Engineering Surveying -1 CE212 Compass Surveying

Lecture
2016, September 03-04
Muhammad Noman

Compass Surveying

Chain surveying can be used when the area to be surveyed is comparatively is small and is fairly flat.
But when the area is large, undulating and crowded with many details, triangulation(which is the principle of chain survey) is not possible. In such an area, the method of Compass surveying is used.
In Compass survey chain or tape is used for linear measurements and compass is used for fixing direction.
In compass freely suspended magnetic needle directs to north- south and the bearing of line is obtained by line of sight.

Traversing

- Traversing is that type of survey in which a number of connecting survey lines form the frame work and the directions and lengths of the survey lines are measured with the help of an angle measuring instrument and a tape respectively.
- The routine of chaining and offsetting is the same as in chain survey
- Compass surveying is not recommended for areas where local attraction is suspected due to the presence of magnetic substances like steel structures, iron ore deposits, electric cables , and so on.

Types of Traverse

There are two types of Traverse:

1. Closed Traverse

A traverse is close when it completes a circuit and returns to the starting point. The starting and end points are the same. It is particularly suitable for locating the boundaries of lakes, woods etc. It is used for moderately large area

Types of Traverse

2. Open Traverse

A traverse is said to be open or unclosed when it does not form a close polygon. It consists of a series of lines extending in the same general direction and not returning to the starting point. It is most suitable for the survey of long narrow strip of country e.g. Cost line, road, railway etc.

Meridian

Meridian is a line Joining North Pole and South Pole.
There are two types of Meridian

1. True Meridian

The plane that passes through true North Poles and True South Poles at the time of Observation is called True Meridian or Geographical Meridian

NORTH POLE

Meridian

Magnetic Declination

The difference between True Meridian and Magnetic Meridian is called Magnetic Declination

(a) True bearing $=$ Magnetic bearing \pm Declination

[^0]
Bearing

Bearing is a Horizontal Angle measured from the North If Bearing is measured from True Meridian than it is called True Bearing and if it is measured from Magnetic Meridian than it is called Magnetic Bearing.
There are two systems commonly used to express the bearing.

Map Bearing $=$ Magnetic Bearing - Declination

- Whole circle system
- Quadrantal system

Whole Circle Bearing

In this system the bearing of a line measured with the magnetic north in clockwise direction. The value of bearing thus varies from 0° to 360°.
Its value varies from zero to 360°, increasing in clockwise direction. Zero is north direction, 90° is east, 180° is south and 270° is west.

Quadrantal System

In this system the bearing of a line is measured eastward or westward from north or south whichever is near. The directions can be either clock wise or anti clockwise depending upon the position of the line.
The value of bearing thus varies from 0° to 90°.
The quadrant of survey line is also mentioned after the numerical value of the angle.

There are 4 quadrant

$$
\begin{aligned}
& 1^{\text {St }} \text { Quadrant }=\text { NE } \\
& 2^{\text {nd }} \text { Quadrant }=\text { SE } \\
& 3^{\text {rd }} \text { Quadrant }=\text { SW } \\
& 4^{\text {th }} \text { Quadrant }=\text { NW }
\end{aligned}
$$

Reduced Bearing

The angle exceeding 90° is reduced to a value under 90° this is called as reduced bearing (RB).

CASE	WHOLE CIRCLE BEARING (WCB)	REDUCED BEARING (RB)	QUADRANT
I	$0-90$	WCB	NE
II	$90-180$	$180-$ WCB	SE
III	$180-270$	WCB -180	SW
IV	$270-360$	$360-$ WCB	NW

Types of Compasses

There are two types of Compasses

1. The Prismatic Compass
2. The Surveyor's Compass

Assignment \# 02

Problems: 01

Convert the following WCBs to QBs:
a) WCB of $\mathrm{AB}=45^{\circ} 30^{\prime}$
b) $W C B$ of $A B=125^{\circ} 45^{\prime}$
c) $W C B$ of $A B=222^{\circ} 15^{\prime}$
d) WCB of $\mathrm{AB}=320^{\circ} 30^{\prime}$
$\mathrm{N} 45^{\circ} 30^{\prime} \mathrm{E}$
S $54^{\circ} 15^{\prime} \mathrm{E}$
S $42^{\circ} 15^{\prime} \mathrm{W}$
N $39^{\circ} 30^{\prime} \mathrm{E}$

Problem 02:

Convert the following QB to WCB
a) QB of $\mathrm{AB}=\mathrm{S} 36^{\circ} 30^{\prime} \mathrm{W}$
$216^{\circ} 30^{\prime}$
b) $Q B$ of $A B=S 43^{\circ} 30^{\prime} E$
c) $Q B$ of $A B=N 26^{\circ} 45^{\prime} E$
d) QB of $\mathrm{AB}=\mathrm{N} 40^{\circ} 15^{\prime} \mathrm{W}$

Problem 03:

Q. The magnetic bearing of a line $A B$ is $135^{\circ} 30^{\prime}$. What will be the true bearing, if the declination us $5^{\circ} 15^{\prime} \mathrm{W}$.
A. True bearing of $A B=$ Magnetic bearing - Declination

$$
=135^{\circ} 30^{\prime}-5^{\circ} 15^{\prime}=130^{\circ} 15^{\prime}
$$

Fore Bearing \& Back Bearing

Every line has two bearings one observed at each end of the line.

The bearing of the line in the direction of progress of the survey is called Fore Bearing (FB), while the bearing in the opposite direction is called Back Bearing (BB).
Therefore $B B$ of a line differs from FB by exactly 180°.
$B B=F B+-180^{\circ}$
Use plus sign if $\mathrm{FB}<180^{\circ}$
Use minus sign if $\mathrm{FB}>180^{\circ}$

Thank You

[^0]: Note $\left[\begin{array}{c}\text { Use the positive sign when declination is cast, } \\ \text { and the negative sign when declination is west. }\end{array}\right]$

