12} 2 b d^{3}+2 b d\left(\frac{d}{2}\right)^{2} & I_{x}=5.515 \times 10^{3} \mathrm{in}^{4} \\
I_{y}=\frac{1}{12}[2(a+b)]^{3} c+\frac{1}{12}(2 b)^{3} d & I_{y}=1.419 \times 10^{3} \mathrm{in}^{4} \\
& I_{x y}=0 \mathrm{in}^{4} \\
I_{u}=\frac{I_{x}+I_{y}}{2}+\frac{I_{x}-I_{y}}{2} \cos (2 \theta)-I_{x y} \sin (2 \theta) & I_{u}=3.47 \times 10^{3} \mathrm{in}^{4} \\
I_{V}=\frac{I_{x}+I_{y}}{2}-\frac{I_{x}-I_{y}}{2} \cos (2 \theta)+I_{x y} \sin (2 \theta) & I_{V}=3.47 \times 10^{3} \mathrm{in}^{4}
\end{array}
$$

$$
I_{u v}=\frac{I_{x}-I_{y}}{2} \sin (2 \theta)+I_{x y} \cos (2 \theta)
$$

$$
I_{u v}=2.05 \times 10^{3} \mathrm{in}^{4}
$$

Problem 10-80

Determine the directions of the principal axes with origin located at point O, and the principal moments of inertia for the area about these axes.

Given:

$$
\begin{aligned}
& a=4 \text { in } \\
& b=2 \text { in } \\
& c=2 \text { in } \\
& d=2 \text { in } \\
& r=1 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
I_{X}=\frac{1}{3}(c+d)(a+b)^{3}-\left(\frac{\pi r^{4}}{4}+\pi r^{2} a^{2}\right) & I_{x}=236.95 \mathrm{in}^{4} \\
I_{y}=\frac{1}{3}(a+b)(c+d)^{3}-\left(\frac{\pi r^{4}}{4}+\pi r^{2} d^{2}\right) & I_{y}=114.65 \mathrm{in}^{4} \\
I_{x y}=\left(\frac{a+b}{2}\right)\left(\frac{d+c}{2}\right)(a+b)(d+c)-d a \pi r^{2} & I_{x y}=118.87 \mathrm{in}^{4} \\
\tan \left(2 \theta_{p}\right)=\frac{-I_{x y}}{I_{x}-I_{y}} \\
\theta_{p}=\frac{1}{2} \text { atan }\left(2 \frac{I_{x y}}{-I_{x}+I_{y}}\right) & \theta_{p}=-31.39 \mathrm{deg} \\
\theta_{p 1}=\theta_{p} & \theta_{p 1}=-31.39 \mathrm{deg} \\
\theta_{p 2}=90 \text { deg }+\theta_{p 1} & \theta_{p 2}=58.61 \mathrm{deg} \\
I_{\max }=\frac{I_{x}+I_{y}}{2}+\sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)^{2}+I_{x y}^{2}} & I_{m a x}=309 \mathrm{in}^{4}
\end{array}
$$

$$
I_{\min }=\frac{I_{x}+I_{y}}{2}-\sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)^{2}+I_{x y}^{2}} \quad \quad I_{\min }=42.1 \mathrm{in}^{4}
$$

Problem 10-81

Determine the principal moments of inertia for the beam's cross-sectional area about the principal axes that have their origin located at the centroid C. Use the equations developed in Section 10.7. For the calculation, assume all corners to be square.

Given: $\quad a=4$ in $\quad b=4$ in $\quad t=\frac{3}{8}$ in

Solution:

$$
I_{X}=2\left[\frac{1}{12} a t^{3}+a t\left(b-\frac{t}{2}\right)^{2}\right]+\frac{1}{12} t(2 b-2 t)^{3}
$$

$I_{X}=55.55$ in 4
$I_{y}=2\left[\frac{1}{12} t(a-t)^{3}+t(a-t)\left(\frac{a-t}{2}+\frac{t}{2}\right)^{2}\right]+\frac{1}{12} 2 b t^{3} \quad I_{y}=13.89 \mathrm{in}^{4}$
$I_{x y}=-2\left[\frac{a-t}{2}+\left(\frac{t}{2}\right)\right]\left(b-\frac{t}{2}\right) t(a-t) \quad I_{x y}=-20.73$ in 4
$I_{\max }=\frac{I_{x}+I_{y}}{2}+\sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)^{2}+I_{x y}{ }^{2}}$
$I_{m a x}=64.1$ in 4
$I_{\min }=\frac{I_{x}+I_{y}}{2}-\sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)^{2}+I_{x y}{ }^{2}}$
$I_{\text {min }}=5.33$ in 4

Problem 10-82

Determine the principal moments of inertia for the angle's cross-sectional area with respect to a set of principal axes that have their origin located at the centroid C. Use the equation developed in Section 10.7. For the calculation, assume all corners to be square.

Given:

$$
\begin{aligned}
& a=100 \mathrm{~mm} \\
& b=100 \mathrm{~mm} \\
& t=20 \mathrm{~mm}
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
x_{C}=\frac{t b \frac{t}{2}+(a-t) t\left(t+\frac{a-t}{2}\right)}{t b+(a-t) t} & x_{C}=32.22 \mathrm{~mm} \\
y_{C}=\frac{t b \frac{b}{2}+(a-t) t \frac{t}{2}}{t b+(a-t) t} & y_{C}=32.22 \mathrm{~mm} \\
I_{x}=\frac{1}{12} t^{3}(a-t)+t(a-t)\left(x_{C}-\frac{t}{2}\right)^{2}+\frac{1}{12} t b^{3}+t b\left(\frac{b}{2}-x_{C}\right)^{2} & I_{x}=3.142 \times 10^{6} \mathrm{~mm}^{4} \\
I_{y}=\frac{1}{12} b t^{3}+b t\left(x_{C}-\frac{t}{2}\right)^{2}+\frac{1}{12} t(a-t)^{3}+t(a-t)\left(t+\frac{a-t}{2}-x_{C}\right)^{2} & I_{y}=3.142 \times 10^{6} \mathrm{~mm}^{4} \\
I_{x y}=-\left(x_{C}-\frac{t}{2}\right)\left(\frac{b}{2}-y_{C}\right) b t-\left(\frac{a-t}{2}+t-x_{C}\right)\left(y_{C}-\frac{t}{2}\right)(a-t) t & I_{x y}=-1.778 \times 10^{6} \mathrm{~mm}^{4} \\
I_{\max }=\left(\frac{I_{x}+I_{y}}{2}-\frac{I_{x}-I_{y}}{2}\right)-I_{x y} & I_{\max }=4.92 \times 10^{6} \mathrm{~mm}^{4} \\
I_{\min }=\left(\frac{I_{x}+I_{y}}{2}\right)+\left(\frac{I_{x}-I_{y}}{2}\right)+I_{x y} & I_{\min }=2.22 \times 10^{6} \mathrm{~mm}^{4}
\end{array}
$$

Problem 10-83

The area of the cross section of an airplane wing has the listed properties about the x and y axes passing through the centroid C. Determine the orientation of the principal axes and the principal moments of inertia.

Given: $\quad I_{X}=450$ in $^{4} \quad I_{y}=1730$ in $^{4} \quad I_{x y}=138 \mathrm{in}^{4}$

Solution:

$$
\begin{array}{ll}
\tan (2 \theta)=\frac{-2 I_{x y}}{I_{x}-I_{y}} & \theta=\frac{1}{2} \operatorname{atan}\left(2 \frac{I_{x y}}{-I_{x}+I_{y}}\right) \\
I_{\max }=\frac{I_{x}+I_{y}}{2}+\sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)^{2}+I_{x y}{ }^{2}} & I_{\max }=1745 \mathrm{in}^{4} \\
I_{\min }=\frac{I_{x}+I_{y}}{2}-\sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)^{2}+I_{x y}{ }^{2}} & I_{\min }=435 \mathrm{in}^{4}
\end{array}
$$

Problem 10-84

Using Mohr's circle, determine the principal moments of inertia for the triangular area and the orientation of the principal axes of inertia having an origin at point O.

Given:

$$
\begin{aligned}
& a=30 \mathrm{~mm} \\
& b=40 \mathrm{~mm}
\end{aligned}
$$

Solution:

Moment of inertia I_{x} and I_{y} :

$$
\begin{array}{ll}
I_{X}=\frac{1}{12} b a^{3} & I_{x}=90 \times 10^{3} \mathrm{~mm}^{4} \\
I_{y}=\frac{1}{12} a b^{3} & I_{y}=160 \times 10^{3} \mathrm{~mm}^{4}
\end{array}
$$

Product of inertia $I_{\text {xy }}$:

$$
I_{x y}=\int_{0}^{b} \frac{x}{2}\left(a-\frac{a}{b} x\right)^{2} \mathrm{~d} x \quad I_{x y}=60 \times 10^{3} \mathrm{~mm}^{4}
$$

Mohr's circle :
$O A=\sqrt{\left(\frac{I_{x}+I_{y}}{2}-I_{x}\right)^{2}+I_{x y}{ }^{2}}$
$O A=69.462 \times 10^{3} \mathrm{~mm}^{4}$

$$
\begin{aligned}
& I_{\max }=\left(\frac{I_{x}+I_{y}}{2}+O A\right) \\
& I_{\max }=194.462 \times 10^{3} \mathrm{~mm}^{4} \\
& I_{\min }=\left(\frac{I_{x}+I_{y}}{2}-O A\right)
\end{aligned}
$$

$$
\begin{aligned}
& I_{\min }=55.5 \times 10^{3} \mathrm{~mm}^{4} \\
& \tan (2 \theta)=\frac{I_{x y}}{\frac{I_{x}+I_{y}}{2}-I_{X}}
\end{aligned}
$$

$$
\theta=\frac{1}{2} \operatorname{atan}\left(2 \frac{I_{x y}}{-I_{X}+I_{y}}\right) \quad \theta=29.9 \mathrm{deg}
$$

Problem 10-85

Determine the directions of the principal axes with origin located at point O, and the principal moments of inertia for the rectangular area about these axes.
Solve using Mohr's circle.

Given:

$$
\begin{aligned}
& a=6 \text { in } \\
& b=3 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
I_{X}=\frac{1}{3} b a^{3} & I_{X}=216 \mathrm{in}^{4} \\
I_{y}=\frac{1}{3} a b^{3} & I_{y}=54 \mathrm{in}^{4} \\
I_{x y}=\frac{a}{2} \frac{b}{2} a b & I_{x y}=81 \mathrm{in}^{4}
\end{array}
$$

$$
R=\sqrt{\left[I_{X}-\left(\frac{I_{X}+I_{y}}{2}\right)\right]^{2}+I_{x y}^{2}} \quad R=114.55 \mathrm{in}^{4}
$$

$$
I_{\max }=\frac{I_{x}+I_{y}}{2}+R
$$

$$
I_{\max }=250 \text { in }^{4}
$$

$$
I_{\min }=\frac{I_{x}+I_{y}}{2}-R
$$

$$
I_{\min }=20.4 \mathrm{in}^{4}
$$

$$
\theta_{p 1}=\frac{-1}{2} \operatorname{asin}\left(\frac{I_{x y}}{R}\right)
$$

$$
\theta_{p 1}=-22.50 \mathrm{deg}
$$

$$
\theta_{p 2}=\theta_{p 1}+90 \mathrm{deg}
$$

$$
\theta_{p 2}=67.50 \mathrm{deg}
$$

Problem 10-86

Determine the principal moments of inertia for the beam's cross-sectional area about the principal axes that have their origin located at the centroid C. For the calculation, assume all corners to be square. Solve using Mohr's circle.

Given:

$$
\begin{aligned}
a & =4 \text { in } \\
b & =4 \text { in } \\
t & =\frac{3}{8} \text { in }
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
I_{X}=2\left[\frac{1}{12} a t^{3}+a t\left(b-\frac{t}{2}\right)^{2}\right]+\frac{1}{12} t(2 b-2 t)^{3} & I_{X}=55.55 \mathrm{in}^{4} \\
I_{y}=2\left[\frac{1}{12} t(a-t)^{3}+t(a-t)\left(\frac{a-t}{2}+\frac{t}{2}\right)^{2}\right]+\frac{1}{12} 2 b t^{3} & I_{y}=13.89 \mathrm{in}^{4} \\
I_{x y}=-2\left[\frac{a-t}{2}+\left(\frac{t}{2}\right)\right]\left(b-\frac{t}{2}\right) t(a-t) & I_{x y}=-20.73 \mathrm{in}^{4} \\
R=\sqrt{\left(I_{x}-\frac{I_{x}+I_{y}}{2}\right)^{2}+I_{x y}^{2}} & R=29.39 \mathrm{in}^{4} \\
I_{\max }=\frac{I_{x}+I_{y}}{2}+R & I_{\max }=64.1 \mathrm{in}^{4} \\
I_{\min }=\frac{I_{x}+I_{y}}{2}-R & I_{\min }=20.45 \mathrm{in}^{4}
\end{array}
$$

Problem 10-87

Determine the principal moments of inertia for the angle's cross-sectional area with respect to a set of principal axes that have their origin located at the centroid C. For the calculation, assume all corners to be square. Solve using Mohr's ciricle.

Given: $\quad a=100 \mathrm{~mm} \quad b=100 \mathrm{~mm} \quad t=20 \mathrm{~mm}$

Solution:

$$
\begin{array}{ll}
x_{C}=\frac{t b\left(\frac{t}{2}\right)+(a-t) t\left(t+\frac{a-t}{2}\right)}{t b+(a-t) t} & x_{C}=32.22 \mathrm{~mm} \\
y_{C}=\frac{t b\left(\frac{b}{2}\right)+(a-t) t\left(\frac{t}{2}\right)}{t b+(a-t) t} & y_{C}=32.22 \mathrm{~mm} \\
I_{x}=\frac{1}{12} t^{3}(a-t)+t(a-t)\left(x_{C}-\frac{t}{2}\right)^{2}+\frac{1}{12} t b^{3}+t b\left(\frac{b}{2}-x_{C}\right)^{2} & I_{x}=3.142 \times 10^{6} \mathrm{~mm}^{4} \\
I_{y}=\frac{1}{12} b t^{3}+b t\left(x_{C}-\frac{t}{2}\right)^{2}+\frac{1}{12} t(a-t)^{3}+t(a-t)\left(t+\frac{a-t}{2}-x_{C}\right)^{2} & I_{y}=3.142 \times 10^{6} \mathrm{~mm}^{4} \\
I_{x y}=-\left(x_{C}-\frac{t}{2}\right)\left(\frac{b}{2}-y_{C}\right) b t-\left(\frac{a-t}{2}+t-x_{C}\right)\left(y_{C}-\frac{t}{2}\right)(a-t) t & I_{x y}=-1.778 \times 10^{6} \mathrm{~mm}^{4} \\
R=\sqrt{\left(I_{x}-\frac{I_{x}+I_{y}}{2}\right)^{2}+I_{x y}{ }^{2}} & R=1.78 \times 10^{6} \mathrm{~mm}^{4}
\end{array}
$$

$$
\begin{array}{ll}
I_{\max }=\frac{I_{x}+I_{y}}{2}+R & I_{\max }=4.92 \times 10^{6} \mathrm{~mm}^{4} \\
I_{\min }=\frac{I_{x}+I_{y}}{2}-R & I_{\min }=1364444.44 \mathrm{~mm}^{4}
\end{array}
$$

Problem 10-88

Determine the directions of the principal axes with origin located at point O, and the principal moments of inertia for the area about these axes. Solve using Mohr's circle

Given:

$$
\begin{aligned}
& a=4 \text { in } \\
& b=2 \text { in } \\
& c=2 \text { in } \\
& d=2 \text { in } \\
& r=1 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
I_{X}=\frac{1}{3}(c+d)(a+b)^{3}-\left(\frac{\pi r^{4}}{4}+\pi r^{2} a^{2}\right) & I_{X}=236.95 \mathrm{in}^{4} \\
I_{y}=\frac{1}{3}(a+b)(c+d)^{3}-\left(\frac{\pi r^{4}}{4}+\pi r^{2} d^{2}\right) & I_{y}=114.65 \mathrm{in}^{4} \\
I_{x y}=\left(\frac{a+b}{2}\right)\left(\frac{d+c}{2}\right)(a+b)(d+c)-d a \pi r^{2} & I_{x y}=118.87 \mathrm{in}^{4} \\
R=\sqrt{\left[I_{x}-\left(\frac{I_{x}+I_{y}}{2}\right)\right]^{2}+I_{x y}{ }^{2}} & R=133.67 \mathrm{in}^{4} \\
I_{\max }=\frac{I_{x}+I_{y}}{2}+R & I_{\max }=309 \mathrm{in}^{4} \\
I_{\min }=\frac{I_{x}+I_{y}}{2}-R & I_{\min }=42.1 \mathrm{in}^{4}
\end{array}
$$

$$
\begin{array}{ll}
\theta_{p 1}=\frac{-1}{2} \operatorname{asin}\left(\frac{I_{x y}}{R}\right) & \theta_{p 1}=-31.39 \mathrm{deg} \\
\theta_{p 2}=\theta_{p 1}+\frac{\pi}{2} & \theta_{p 2}=58.61 \mathrm{deg}
\end{array}
$$

Problem 10-89

The area of the cross section of an airplane wing has the listed properties about the x and y axes passing through the centroid C. Determine the orientation of the principal axes and the principal moments of inertia. Solve using Mohr's circle.

Given: $\quad I_{X}=450$ in 4

$$
I_{y}=1730 \mathrm{in}^{4}
$$

$$
I_{x y}=138 \mathrm{in}^{4}
$$

Solution:

$$
\begin{array}{ll}
R=\sqrt{\left[I_{X}-\left(\frac{I_{X}+I_{y}}{2}\right)\right]^{2}+I_{x y}^{2}} & R=654.71 \mathrm{in}^{4} \\
I_{\max }=\left(\frac{I_{x}+I_{y}}{2}+R\right) & I_{\max }=1.74 \times 10^{3} \mathrm{in}^{4} \\
I_{\min }=\left(\frac{I_{X}+I_{y}}{2}-R\right) & I_{\min }=435 \mathrm{in}^{4}
\end{array}
$$

$$
\begin{array}{ll}
\theta_{p 1}=\frac{1}{2} \operatorname{asin}\left(\frac{I_{x y}}{R}\right) & \theta_{p 1}=6.08 \mathrm{deg} \\
\theta_{p 2}=\theta_{p 1}+90 \mathrm{deg} & \theta_{p 2}=96.08 \mathrm{deg}
\end{array}
$$

Problem 10-90

The right circular cone is formed by revolving the shaded area around the x axis. Determine the moment of inertia l_{x} and express the result in terms of the total mass m of the cone. The cone has a constant density ρ.

Solution:

$$
\begin{aligned}
& m=\int_{0}^{h} \rho \pi\left(\frac{r x}{h}\right)^{2} \mathrm{~d} x=\frac{1}{3} h \rho \pi r^{2} \\
& l_{x}=\frac{3 m}{\pi h r^{2}} \int_{0}^{h} \frac{1}{2} \pi\left(\frac{r x}{h}\right)^{4} \mathrm{~d} x=\frac{3}{10} m r^{2} \\
& l_{x}=\frac{3}{10} m r^{2}
\end{aligned}
$$

Problem 10-91

Determine the moment of inertia of the thin ring about the z axis. The ring has a mass m.

Solution:

$$
\begin{array}{ll}
m=\rho 2 \pi R & \rho=\frac{m}{2 \pi R} \\
I=\int_{0}^{2 \pi}\left(\frac{m}{2 \pi R}\right) R^{2} R \mathrm{~d} \theta=m R^{2} & I=m R^{2}
\end{array}
$$

Problem 10-92

The solid is formed by revolving the shaded area around the y axis. Determine the radius of gyration k_{y}. The specific weight of the material is γ.

Given:

$$
\begin{aligned}
a & =3 \mathrm{in} \\
b & =3 \mathrm{in} \\
\gamma & =380 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
m=\int_{0}^{b} \gamma \pi\left[a\left(\frac{y}{b}\right)^{3}\right]^{2} \mathrm{~d} y & m=2.66 \mathrm{lb} \\
I_{y}=\int_{0}^{b} \gamma \pi\left[a\left(\frac{y}{b}\right)^{3}\right]^{2} \frac{1}{2}\left[a\left(\frac{y}{b}\right)^{3}\right]^{2} \mathrm{~d} y & I_{y}=6.46 \mathrm{lb} \cdot \mathrm{in}^{2} \\
k_{y}=\sqrt{\frac{I_{y}}{m}} & k_{y}=1.56 \mathrm{in}
\end{array}
$$

Problem 10-93

Determine the moment of inertia I_{χ} for the sphere and express the result in terms of the total mass m of the sphere. The sphere has a constant density ρ.

Solution:

$$
\begin{aligned}
m & =\rho \frac{4 \pi r^{3}}{3} \\
I_{X} & =\int_{-r}^{r} \frac{1}{2}\left(\frac{3 m}{4 \pi r^{3}}\right) \pi\left(r^{2}-x^{2}\right)\left(r^{2}-x^{2}\right) \mathrm{d} x=\frac{2}{5} m r^{2}
\end{aligned}
$$

Problem 10-94

Determine the radius of gyration k_{x} of the paraboloid. The density of the material is ρ.

Units Used: $\quad \mathrm{Mg}=1000 \mathrm{~kg}$

Given: $\quad \rho=5 \frac{\mathrm{Mg}}{\mathrm{m}^{3}}$ $a=200 \mathrm{~mm} \quad b=100 \mathrm{~mm}$

Solution:

$$
\begin{array}{ll}
m_{p}=\int_{0}^{a} \rho \pi\left(\frac{b^{2} x}{a}\right) \mathrm{d} x & m_{p}=15.71 \mathrm{~kg} \\
I_{X}=\int_{0}^{a} \frac{1}{2} \rho \pi\left(\frac{b^{2} x}{a}\right)\left(\frac{b^{2} x}{a}\right) \mathrm{d} x & I_{X}=52.36 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
k_{X}=\sqrt{\frac{I_{X}}{m_{p}}} & k_{X}=57.7 \mathrm{~mm}
\end{array}
$$

Problem 10-95

Determine the moment of inertia of the semi-ellipsoid with respect to the x axis and express the result in terms of the mass m of the semiellipsoid. The material has a constant density ρ.

Solution:

$$
\begin{aligned}
& m=\int_{0}^{a} \rho \pi b^{2}\left(1-\frac{x^{2}}{a^{2}}\right) \mathrm{d} x=\frac{2}{3} a \rho \pi b^{2} \quad \rho=\frac{3 m}{2 \pi a b^{2}} \\
& I_{X}=\int_{0}^{a} \frac{1}{2}\left(\frac{3 m}{2 \pi a b^{2}}\right) \pi b^{2}\left(1-\frac{x^{2}}{a^{2}}\right) b^{2}\left(1-\frac{x^{2}}{a^{2}}\right) \mathrm{d} x=\frac{2}{5} m b^{2} \quad I_{X}=\frac{2}{5} m b^{2}
\end{aligned}
$$

Problem 10-96

Determine the radius of gyration k_{x} of the body. The specific weight of the material is γ.

Given:

$$
\begin{aligned}
& \gamma=380 \frac{\mathrm{lb}}{\mathrm{ft}^{3}} \\
& a=8 \mathrm{in} \\
& b=2 \mathrm{in}
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
m_{b}=\int_{0}^{a} \gamma \pi b^{2}\left(\frac{x}{a}\right)^{\frac{2}{3}} \mathrm{~d} x & m_{b}=13.26 \mathrm{lb} \\
I_{X}=\int_{0}^{a} \frac{1}{2} \gamma \pi b^{2}\left(\frac{x}{a}\right)^{\frac{2}{3}} b^{2}\left(\frac{x}{a}\right)^{\frac{2}{3}} \mathrm{~d} x & I_{X}=0.59 \mathrm{slug} \cdot \mathrm{in}^{2} \\
k_{X}=\sqrt{\frac{I_{X}}{m_{b}}} & k_{X}=1.20 \mathrm{in}
\end{array}
$$

Problem 10-97

Determine the moment of inertia for the ellipsoid with respect to the x axis and express the result in terms of the mass m of the ellipsoid. The material has a constant density ρ.

Solution:

$$
\begin{aligned}
& m=\int_{-a}^{a} \rho \pi b^{2}\left(1-\frac{x^{2}}{a^{2}}\right) \mathrm{d} x=\frac{4}{3} a \rho \pi b^{2} \quad \rho=\frac{3 m}{4 \pi a b^{2}} \\
& I_{X}=\int_{-a}^{a} \frac{1}{2} \frac{3 m}{4 \pi a b^{2}} \pi b^{2}\left(1-\frac{x^{2}}{a^{2}}\right) b^{2}\left(1-\frac{x^{2}}{a^{2}}\right) \mathrm{d} x=\frac{2}{5} m b^{2}
\end{aligned} I_{X}=\frac{2}{5} m b^{2}
$$

Problem 10-98

Determine the moment of inertia of the homogeneous pyramid of mass m with respect to the z axis. The density of the material is ρ. Suggestion: Use a rectangular plate element having a volume of $d V=(2 x)(2 y) d z$.

Solution:

$$
\begin{array}{ll}
V=\int_{0}^{h}\left[a\left(1-\frac{z}{h}\right)\right]^{2} \mathrm{~d} z=\frac{1}{3} h a^{2} \quad \rho=\frac{m}{V}=\frac{3 m}{a^{2} h} \\
I_{Z}=\frac{3 m}{a^{2} h} \int_{0}^{h} \frac{1}{6}\left[a\left(1-\frac{z}{h}\right)\right]^{4} \mathrm{~d} z=\frac{1}{10} m a^{2} & I_{Z}=\frac{1}{10} m a^{2}
\end{array}
$$

Problem 10-99

The concrete shape is formed by rotating the shaded area about the y axis. Determine the moment of inertia I_{y}. The specific weight of concrete is γ.

Given:

$$
\begin{aligned}
& \gamma=150 \frac{\mathrm{lb}}{\mathrm{ft}^{3}} \\
& a=6 \mathrm{in} \\
& b=4 \mathrm{in} \\
& c=8 \mathrm{in}
\end{aligned}
$$

Solution:

$$
I_{y}=\frac{1}{2} \gamma \pi(a+b)^{2} c(a+b)^{2}-\int_{0}^{c} \frac{1}{2} \gamma\left(\pi \frac{a^{2} y}{c}\right) \frac{a^{2} y}{c} \mathrm{~d} y \quad I_{y}=2.25 \text { slug. } \mathrm{ft}{ }^{2}
$$

Problem 10-100

Determine the moment of inertia of the thin plate about an axis perpendicular to the page and passing through the pin at O. The plate has a hole in its center. Its thickness is c, and the material has a density of ρ

Given:

$$
\begin{array}{ll}
a=1.40 \mathrm{~m} & c=50 \mathrm{~mm} \\
b=150 \mathrm{~mm} & \rho=50 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{array}
$$

Solution:

$$
\begin{aligned}
& I_{G}=\frac{1}{12} \rho a^{2} c\left(a^{2}+a^{2}\right)-\frac{1}{2} \rho \pi b^{2} c b^{2} \\
& I_{G}=1.60 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& I_{0}=I_{G}+m d^{2}
\end{aligned}
$$

$$
\begin{aligned}
& m=\rho a^{2} c-\rho \pi b^{2} c \\
& m=4.7233 \mathrm{~kg} \\
& I_{0}=I_{G}+m(a \sin (45 \mathrm{deg}))^{2} \\
& I_{0}=6.23 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Problem 10-101

Determine the moment of inertia I_{z} of the frustum of the cone which has a conical depression. The material has a density ρ.

Given:

$$
\begin{aligned}
& \rho=200 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& a=0.4 \mathrm{~m} \\
& b=0.2 \mathrm{~m} \\
& c=0.6 \mathrm{~m} \\
& d=0.8 \mathrm{~m}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& h=\frac{d a}{a-b} \\
& I_{Z}=\frac{3}{10}\left[\rho\left(\frac{1}{3} \pi a^{2} h\right)\right] a^{2}-\frac{3}{10}\left[\rho\left(\frac{1}{3} \pi a^{2} c\right)\right] a^{2}-\frac{3}{10}\left[\rho\left[\frac{1}{3} \pi b^{2}(h-d)\right] b^{2}\right. \\
& I_{Z}=1.53 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Problem 10-102

Determine the moment of inertia for the assembly about an axis which is perpendicular to the page and passes through the center of mass G. The material has a specific weight γ.
Given:

$$
a=0.5 \mathrm{ft} \quad d=0.25 \mathrm{ft}
$$

$$
\begin{array}{lc}
b=2 \mathrm{ft} & e=1 \mathrm{ft} \\
c=1 \mathrm{ft} & \gamma=90 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}
\end{array}
$$

Solution:

$$
\begin{aligned}
& I_{G}=\frac{1}{2} \gamma \pi(a+b)^{2} e(a+b)^{2}-\frac{1}{2} \gamma \pi b^{2}(e-d) b^{2}-\frac{1}{2} \gamma \pi c^{2} d c^{2} \\
& I_{G}=118 \text { slug. } \mathrm{ft}^{2}
\end{aligned}
$$

Problem 10-103

Determine the moment of inertia for the assembly about an axis which is perpendicular to the page and passes through point O. The material has a specific weight γ.

Given:

$$
\begin{array}{ll}
a=0.5 \mathrm{ft} & d=0.25 \mathrm{ft} \\
b=2 \mathrm{ft} & e=1 \mathrm{ft} \\
c=1 \mathrm{ft} & \gamma=90 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}
\end{array}
$$

Solution:

$$
\begin{array}{ll}
I_{G}=\frac{1}{2} \gamma \pi(a+b)^{2} e(a+b)^{2}-\frac{1}{2} \gamma \pi b^{2}(e-d) b^{2}-\frac{1}{2} \gamma \pi c^{2} d c^{2} & \\
I_{G}=118 \text { slug. } \mathrm{ft}^{2} & \\
M=\gamma \pi(a+b)^{2} e-\gamma \pi b^{2}(e-d)-\gamma \pi c^{2} d & M=848.23 \mathrm{lb} \\
I_{O}=I_{G}+M(a+b)^{2} & I_{O}=283 \mathrm{slug} \cdot \mathrm{ft}^{2}
\end{array}
$$

Problem 10-104

The wheel consists of a thin ring having a mass M_{1} and four spokes made from slender rods, each having a mass M_{2}. Determine the wheel's moment of inertia about an axis perpendicular to the page and passing through point A.

Given:

$$
\begin{aligned}
& M_{1}=10 \mathrm{~kg} \\
& M_{2}=2 \mathrm{~kg} \\
& a=500 \mathrm{~mm}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I_{G}=M_{1} a^{2}+4 \frac{1}{3} M_{2} a^{2} \\
& I_{A}=I_{G}+\left(M_{1}+4 M_{2}\right) a^{2} \\
& I_{A}=7.67 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Problem 10-105

The slender rods have a weight density γ. Determine the moment of inertia for the assembly about an axis perpendicular to the page and passing through point A.

Given:

$$
\begin{aligned}
& \gamma=3 \frac{\mathrm{lb}}{\mathrm{ft}} \\
& a=1.5 \mathrm{ft} \\
& b=1 \mathrm{ft} \\
& c=2 \mathrm{ft}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I=\frac{1}{3} \gamma(b+c)(b+c)^{2}+\frac{1}{12} \gamma 2 a(2 a)^{2}+\gamma 2 a c^{2} \\
& I=2.17 \text { slug. } \mathrm{ft}^{2}
\end{aligned}
$$

Problem 10-106

Each of the three rods has a mass m. Determine the moment of inertia for the assembly about an axis which is perpendicular to the page and passes through the center point O.

Solution:

$$
\begin{aligned}
& I_{O}=3\left[\frac{1}{12} m a^{2}+m\left(\frac{a \sin (60 \mathrm{deg})}{3}\right)^{2}\right] \\
& I_{O}=\frac{1}{2} m a^{2}
\end{aligned}
$$

Problem 10-107

The slender rods have weight density γ. Determine the moment of inertia for the assembly about an axis perpendicular to the page and passing through point A

Given:

$$
\begin{aligned}
\gamma & =3 \frac{\mathrm{lb}}{\mathrm{ft}} \\
a & =1.5 \mathrm{ft} \\
b & =2 \mathrm{ft}
\end{aligned}
$$

Solution:

$$
I_{A}=\frac{1}{3} \gamma b b^{2}+\frac{1}{12} \gamma 2 a(2 a)^{2}+\gamma(2 a) b^{2}
$$

$$
I_{A}=1.58 \text { slug } \cdot \mathrm{ft}^{2}
$$

Problem 10-108

The pendulum consists of a plate having weight W_{p} and a slender rod having weight W_{r}.
Determine the radius of gyration of the pendulum about an axis perpendicular to the page and passing through point O.

Given:

$$
\begin{array}{ll}
W_{p}=12 \mathrm{lb} & a=1 \mathrm{ft} \\
W_{r}=4 \mathrm{lb} & b=1 \mathrm{ft} \\
& =3 \mathrm{ft} \\
d & =2 \mathrm{ft}
\end{array}
$$

Solution:

$$
\begin{aligned}
& I_{0}=\frac{1}{12} W_{r}(c+d)^{2}+W_{r}\left(\frac{c+d}{2}-c\right)^{2}+\frac{1}{12} W_{p}\left(a^{2}+b^{2}\right)+W_{p}\left(c+\frac{b}{2}\right)^{2} \\
& k_{0}=\sqrt{\frac{I_{0}}{W_{p}+W_{r}}} \quad k_{0}=3.15 \mathrm{ft}
\end{aligned}
$$

Problem 10-109

Determine the moment of inertia for the overhung crank about the x axis. The material is steel having density ρ.

Units Used:

$$
\mathrm{Mg}=1000 \mathrm{~kg}
$$

Given:

$$
\begin{aligned}
& \rho=7.85 \frac{\mathrm{Mg}}{\mathrm{~m}^{3}} \\
& a=20 \mathrm{~mm} \\
& b=20 \mathrm{~mm} \\
& c=50 \mathrm{~mm} \\
& d=90 \mathrm{~mm} \\
& e=30 \mathrm{~mm}
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
m=\rho \pi\left(\frac{a}{2}\right)^{2} c & m=0.12 \mathrm{~kg} \\
M=\rho 2 d b e & M=0.85 \mathrm{~kg}
\end{array}
$$

$$
\begin{aligned}
& I_{X}=2\left[\frac{1}{2} m\left(\frac{a}{2}\right)^{2}+m(d-e)^{2}\right]+\frac{1}{12} M\left[(2 d)^{2}+e^{2}\right] \\
& I_{X}=3.25 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Problem 10-110

Determine the moment of inertia for the overhung crank about the x^{\prime} axis. The material is steel having density ρ.

Units used:

$$
\mathrm{Mg}=1000 \mathrm{~kg}
$$

Given:

$$
\rho=7.85 \frac{\mathrm{Mg}}{\mathrm{~m}^{3}}
$$

$a=20 \mathrm{~mm}$
$b=20 \mathrm{~mm}$
$c=50 \mathrm{~mm}$
$d=90 \mathrm{~mm}$

$e=30 \mathrm{~mm}$
Solution:

$$
\begin{array}{ll}
m=\rho \pi\left(\frac{a}{2}\right)^{2} c & m=0.12 \mathrm{~kg} \\
M=\rho 2 d b e & M=0.85 \mathrm{~kg} \\
I_{X}=2\left[\frac{1}{2} m\left(\frac{a}{2}\right)^{2}+m(d-e)^{2}\right]+\frac{1}{12} M\left[(2 d)^{2}+e^{2}\right] \\
I_{X^{\prime}}=I_{X}+(M+2 m)(d-e)^{2} & I_{X^{\prime}}=7.19 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{array}
$$

Problem 10-111

Determine the moment of inertia for the solid steel assembly about the x axis. Steel has a specific weight $\gamma_{s t}$.

Given:

$$
\begin{aligned}
& a=2 \mathrm{ft} \\
& b=3 \mathrm{ft} \\
& c=0.5 \mathrm{ft} \\
& d=0.25 \mathrm{ft} \\
& \gamma_{s t}=490 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& h=\frac{c a}{c-d} \\
& I_{X}=\gamma_{s t}\left[\pi c^{2} b\left(\frac{c^{2}}{2}\right)+\frac{\pi}{3} c^{2} h\left(\frac{3 c^{2}}{10}\right)-\frac{\pi}{3} d^{2}(h-a)\left(\frac{3 d^{2}}{10}\right)\right] \\
& I_{X}=5.64 \text { slug. } \mathrm{ft}^{2}
\end{aligned}
$$

Problem 10-112

The pendulum consists of two slender rods $A B$ and $O C$ which have a mass density ρ_{r}. The thin plate has a mass density $\rho_{p \text {. }}$. Determine the location y_{c} of the center of mass G of the pendulum, then calculate the moment of inertia of the pendulum about an axis perpendicular to the page and passing through G.
Given:

$$
\begin{aligned}
& \rho_{r}=3 \frac{\mathrm{~kg}}{\mathrm{~m}} \\
& \rho_{\mathrm{s}}=12 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}} \\
& a=0.4 \mathrm{~m} \\
& b=1.5 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& c=0.1 \mathrm{~m} \\
& d=0.3 \mathrm{~m}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
y_{C}= & \frac{b \rho_{r} \frac{b}{2}+\pi d^{2} \rho_{S}(b+d)-\pi c^{2} \rho_{S}(b+d)}{b \rho_{r}+\pi d^{2} \rho_{S}-\pi c^{2} \rho_{S}+\rho_{r} 2 a} \\
I_{G}= & \frac{1}{12} 2 a \rho_{r}(2 a)^{2}+2 a \rho_{r} y_{C}{ }^{2}+\frac{1}{12} b \rho_{r} b^{2} \ldots \\
& +b \rho_{r}\left(\frac{b}{2}-y_{C}\right)^{2}+\frac{1}{2} \pi d^{2} \rho_{S} d^{2}+\pi d^{2} \rho_{S}\left(b+d-y_{C}\right)^{2} \ldots \\
& +\frac{1}{2} \pi c^{2} \rho_{S} c^{2}-\pi c^{2} \rho_{S}\left(b+d-y_{C}\right)^{2} \\
I_{G}= & 5.61 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Problem 10-113

Determine the moment of inertia for the shaded area about the x axis.

Given:

$$
\begin{aligned}
& a=2 \text { in } \\
& b=8 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I_{X}=\int_{0}^{b} y^{2} a\left(\frac{y}{b}\right)^{\frac{1}{3}} \mathrm{~d} y \\
& I_{X}=307 \mathrm{in}^{4}
\end{aligned}
$$

Problem 10-114

Determine the moment of inertia for the shaded area about the y axis.

Given:

$$
\begin{aligned}
& a=2 \text { in } \\
& b=8 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I_{y}=\int_{0}^{a} x^{2}\left[b-b\left(\frac{x}{a}\right)^{3}\right] \mathrm{d} x \\
& I_{y}=10.67 \mathrm{in}^{4}
\end{aligned}
$$

Problem 10-115

Determine the mass moment of inertia I_{X} of the body and express the result in terms of the total mass m of the body. The density is constant.

Solution:

$$
m=\int_{0}^{a} \rho \pi\left(\frac{b x}{a}+b\right)^{2} \mathrm{~d} x=\frac{7}{3} a \rho \pi b^{2}
$$

$$
\rho=\frac{3 m}{7 \pi a b^{2}}
$$

$$
\begin{aligned}
& I_{X}=\int_{0}^{a} \frac{1}{2}\left(\frac{3 m}{7 \pi a b^{2}}\right) \pi\left(\frac{b x}{a}+b\right)^{2}\left(\frac{b x}{a}+b\right)^{2} \mathrm{~d} x=\frac{93}{70} m b^{2} \\
& I_{X}=\frac{93}{70} m b^{2}
\end{aligned}
$$

Problem 10-116

Determine the product of inertia for the shaded area with respect to the x and y axes.

Given:
$a=1 \mathrm{~m}$
$b=1 \mathrm{~m}$

Solution:

$I_{x y}=\int_{0}^{b} \frac{1}{2} y a\left(\frac{y}{b}\right)^{\frac{1}{3}} a\left(\frac{y}{b}\right)^{\frac{1}{3}} \mathrm{~d} y \quad I_{x y}=0.1875 \mathrm{~m}^{4}$

Problem 10-117

Determine the area moments of inertia I_{u} and I_{v} and the product of inertia $I_{u v}$ for the semicircular area.

Given:

$$
\begin{aligned}
& r=60 \mathrm{~mm} \\
& \theta=30 \mathrm{deg}
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
I_{X}=\frac{\pi r^{4}}{8} \quad I_{y}=I_{X} \\
I_{x y}=0 \mathrm{~mm}^{4} & \\
I_{u}=\frac{I_{x}+I_{y}}{2}+\frac{I_{x}-I_{y}}{2} \cos (2 \theta)-I_{x y} \sin (2 \theta) & I_{u}=5.09 \times 10^{6} \mathrm{~mm}^{4} \\
I_{V}=\frac{I_{X}+I_{y}}{2}-\frac{I_{x}-I_{y}}{2} \cos (2 \theta)-I_{x y} \sin (2 \theta) & I_{v}=5.09 \times 10^{6} \mathrm{~mm}^{4} \\
I_{u v}=\frac{I_{x}-I_{y}}{2} \sin (2 \theta)+I_{x y} \cos (2 \theta) & I_{u v}=0 \mathrm{~m}^{4}
\end{array}
$$

Problem 10-118

Determine the moment of inertia for the shaded area about the x axis.

Given:

$$
\begin{aligned}
& a=3 \text { in } \\
& b=9 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I_{X}=\int_{0}^{b} y^{2} a \sqrt{1-\frac{y}{b}} \mathrm{~d} y \\
& I_{X}=333 \text { in }^{4}
\end{aligned}
$$

Problem 10-119

Determine the moment of inertia for the shaded area about the y axis.

Given:

$$
\begin{aligned}
& a=3 \text { in } \\
& b=9 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I_{y}=\int_{0}^{a} x^{2} b\left(1-\frac{x^{2}}{a^{2}}\right) \mathrm{d} x \\
& I_{y}=32.4 \mathrm{in}^{4}
\end{aligned}
$$

Problem 10-120

Determine the area moment of inertia of the area about the x axis. Then, using the parallel-axis theorem, find the area moment of inertia about the x^{\prime} axis that passes through the centroid C of the area.

Given:

$$
\begin{aligned}
& a=200 \mathrm{~mm} \\
& b=200 \mathrm{~mm}
\end{aligned}
$$

Solution:

$$
I_{X}=\int_{0}^{b} y^{2} 2 a \sqrt{\frac{y}{b}} \mathrm{~d} y \quad I_{X}=914 \times 10^{6} \mathrm{~mm}^{4}
$$

Find the area and the distance to the centroid

$$
A=\int_{0}^{b} 2 a \sqrt{\frac{y}{b}} \mathrm{~d} y \quad A=53.3 \times 10^{3} \mathrm{~mm}^{2}
$$

$$
\begin{array}{ll}
y_{C}=\frac{1}{A} \int_{0}^{b} y 2 a \sqrt{\frac{y}{b}} \mathrm{~d} y & y_{C}=120.0 \mathrm{~mm} \\
I_{X^{\prime}}=I_{X}-A y_{C}{ }^{2} & I_{X^{\prime}}=146 \times 10^{6} \mathrm{~mm}^{4}
\end{array}
$$

Problem 10-121

Determine the area moment of inertia for the triangular area about (a) the x axis, and (b) the centroidal x^{\prime} axis.

Solution:

$$
\begin{array}{ll}
I_{X}=\int_{0}^{h} y^{2} \frac{b}{h}(h-y) \mathrm{d} y=\frac{1}{12} \cdot h^{3} \cdot b & I_{X}=\frac{1}{12} b h^{3} \\
I_{X^{\prime}}=\frac{b h^{3}}{12}-\frac{1}{2} b h\left(\frac{h}{3}\right)^{2}=\frac{1}{36} \cdot h^{3} \cdot b & I_{X^{\prime}}=\frac{1}{36} b h^{3}
\end{array}
$$

Problem 10-122

Determine the product of inertia of the shaded area with respect to the x and y axes.

Given:

$$
\begin{aligned}
& a=2 \text { in } \\
& b=1 \text { in }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& I_{x y}=\int_{0}^{b} \frac{a}{2} \sqrt{\frac{y}{b}} y a \sqrt{\frac{y}{b}} \mathrm{~d} y \\
& I_{x y}=0.667 \mathrm{in}^{4}
\end{aligned}
$$

