
Abstract

One of the most prominent applications of smart technology for energy saving is

in buildings, in particular, for optimizing heating, ventilation, and air-conditioning

(HVAC) systems. Traditional HVAC systems rely on wired temperature regulators

and thermostats installed at fixed locations, which are both inconvenient for de-

ployment and ineffective to cope with dynamic changes in the thermal behavior of

buildings. New generation of wireless sensors are increasingly becoming popular

due to their convenience and versatility for sophisticated monitoring and control

of smart buildings. However, there also emerge new challenges on how to effec-

tively harness the potential of wireless sensors. First, wireless sensors are often

powered by batteries, which makes it a paramount concern to make them energy

efficient. The second challenge is to ensure that the wireless sensors can work in

uncertain environments with minimal human supervision. Therefore, in this work,

we study a fundamental problem of optimizing the trade-off between the battery

lifetime and the effectiveness of HVAC remote control in the presence of uncertain

fluctuations in room temperature. We provide an effective offline algorithm for

deciding the optimal control decisions of wireless sensors, and a 2-competitive on-

line algorithm that is shown to attain performance close to offline optimal through

extensive simulation studies. We also evaluate the performance of our algorithm

in a real-world air-conditioning system and show that we can balance the trade-off

between thermal comfort and energy consumption of wireless sensors by choosing

appropriate control strategy and the way we make use of wireless sensors. The

implication of this work is to shed light on the fundamental trade-off optimization

in wireless sensor controlling HVAC systems.
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CHAPTER 1

Introduction

1.1 Introduction

Buildings are among the largest consumers of energy, topping 40% of total energy

usage in many countries [12]. A significant portion of energy use in buildings is

attributed to the heating, ventilation, and air-conditioning (HVAC) systems, which

may account for up to 50% of the total energy consumption [8]. Therefore, im-

proving energy efficiency of buildings, in particular, optimizing HVAC system is

critically important and will have a significant impact in reducing the overall en-

ergy consumption.

Usually, the air-conditioning systems need to maintain room temperature within

a certain desirable range to create a comfortable situation. It is often unnecessary

to maintain the indoor temperature at a rigid fixed value. To detect the variations

of temperature, traditional air-conditioning systems rely on wired temperature reg-

ulators and thermostats installed at fixed locations to characterize all zones within

1



CHAPTER 1. INTRODUCTION 2

a building. These classical controllers, though still popular because of their lower

initial cost, are expensive in the long run because they operate at very low en-

ergy efficiency. They are both inconvenient for deployment and ineffective to

cope with dynamic changes in the thermal behavior of buildings. In particular,

the temperature distribution is not spatially uniform across a thermal space; indi-

vidual rooms throughout a house may have different thermal characteristics and

respond differently to the thermal conditioning system. Control decisions based on

a single sensor may unnecessarily regulate the thermal environment and therefore

consume excess energy. Moreover, having sensors installed at fixed and limited

locations cannot react to the rapidly varying room conditions due to transient and

non-stationary human behavior.

New generation of wireless sensors enable low-cost spatially distributed en-

vironmental sensing which is revolutionizing the design of HVAC systems. A

wireless sensor node consists of a microprocessor, radio module, memory, power

source, and one or more sensors. Individual nodes communicate together by rout-

ing packets from node to node to create a communication network. A network of

wireless sensors can be deployed throughout a building, providing a more accu-

rate description of environmental conditions compared to a conventional single-

sensor thermostat, thus presenting new opportunities for advanced thermal control.

Wireless sensors, being not limited by wired installation, can be deployed strate-

gically close to the fluctuating thermal sources in an ad-hoc fashion (e.g., near

to doors, windows, computers, and where people usually sit etc.). They can be

integrated into both existing and new buildings without making major structural

changes. With wireless sensors, demand responsive air-conditioning control can be

developed that dynamically adjusts the room temperature according to intelligent

monitoring and tracking of human behavior and room conditions. Also, multiple

temperature signals from multiple sensors can be taken into account to deal with
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the non-uniform spatial distribution of temperature across the room. Furthermore,

wireless sensors can be integrated with home security and infotainment systems,

where networks between home appliances, sensors and wireless media enable more

sophisticated smart home control systems.

Despite the promising potential, wireless sensors pose several challenges:

1. Battery Lifetime: Wireless sensors are often battery-powered and typically

have to operate for prolonged periods of time. Therefore, one of the primary

goals is to maximize the battery lifetime of sensors. According to a survey

of several commercial wireless sensors (see Appendix D), the communica-

tion operations consume the most energy. Thus, an effective way to extend

battery lifetime is to reduce the communication frequency, thereby inducing

limited communication among wireless sensors.

2. Control Effectiveness: Wireless sensors are also distributed autonomous

computing devices. They can be programmed to intelligently optimize their

energy consumption with respect to the effectiveness of their control op-

erations. Intuitively, energy consumption is inversely proportional to the

effectiveness (i.e., sleeping all the time can effectively reduce energy con-

sumption, but is ineffective to satisfy the control requirement). The ability to

balance the energy consumption and effectiveness is critical to the usefulness

of these wireless sensors, particularly for smart home applications.

3. Uncertain Deployment: Wireless sensors are supposed to be deployed in

an ad hoc fashion, without a-priori measurement or calibration. It is critical

to ensure that wireless sensors operate robustly and reliably in the presence

of uncertainty of new environments. They should be able to rapidly cope

with dynamic displacements with minimal human supervision. An impor-

tant question is to investigate the fundamental ability of wireless sensors to
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control room temperature without assuming any a-priori or stochastic knowl-

edge of the temperature fluctuations caused by various uncertainties like ex-

ternal weather, energy source availability, metabolism of people’s bodies,

and the speed of air in the heating zone etc. These are activities that occur

without being planned and change the structure of the problem.

1.2 Thesis Statement – Objectives

The main purpose of this research is to study a fundamental problem of optimizing

the trade-off between the lifetime of the wireless sensors and the effectiveness of

HVAC remote control in the presence of uncertain (even adversarial) fluctuations

in room temperature. The novelty of our work lies in the fact that unlike most

intelligent HVAC control techniques (as summarized in chapter 3), our approach is

to solve the optimization problem in an online manner without stochastic modeling

or machine learning methods. The work involves development of a theoretical

framework for air-conditioning control, which will be accompanied by real-world

implementations for testing and verifying various aspects of the research as well as

performance of the system.

1.3 Research Contribution

The key contributions of this work are summarized as follows.

1. We formulate a new online optimization problem of balancing the trade-off

between communication frequency of wireless sensor and the effectiveness

of HVAC remote control. Our goal is to simultaneously maintain thermal

comfort and maximize the battery lifetime of the wireless sensor. In other

words, we aim to maximize the sensor energy efficiency through reduced



CHAPTER 1. INTRODUCTION 5

frequency of actuation while meeting the required control performance. To

the best of our knowledge, this specific problem has not been studied before.

2. We present an effective offline algorithm, which is based on dynamic pro-

gramming, for determining the optimal control decisions by wireless sensors

when all future temperature fluctuations are known in advance. The offline

algorithm is useful to benchmark the online algorithm we propose.

3. We devise an online algorithm that optimizes the control decisions without

the knowledge about future temperature fluctuations. We prove that our on-

line algorithm is 2-competitive against offline optimal algorithm.

4. We evaluate the performance of our algorithm through simulations and show

that our online algorithm can attain performance close to the offline optimal

solution.

5. We implement our algorithm in a real-world air-conditioning system and

empirically evaluate its performance under different scenarios.

6. The preliminary results were published in [1]

1.4 Thesis Organization

The rest of the thesis is organized as follows. In chapter 2, we present the back-

ground of online algorithmic approach, competitive analysis, and a related prob-

lem known as dynamic TCP acknowledgement problem and its comparison to our

problem. In chapter 3, we provide a review of related work. It summaries various

thermostat based, sensor network based, and common intelligent HVAC control

strategies. We present the models and formulations of ambient room tempera-

ture and wireless sensor network control in chapter 4. In chapter 5, we present

the offline and online algorithms which are based on our proposed models. The
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chapter also provides a competitive analysis of the algorithms. In chapter 6, we

evaluate the performance of our algorithms through extensive simulations run in

Matlab/Simulink. In chapter 7, we present the empirical results obtained from im-

plementing our control algorithms in a real-world air-conditioning system. Finally,

we summarize the thesis and discuss future extensions in chapter 8.



CHAPTER 2

Background

In this chapter, we present background information about online algorithms and

a well-known online problem known as dynamic TCP acknowledgment problem

which is closely related to our problem.

2.1 Online algorithms

Online algorithms have received considerable attention in the literature for their

fundamental principles and practical applications. In an online problem, a se-

quence of input is revealed gradually over time. The algorithm needs to make

certain decisions and generate output instantaneously over time, based on only the

part of the input that has been seen so far, without knowing the rest of the input

to be revealed in the future. There are many practical problems studied in the

online algorithmic setting that require real-time and instantaneous decisions, such

as real-time resource allocation in operating systems, data structuring, robotics or

7
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communication networks [2, 10]. The performance of online algorithms is eval-

uated using competitive analysis. The competitive ratio of an online algorithm

is defined as the worst-case ratio between the cost of the solution obtained by the

online algorithm versus that of an offline optimal solution obtained by knowing the

all input sequence in advance [27].

Online algorithms have several practical implications. First, they do not require

a-priori or stochastic knowledge of the input sequence, which makes them robust

in any uncertain (even adversarial) environments. Second, online algorithms often

use simple decision-making mechanisms, without being hampered by inaccurate or

slow convergent machine learning techniques. Third, online algorithms can give a

fundamental characterization without further assumptions of the problems, which

is useful to benchmark other sophisticated and more complicated decision-making

mechanisms. In this thesis, we adopt the online algorithmic approach to study the

fundamental problem of optimizing the trade-off between the battery lifetime and

the effectiveness of HVAC remote control in the presence of uncertain fluctuations

in room temperature.

2.2 Dynamic TCP acknowledgment

A well-known example involving online algorithms is the dynamic TCP acknowl-

edgment problem described as follows. A stream of packets arrives at a destination.

The packets must be acknowledged in order to notify the sender that the transmis-

sion was successful. However, it is possible to simultaneously acknowledge multi-

ple packets using a single acknowledgments packet. The delayed acknowledgment

mechanism reduces the frequency of the acknowledgments, but it might also add

excessive latency to the TCP connection and interfere with the TCP’s congestion

control mechanisms [13]. The problem is to find an optimal trade-off between
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the total number of acknowledgments sent and the latency cost introduced due to

delaying acknowledgments. More specifically, Dooly et al. [7] formulated this

trade-off as the dynamic TCP acknowledgement problem as follows.

In the dynamic TCP acknowledgement problem, a sequence of n packets σ =

(p1, p2, ..., pn) arrive at a certain destination. An algorithm divides the received

sequence σ into m subsequences σ1,σ2, ...,σm, where a single acknowledgment is

sent at the end of each subsequence. All the packets contained in σ j(1≤ j≤m) are

acknowledged together by the j-th acknowledgement at time t j. The objective is

to choose an optimal acknowledgment time sequence that minimizes the weighted

sum of the cost for transmitting acknowledgements and the cost of the latency of

delayed acknowledgements. The decision of transmitting an acknowledgment time

is decided in an online fashion without knowing the future packet arrivals.

2.3 Comparison to our problem

Our problem is somewhat similar to the dynamic TCP acknowledgment problem.

In TCP, random arrivals of packets are received, such that the receiver makes online

decisions when to transmit acknowledgments considering the weighted total cost

of number of acknowledgment and latency. In our problem, random fluctuations of

temperature and external thermal sources are perceived by the wireless sensor, and

the wireless sensor makes online decisions when to transmit control commands

to remote air-conditioning system considering the weighted total cost of transmis-

sions and effectiveness (defined by the disturbance of temperature compared to a

desirable temperature). A pictorial comparison between the two problems is pro-

vided in Fig. 2.1.

Despite the similarity, our results are not direct applications of the dynamic

TCP acknowledgment problem. In particular, the dynamic TCP acknowledgment
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(a) Dynamic TCP acknowledgment

(b) Wireless sensor controlling AC system

Figure 2.1: A pictorial comparison between dynamic TCP acknowledgment and
wireless sensor controlling AC system.

problem assumes latency as a linearly increasing function of time, whereas in our

problem the total disturbance of temperature changes non-linearly with time. This

requires a non-trivial extension of the original TCP acknowledgment problem to

the new context of air-conditioning control. Furthermore, we present extensive

simulation and empirical studies that are specific to the air-conditioning control

setting for corroborating the usefulness of our online algorithms for this new prob-

lem.



CHAPTER 3

Literature Review

Over the years, a number of HVAC control methods have been proposed and de-

veloped for deployment. These methods vary from simple techniques like manip-

ulation of setpoint 1 temperatures, to more sophisticated techniques such as fuzzy

logic, neural networks, genetic algorithms etc. In this chapter, we first summarize

a few works that are relatively simple extensions of the traditional HVAC control

techniques, then we discuss several state-of-the-art intelligent control techniques

employed in HVAC systems. We also present a brief survey of the recent works on

HVAC control based on sensor networks. We conclude the chapter by discussing

a paper that is somewhat related to our work in that it also aims to optimize the

wireless sensors cost while maintaining the control performance within acceptable

range.

1A setpoint is the temperature at which the air-conditioner aims to keep the internal air tempera-
ture of a building.

11
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3.1 Extensions of traditional techniques

Traditional techniques like thermostat control and manipulation of setpoint tem-

peratures constitute an area of opportunity to reduce energy consumption. In [15],

the authors proposed a relatively simple way of controlling the HVAC systems

in which the setpoint temperature of the regulator and thermostat is manipulated.

They developed an adaptive module of classical regulator to control the peak con-

sumption and provide thermal comfort. Their regulator is based on varying temper-

ature setpoint of the air-conditioning in response to maximum permissible power.

Similar approach has been used in [16], where an optimal control scheme for com-

pressor on/off cycling operations has been proposed. Their control scheme mini-

mizes a cost function that involves power consumption and the compressor on-off

cycling frequency. They tested their system on an air-conditioning and refrigera-

tion system model through simulations. However, they haven’t provided clear data

about the performance of their system.

Programmable thermostats are also used to control an HVAC system by schedul-

ing different setpoint temperatures based on time of day and user’s preferences. In

[11], the authors present the concept of a self-programming thermostat that auto-

matically creates an optimal schedule based on the occupancy patterns in a build-

ing. Their system monitors occupancy statistics using motion sensors in rooms

and magnetic reed switches on doors. These statistics are then fed to optimization

algorithms implemented in the programmable thermostat. Their self-programming

thermostat allows the user to define the desired balance between energy and com-

fort. According to the authors, their experiments provides a strong support for their

hypothesis that substantial HVAC waste can be reduced by monitoring the occu-

pants of homes and automatically optimizing HVAC operation schedules. How-

ever, recent studies have shown energy savings from programmable thermostats

may be less than expected [26].
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Traditional controllers prove to be of high cost as they have low efficiency and

high maintenance. Therefore, they are replaced by advanced controllers (described

in the next section) which produce improved thermal comfort and use less energy.

3.2 Intelligent HVAC control

Recently, many studies have explored the use of intelligent methods to control

HVAC systems [20, 21]. This category of controllers includes Neural Network

based 2, Genetic Algorithms 3 based, Fuzzy Logic 4 based Controllers, and other

evolutionary techniques.

These methods are popular due to their attractive features like human knowl-

edge and reasoning as well as advanced optimization methods. Neural networks are

useful when the system models are not analytically known fully. Fuzzy logic con-

trol is another popular controlling choice. It is robust to changes in environments as

it is based on the operational experience of human expert. The main advantage of

fuzzy logic controllers as compared to conventional control approaches resides in

the fact that no mathematical modeling is required for the design of the controller.

Genetic algorithms are attractive for optimization purposes without involving the

mathematical theory. Both neural networks and fuzzy logic control methods can

be combined with genetic algorithms for further optimization.

In [17], the design of an intelligent comfort control system by using human

learning strategy for an HVAC system was proposed. Based on a standard thermal

comfort model, a human learning strategy was designed to tune the user’s comfort

zone by learning the specific user’s comfort preference using a neural network

2Neural networks are mathematical representations of biological neurons that relate input and
output through a massively connected and parallel distributed network.

3Genetic algorithms are optimization techniques based on biological evolution theory involving
crossover and mutation and survival of the fittest.

4Fuzzy logic is a methodology to represent human knowledge and reasoning in the form of mem-
bership functions and rules to make useful inference actions for the modeling and control of uncertain
physical systems.
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controller. The integration of comfort zone with the human learning strategy was

applied for thermal comfort control. The authors in [31] proposed a multi-objective

particle swarm optimization algorithm, embedded in a controller. The algorithm

was used to determine the amount of energy dispatched to HVAC equipment based

on utilizing swarm intelligence technique.

A method based on fuzzy logic controller dedicated to the control of HVAC

systems has been proposed in [3]. They obtained the initial knowledge base re-

quired by fuzzy logic controller from human experts and control engineering knowl-

edge which they subsequently tuned by a genetic algorithm. In [24], a hierarchical

structure for the control of an HVAC system using the Model Predictive Control

(MPC) algorithms and fuzzy control algorithms has been proposed. The main task

of the proposed hierarchical control system is to provide thermal comfort and min-

imize energy consumption. Their technique showed a good comparison between

two conflicted objectives: thermal comfort and energy consumption. The authors

of [4] used model-predictive control technique to learn and compensate for the

amount of heat due to occupants and equipment. They used statistical methods

together with a mathematical model of thermal dynamics of the room to estimate

heating loads due to inhabitants and equipment and control the air-conditioner ac-

cordingly.

Majority of the existing intelligent HVAC control techniques rely on stochastic

knowledge about the input which makes them less robust in uncertain environ-

ments. For example, neural network, although useful in cases where there is no

mathematical model, suffers from the enormous time taken for off-line training.
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3.3 Sensor network based HVAC control

HVAC control based on sensor networks has also been studied to some extent. In

[14], an air-conditioning control system for a dynamical situation in wide public

spaces has been proposed. They tracked people movement through multiple large

scale scanners. Also, networked temperature sensors were deployed in the tar-

get space for temperature monitoring. The obtained temperature distribution was

integrated with the results of people tracking in real-time to direct HVAC to lo-

cations with high population density and insufficient temperature. The authors in

[23] describe a system for a heating control which is based on wireless sensor net-

work. They use a real-time control method that allows peak consumption to be

reduced while maintaining thermal comfort. If total power demand does not ex-

ceed permissible power, the control system operates like a traditional temperature

control in order to ensure thermal comfort. If peak consumption exceeds permissi-

ble power, the control system switches to the adaptive mode. This mode is based

on a variable setpoint value of temperature to limit the consumption peak. The ex-

periment results show that their thermal control system enables to reduce peak load

while maintaining thermal comfort. In [30], a ZigBee-based wireless controller is

proposed for control of split air-conditioning units. The controller needs to be con-

nected to the temperature sensor of an air-conditioner. The primary function of

the controller is to affect the on/off functions of the air-conditioner unit according

to the readings from the wireless temperature sensors. Wireless temperature sen-

sors were placed at primary cooling demand zones which were the focus of control

of temperature. They reported that less cooling would be needed when only the

primary cooling zones are targeted to reach comfort conditions.

In [28], the authors presented the conceptual design of an adaptive multi zone

HVAC control system that utilized WSN for predicting the occupancy pattern of

people in a building. Their control strategy involved turning off the air-conditioner



CHAPTER 3. LITERATURE REVIEW 16

in unoccupied zones and manipulating the setpoint temperature. A multi-sensor

non-learning control strategy has been proposed in [25]. This paper evaluates

the energy and comfort performance of three multi-sensor control strategies that

use wireless temperature and humidity sensors and that can be applied to existing

on/off central HVAC system. The multi-sensor control strategies adjust the temper-

ature set point of a thermostat to (i) control the average of all room temperatures

using temperature threshold logic, (ii) minimize aggregate discomfort of all rooms,

or (iii) maximize the number of rooms within a comfort zone. The strategies were

evaluated in a real occupied house and were found to outperform single-sensor

control strategies. In [18], the authors replace a single temperature sensor used to

control a set of rooms with a sensor network that provides one sensor per room.

However, there is still just one controller and one HVAC unit for the set of rooms.

The focus of their work is on how to make use of the additional information avail-

able from a network of sensors, and an evaluation of how different methods of

using the information affect energy performance and thermal comfort. They in-

vestigated simple, ad hoc methods (e.g. taking average of all sensors) as well as

developed an optimization method that balances energy consumption with ther-

mal comfort. They compared the performance of the single-sensor strategy with

the ad hoc strategies and optimized strategies using simulations and reported that

most of the multi-sensor control strategies do better than the single-sensor strat-

egy on the basis of both energy performance and comfort. However, they haven’t

applied their strategies on real-world air-conditioning systems. The authors in [9]

deployed an wireless camera sensor network in a building to determine the occu-

pancy (i.e. number of people in the building) thereby enabling to control the HVAC

systems in an adaptive manner based on occupancy. They reported that knowing

the occupancy and usage patterns will result in significantly higher energy savings

compared to strategies assuming fixed occupancy and usage patterns. However,
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they used camera sensors which raise privacy and resource usage issues.

In [19], the authors proposed somewhat similar approach to our work. They in-

troduced a methodology that optimizes the sensor network cost while maintaining

the control performance within an acceptable range. They applied their methodol-

ogy to a distributed control of building lighting systems. They empirically com-

pared the developed system for building lighting control with a baseline control

method and reported significant reduction in energy use and saving in the network

cost while maintaining the user comfort.

In summary, a number of different control methods have been developed and

incorporated into commercial, industrial and residential buildings. However, most

existing techniques and systems have significant limitations e.g. inability to deal

with non-uniform spatial distribution of temperature, non-stationary and transient

heat sources, and different response by thermal zones to thermal conditioning sys-

tem etc. Accordingly, there is a need to design, implement, and validate new tech-

niques with the aim to reduce existing limitations.



CHAPTER 4

Model and Formulation

The goal of our study is to optimize the trade-off between the wireless sensor bat-

tery lifetime and the effectiveness of ambient room temperature control in the pres-

ence of uncertain fluctuations. In this chapter, we present the models of ambient

room temperature and wireless sensor control as well as the assumptions we make

in order to improve the tractability of our models. It should be noted that a com-

plete table of notations with explanations is provided in Appendix E.

4.1 Assumptions of ambient room temperature

The thermal behavior of buildings is a complex system. The mathematical models

in the literature typically involve several empirical constants, non-linear functions

and uncertain factors such as heat flow and material properties [22]. Moreover, ex-

ternal factors, such as weather condition (e.g., temperature, humidity), soil temper-

ature, radiation effects and other sources of energy (e.g., human activities, lighting

18
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and equipment), also play a critical role in determining the thermal behavior of

buildings [22].

Tractable mathematical models of building thermal behavior are particularly

useful for the design of intelligent controls and regulations of HVAC systems.

Therefore, assumptions are often imposed to improve the tractability of the thermal

models of buildings.

In this work, we employ a simple yet commonly used thermal model for a

single room. This model considers several major factors, such as the outdoor envi-

ronment, the thermal characteristics of the room, and the air-conditioning system.

We mostly consider the setting of cooling, where the air-conditioning system is

required to make continual adjustment to the room temperature for maintaining a

(lower) desirable temperature level. We remark that our results can be applied to

the setting of heating with minor modifications.

First, we list several common assumptions of the ambient room temperature in

the literature [29] for improving the tractability:

• The air in the room is assumed to be fully mixed.

• The temperature distribution is assumed to be uniform and the dynamics can

be expressed using a lump capacity model.

• The room behaves ideally, such that the effect of each wall is uniformly

equivalent.

• The density of the air is constant and is not affected by the changes in tem-

perature and humidity.
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4.2 Dynamic model of ambient room temperature

Based on the above assumptions, a simple dynamic model of ambient room tem-

perature can be formulated as follows. We consider the setting of continuous time,

and model the ambient room temperature at time t by a function T (t), which de-

pends on several major factors:

1. The initial ambient room temperature T0 at time t = 0.

2. The influence of outdoor temperature Tod(t), which is a function of time

affected by time-of-day and weather. A simple example is a sinusoidal func-

tion depending on the time-of-day. We assume that the variation of Tod(t) is

relatively slow, as compared to the effect of air-conditioning system. Hence,

we simply write Tod(t) as a constant Tod.

3. The external thermal sources entering into the room, for example, due to hu-

man body heat or human activities (e.g., computers). We model the arrivals

of thermal sources by a function W (t), such that there is a level of thermal

intensity W (t) (measured by degree Celsius) arriving at time t.

4. The heat absorptivity and insulation properties of the materials in a room

(e.g., walls). Heat can be retained in a room for a longer period of time in a

well-insulated room with sufficiently absorptive materials.

5. The air-conditioning system output. This is the control variable we seek to

optimize in order to maintain the ambient room temperature within a desir-

able range.

4.2.1 Without external thermal sources

Throughout this paper, we rely on a widely-used model of dynamic ambient room

temperature [6]. First, we assume that there is no external thermal sources entering
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into the room (i.e., W (t) = 0 for all t). In particular, we denote the ambient room

temperature without external thermal sources as T̃ (t). Given the initial ambient

room temperature T0 and outdoor temperature Tod, the dynamic behavior of T̃ (t)

can be described by the following differential equations

dT̃ (t)
dt

=
1

c ·Mair
·
(

dQin(t)
dt

− dQac(t)
dt

)
(4.1)

dQin(t)
dt

=
Tod− T̃ (t)

Req
(4.2)

dQac(t)
dt

=
c ·Mac · (T̃ (t)−Tac)

Eac
(4.3)

Where Tac is the temperature output by the air-conditioning system, Qin(t)

is the net heat transfer from outdoor, Qac(t) is the net heat chilled by the air-

conditioning system, Mair, Mac, Eac, c, Req are constants that model the heat absorp-

tivity and insulation properties in the room (see Appendix E for full explanations).

By substitution, one can solve the differential equations by the following lemma.

Lemma 1. In the above model, the solution to Eqns. (4.1)-(4.3) is given by

T̃ (t) =
C1

C2
−
(
C1

C2
− T̃ (0))

)
· e−C2·t (4.4)

Where

C1 =
c ·Tac ·Mac ·Req +Eac ·Tod

c ·Mair ·Req +Eac
(4.5)

C2 =
Eac + c ·Mac ·Req

c ·Eac ·Mair ·Req
(4.6)

We provide the proof in Appendix B.
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4.2.2 With external thermal sources

Next, we consider the setting with external thermal sources. We consider W (t) as

a sequence of impulsive thermal sources, such that

W (t) =
m

∑
i=1

wi ·δ (t− ti) (4.7)

Where δ (t) is Dirac delta function, and wi is the level of thermal intensity

entering into the room at time t.

Impulsive thermal sources are a reasonable assumption for modeling short-

lived thermal sources (e.g., temporarily opening a door). Further, any arbitrary

W (t) can be approximated by a sequence of appropriately placed impulsive ther-

mal sources by taking wi =W (ti) (see Fig. 4.1 for an illustration). Note that, in this

paper, we do not assume any a-priori knowledge of the stochastic property of W (t).

We denote a , ((wi, ti) : i = 1, ...,m) for a sequence of arrivals of impulsive ther-

Figure 4.1: An illustration of using impulsive heat sources to approximate arbitrary
W (t).

mal sources, where m is the total number of arrivals. Given a, the ambient room

temperature at time t can be obtained recursively as follows. For i ∈ {1, ...,m},

we note that there is no external thermal source during interval ti−1 < t < ti. We

denote the ambient room temperature during interval ti−1 ≤ t < ti by T̃i(t). Thus,

kelbassioni
Note
thesis



CHAPTER 4. MODEL AND FORMULATION 23

following by Lemma 1, we obtain

T̃i(t) =
C1

C2
−
(
C1

C2
− T̃i−1(ti−1)−wi−1

)
· e−C2·(t−ti−1) (4.8)

Where T̃i−1(ti−1)+wi−1 is the initial temperature at ti−1.

For completeness, we let t0 = 0, w0 = 0 and T̃0(t0) = T0. Hence, we obtain the

ambient room temperature for given external thermal sources a and initial ambient

room temperature T0 as

T (t;a,T0) = T̃i(t), if ti−1 ≤ t < ti (4.9)

4.3 Model of wireless sensor control

To model wireless sensor control, we consider a wireless sensor deployed in the

target zone for sensing the ambient temperature. The wireless sensor issues control

commands to a remote air-conditioning system when the locally sensed ambient

temperature exceeds a certain desirable temperature range. There are several issues

considered in our sensor model.

a) Trade-off: Since wireless sensors are energy constrained and often powered by

batteries, the wireless sensor is required to optimize the battery lifetime without

affecting the thermal comfort. Although various operations are performed in wire-

less sensors (e.g., computations and sensing), the wireless communication opera-

tions typically consume most of the energy in a wireless sensor (see Appendix D).

Hence, it is crucial to reduce the number of wireless communication operations for

extending the battery lifetime.

There are two prominent conflicting factors that a wireless sensor needs to

optimize:

1. The update frequency of control commands to remote air-conditioning sys-
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tem in the presence of random fluctuating thermal sources, which character-

izes the effectiveness of ambient room temperature control.

2. The communication operations for transmitting the control commands, which

critically governs the wireless sensor battery lifetime.

Note that increasing of the number of communication operations will reduce

the battery lifetime. This naturally gives rise to an online decision problem, where

the wireless sensor decides the update frequency in an online manner without a-

prior information of random fluctuating arrivals of thermal sources.

b) Air-conditioning operations: Let T max
des be the maximally desirable temperature

(e.g., 25 degree Celsius), and T min
des be the minimally desirable temperature (e.g., 21

degree Celsius). The desirable ambient room temperature is aimed to be retained

within [T min
des ,T max

des ].

A simple setting of control command by wireless sensor is the “ON/OFF” or

hysteresis control, such that when the ambient room temperature is sufficiently

higher than T max
des , an ON command is communicated to air-conditioning system,

whereas when the sensed ambient room temperature is sufficiently lower than

T min
des , an OFF command is communicated to air-conditioning system1. This in-

duces an ON/OFF cycle of air-conditioning operations (see Fig. 4.2 for an illus-

tration), which is one of the most commonly used control strategy in today’s air-

conditioning systems [16].

Furthermore, for the sake of tractability, we assume that an OFF command is

automatically issued when the ambient room temperature drops below T min
des , and

the cooling process is rather efficient, i.e. cooling can be achieved in a relatively

short time. However, we may allow the ambient room temperature to exceed T max
des

temporarily. Hence, our study is simplified to only optimize the ON command de-

1In our ambient room temperature model, the air-conditioning system can be disabled by letting
Mac = 0
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Figure 4.2: An illustration of the ON/OFF cycle of air-conditioning.

cisions in order to balance the trade-off between the wireless sensor battery lifetime

and the effectiveness of ambient room temperature control, without considering the

OFF commands.

We consider a finite time horizon for any t ∈ [0,B]. We define the decision vari-

ables as x= (xk ∈ [0,B])K
k=1, where each xk is the time that the k-th ON command is

issued by the wireless sensor, while K is the total number of ON commands which

the wireless sensor needs to optimize without affecting the thermal comfort.

c) Disturbance of temperature: We characterize the thermal comfort by a metric

defined as the total disturbance of ambient temperature exceeding the desirable

temperature range.

For given time τ , we let aτ be the sub-sequence, such that

(
(wi, ti− τ),(wi+1, ti+1− τ),(wi+2, ti+2− τ), ...

)
(4.10)

Where ti is defined such that ti−1 < τ ≤ ti. Namely, aτ is a truncated sequence

of a starting at τ .

We define Tτ(t) to be the temperature function T (t;a,T0) starting at time τ with
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initial temperature T0 = T min
des and sequence of thermal sources aτ . That is, for any

t ≥ τ ,

Tτ(t), T
(

t− τ;aτ ,T min
des

)
(4.11)

Hence, the total disturbance given decision variables x is defined by (also

shown in Fig. 4.2)

D(x),
K

∑
k=1

∫ xk+1

t=xk

[Txk(t)−T max
des ]+dt (4.12)

Where [x]+ = max(x,0) and T max
des is the maximal desirable temperature thresh-

old.

Definition 1. Formally, we define the decision problem for wireless sensor control-

ling air-conditioning (WSAC) as follows: WSAC problem:

min
x

Cost(x), min
x

η ·K +(1−η) ·D(x) (4.13)

Where η ∈ [0,1] is a weight assigned to balance the update frequency and the

thermal comfort.

In the offline decision setting, x is decided given a-priori information of a and

Tod without any restriction; whereas in the online decision setting, we require x to

be decided such that xk only considers the thermal sources before time xk: {(wi, ti) |

ti ≤ xk}.

Let x∗ be the offline optimal solution to WSAC problem, while xA is the output

solution given by an online algorithm A . We define the competitive ratio as

CR(A ), max
a,Tod

Cost(xA )

Cost(x∗)
(4.14)

In our problem, we seek to find an optimal online algorithm A to solve WSAC

problem with the minimal CR(A ).
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Results

In this chapter, we present an offline algorithm as well as an online algorithm to

solve WSAC problem. We also provide an example to illustrate the working of both

algorithms. We conclude by proving the online algorithm to be 2-competitive.

5.1 Offline algorithm

While the rest of the thesis considers online algorithm, we first devise an effective

offline algorithm to solve WSAC problem based on dynamic programming. The

ramifications are that (1) the offline algorithm will enable us to compute the com-

petitive ratio under diverse simulation settings; (2) the offline algorithm is useful in

the setting with predictable a. For example, based on the past history and statistics

of a, one can effectively solve WSAC problem by offline algorithm.

In the offline decision setting, we assume that all future temperature fluctua-

tions are given in advance. We present our offline algorithm (AOFL) in Algorithm 1

27
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that gives an optimal solution to WSAC problem. The basic idea of AOFL is based

on dynamic programming, which relies on solving a sub-problem to decide when

the previous ON command should be transmitted, assuming all the previous ON

commands can be decided optimally. Recall that ti is the arrival time of the i-th

Algorithm 1 Optimal Offline Algorithm AOFL, Input(a)
1: Costmin[0]← 0
2: Cost[1,1]← 1 ·η +(1−η) ·

[∫ t1
t=0[Tt0(t)−T max

des ]+dt
]

3: Costmin[1]← Cost[1,1], idx[1]← 1
4: for i ∈ [2,m] do
5: for j ∈ [1, i] do
6: Cost[i, j]← 1 ·η+(1−η) ·

[∫ ti
t=ti− j

[Tti− j(t)−T max
des ]+dt

]
+Costmin[i− j]

7: if Cost[i, j]< Costmin[i] then
8: Costmin[i]← Cost[i, j]
9: idx[i]← j

10: end if
11: end for
12: end for
13: y1← tm, k′← 1, r← m . backtrack to find x∗
14: while r > 1 do
15: r← r− idx[r], k′← k′+1
16: yk′ ← tr
17: end while
18: K← k′

19: Output (xk = yK−k+1)
K
k=1

external thermal source in sequence a. Let Cost[i, j] be the minimum cost when

the last ON command is transmitted at time ti and the second to last ON command

is transmitted at time ti− j, over all possible x with fixed xK = ti and xK−1 = ti− j.

Also, let Costmin[i] be the minimum cost when the last ON command is transmitted

at time ti. We note that Cost[i, j] and Costmin[i] can be computed recursively in

Algorithm 1. Once Costmin[m] is found, the optimal decision x∗ can be determined

by backtracking. To enable backtracking, we maintain indices idx[i] to record j

when Costmin[i]← Cost[i, j].

Theorem 1. AOFL in Algorithm 1 outputs an optimal solution to WSAC problem
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Proof. The proof can be achieved in two steps.

(i) WSAC problem exhibits the optimal sub-structure property;

(ii) AOFL explores all sub-problems and thus gives an optimal solution.

To prove (i), we consider a subsequence of thermal sources

(
(w1, t1),(w2, t2), ...,(wi, ti),

)
(5.1)

Where the last ON command is transmitted at time xk = ti. Let us assume that

we know that (perhaps told by an oracle) the second to last ON command is trans-

mitted after the (i− j)-th arrival of thermal sources (i.e., xk−1 = ti− j) is optimal,

then we only need to optimize the subsequence
(
(w1, t1),(w2, t2), ...,(wi− j, ti− j)

)
in order to obtain the full optimal solution. Thus, the problem exhibits the optimal

sub-structure property.

To prove (ii), we need to examine the execution of AOFL. We note that there are

two FOR-loops. For each iteration of the outer loop (i.e., upon arrival of each new

thermal source), the inner loop is executed from start to i (i.e., all subsequences

in
(
(w1, t1),(w2, t2), ...,(wi, ti),

)
are traversed). This process is repeated for each

new thermal source until we reach the end of the sequence. By doing so, AOFL is

able to explore all subsequences and, therefore, all sub-problems.

5.2 Online algorithm

In this section, we present a deterministic online algorithm that optimizes the trade-

off between the frequency of ON commands and the thermal comfort. Our online

algorithm achieves so by balancing the cost of transmitting the ON command im-

mediately with the cost of delaying the ON command. We assume that a wire-

less temperature sensor continuously tracks the change of temperature. Without
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the arrival of external thermal sources, the change in ambient temperature occurs

smoothly as given by the differential equations Eqns. (4.1)-(4.3). However, when

there is an arrival of external thermal source, the wireless sensor will be able to

detect a sudden spike (because we assume impulsive thermal sources) in tempera-

ture, and hence, infer the arrival time of thermal source. Recall that the j-th thermal

source arrives at t j. Let

σk , {i ∈ {1, ...,m} | xk−1 < ti ≤ xk} (5.2)

Namely, σk is the set of thermal sources arrived between the (k−1)-th and the

k-th ON commands. Upon each new arrival of thermal source, our online algorithm

sets a timer such that the total cost (i.e., sum of transmission and disturbance costs)

for σk if an ON command is transmitted immediately is equal to the disturbance

cost for σk if an ON command is transmitted after waiting for some time τ . To be

specific, suppose the last ON command is transmitted at time xk. We decide the

transmission time of the next ON command (xk+1). The cost incurred if an ON

command is transmitted immediately (i.e., at time t j) is given by:

η +(1−η) ·
∫ t j

t=xk

[Txk(t)−T max
des ]+dt (5.3)

On the other hand, the total cost if an ON command is transmitted after waiting

for time τ (i.e., at t j + τ) is given by

(1−η) ·
[∫ t j

t=xk

[Txk(t)−T max
des ]+dt +

∫ t j+τ

t=t j

[Txk(t)−T max
des ]+dt

]
(5.4)

Equating Eqn. (5.3) and (5.4), we obtain τ as a solution to the following equa-

tion.
η

(1−η)
=
∫ t j+τ

t=t j

[Txk(t)−T max
des ]+dt (5.5)
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However, if there is an arrival of a new thermal source (at t j+1) before timer

expires, then we have to reset the timer and obtain a new τ as follows:

η

(1−η)
=
∫ t j+1+τ

t=t j

[Txk(t)−T max
des ]+dt (5.6)

Thus, upon each new arrival, we increment the upper integration limit in Eqn. (5.6)

and get a new τ . The complete algorithm is presented in Algorithm 2 (AONL).

Algorithm 2 OnlineAlgorithm AONL, Input(tnow)
1: Global variables: τ, timer
2: Initialization: τ ← 0, timer← 0
3: if tnow > timer then . upon the beginning or after each OFF command
4: Find τ such that

η

(1−η)
=
∫ tnow+τ

t=tnow

[Txk(t)−T max
des ]+dt

5: timer← tnow + τ

6: end if
7: if tnow = timer then . timer has expired
8: Transmit an ON command
9: else if tnow < timer then . timer has not expired yet

10: if j-th new thermal source is detected at tnow then
11: Let t j be the time after the last ON command
12: Find τ such that . decrease the timer due to new thermal source

η

(1−η)
=
∫ tnow+τ

t=t j

[Txk(t)−T max
des ]+dt

13: timer← tnow + τ

14: else
15: Do not transmit . wait for timer expiry
16: end if
17: end if
18: if Room Temperature ≤ T min

des then
19: Transmit an OFF command
20: end if

Selecting the timer in such a manner will make AONL behave as follows. Upon

the arrival of a each new temperature command, the algorithm sets a timer such that
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the expiry of timer will indicate that the comfort level threshold has reached and an

ON command will be transmitted to the air-conditioning system. If an additional

thermal source arrives before the timer expires, then a new smaller timer is set

because the comfort level threshold will reach sooner due to the additional thermal

source. In any case, whenever the timer expires, an ON command is transmitted

and the current outstanding sequence is ended.

5.3 Example

We provide an example to illustrate the operations of offline optimal and online

algorithms. In the example, the outdoor temperature is assumed to follow sinu-

soidal pattern. The input temperature sampled by the wireless sensor as a result

of thermal sources entering the room at random intervals are given by Table. 5.1.

For convenience of illustration, we restrict the example to 10 input samples (i.e.,

m = 10). The maximally desirable temperature T max
des is 24 degree Celsius.

Table 5.1: Arrivals of impulsive thermal sources
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
4 12 15 21 26 30 34 35 40 43
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10
24 23 24 25 23 29 24 27 25 28

For the arrivals shown in Table. 5.1, we execute AOFL. Table. 5.2 lists the en-

tries Cost[i, j], where the minimum costs (i.e.,Costmin[i]) are highlighted in yellow.

After obtaining Costmin[m], we use backtracking to determine the optimal de-

cision variables x∗ as

x∗ = (t1, t3, t4, t6, t8, t10)

Where each ti is the time to transmit an ON command.

For the same arrivals, the online algorithm online algorithm AONL gives the
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Table 5.2: Costmin[i] and Cost[i, j] for offline optimal algorithm
i, j 1 2 3 4 5 6 7 8 9 10
1 1.4
2 4.1 4.5
3 7.4 7.1 7.9
4 11.5 12.0 12.6 14.4
5 17.1 17.2 18.5 20.0 22.5
6 23.9 23.8 24.6 26.6 28.7 31.8
7 31.0 31.1 31.8 33.2 35.9 38.6 42.3
8 37.4 36.6 36.7 37.4 38.8 41.5 44.2 47.9
9 44.8 46.3 47.2 49.1 51.4 54.4 58.6 62.7 67.8
10 54.0 53.2 54.6 55.5 57.4 59.7 62.7 66.9 71.0 76.1

following solution

xONL = (t6, t10)

The decisions made by both algorithms are illustrated in Fig. 5.1.

Figure 5.1: An illustration of the decisions by the offline optimal and online algo-
rithms

Finally, the costs of both algorithms and the competitive ratio are computed as:

Cost(x∗) = 53 Cost(xONL) = 63 CR(AONL) = 1.19
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5.4 Competitive analysis

Let x∗ be the offline optimal solution, while xONL is the output solution given by

online algorithm AONL . We define the competitive ratio as

CR(AONL), max
a,Tod

Cost(xONL)

Cost(x∗)
(5.7)

We show that the competitive ratio i.e., CR(AONL)≤ 2.

Theorem 2. Cost(xONL)≤ 2 ·Cost(x∗)

Proof. Assume that AONL sends a total of m ON commands for certain exter-

nal thermal source arrivals, thus partitioning the sequence into m subsequences,

where each subsequence ends with an ON command being transmitted to the air-

conditioning system. The total cost by AONL for the input a is the sum of the cost

for transmitting m ON commands and the extra latency cost for each subsequence,

which can be calculated as follows.

First, as shown previously, AONL sets τ , such that

η

(1−η)
=
∫ t j+τ

t=t j

[Txk(t)−T max
des ]+dt (5.8)

Note that
∫ t j+τ

t=t j [Txk(t)−T max
des ]+dt is a strictly increasing function in τ . Hence,

the solution τ always exists and is uniquely defined. Also, it can be seen from

Eqn. (5.8) that the timer is set in a manner that equalizes the total thermal dis-

turbance of the subsequence to η/(1−η). Thus, the disturbance cost for each

subsequence is η

(1−η) · (1−η) = η . The total cost incurred by AONL , therefore, is

Cost(xONL) = cost of m ON commands

+ disturbance cost for m subsequences

= mη +mη = 2mη (5.9)
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To calculate Cost(x∗), let m∗ be the number of ON commands transmitted to

the air-conditioning system in an optimal solution. When m ≤ m∗, it immediately

follows that Cost(x∗)≥ m∗η ≥ mη . Thus Cost(xONL)/Cost(x∗)≤ 2.

We now consider the case when m > m∗. Since the m∗ optimal ON commands

are distributed over the m subsequences partitioned by AONL . Thus, at least m−m∗

subsequences in online algorithm partition have no ON command at their end from

the corresponding optimal solution. We claim that for each such a sequence, the

disturbance cost is at least η in AONL, because AONL decides ON command in

such a way that the disturbance cost is equal to weighted cost of ON command

(i.e., η). It is straightforward to see that disturbance cost of such a subsequence

is at least η , because AONL resets the room temperature to T min
des at the beginning

of each subsequence, whereas offline optimal algorithm does not. This induces a

total disturbance cost of at least (m−m∗)η to the optimal solution. The total cost

of offline optimal algorithm is:

Cost(x∗)≥ m∗η +(m−m∗)η = mη (5.10)

Thus, Cost(x∗)≥ mη , which is at least half of Cost(xONL).



CHAPTER 6

Simulation Studies

In this chapter, we present the results of the simulations that we ran to experimen-

tally evaluate the performance of our algorithms. We use the classical ON/OFF

algorithm as a baseline control model. In the classical ON/OFF technique (also

known as bang-bang or hysteresis control), the wireless sensor sends an ON com-

mand to the air-conditioner whenever the room temperature reaches T max
des and OFF

command when the temperature drops to T min
des . First we compare the online solu-

tion against the baseline algorithm. We, then, provide a detailed cost comparison

between the online and offline algorithms under different models of random ther-

mal sources and different values of η .

In the first experiment, all three algorithms were run multiple times for different

values of η to determine their relative performance against each other. Fig. 6.1

shows the results of the experiment. The input size during all experiments was

set to 1000. As can be seen from the figure , the average cost ratio of the online

algorithm against offline algorithm is always below 1.5 which is much better than
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the theoretical ratio of 2. It can also been seen that our algorithm always performs

better than the classic ON/OFF control technique.

Figure 6.1: Simulation results showing the performance comparison between the
online, the offline, and ON/OFF algorithms.

We now compare the performance of the online algorithm with the optimal of-

fline algorithm under different models of random thermal sources. For the next

experiment, we draw the random thermal sources from Poisson distribution. Pois-

son distribution is a one parameter distribution, where that parameter, λ , is both

the mean and the variance of the distribution. Thus, we can change the behavior

of random thermal source by changing λ . Poisson distribution is suitable in situa-

tions that involve counting the number of times a random event occurs in a given

interval (e.g., time, distance, area etc.). We ran the simulations for different models

of random thermal sources generated by varying the parameter λ . Fig. 6.2 shows

the simulations results for λ ∈ {10,20,30} and η ∈ {0.1,0.2, ...,0.9}. The vertical

axis gives the ratio of the cost of the online algorithm’s solution to the cost of the

optimal solution and the horizontal axis represents the relative cost weighting of

sending a control signal to the air-conditioner. By looking at each line, it can be
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seen that the cost ratio gets closer to one when the value of η approaches either

zero or one. This means that the online algorithm performs better when the rela-

tive weighting of sending a control signal is either very low or very high. It can

also be observed that the performance of the algorithm improves as we decrease λ

(i.e., reducing the random thermal disturbances).

Figure 6.2: Competitive ratio of the online algorithm against the optimal algorithm
when random thermal sources are drawn from Poisson distribution

Similar results were observed when the experiment was repeated, with random

thermal sources drawn from Binomial distribution (see Fig. 6.3). Binomial dis-

tribution requires a parameter p, the probability of success. In our case, p is the

probability of a random thermal source entering the room at a certain time. The re-

sults shown are for p ∈ {0.2,0.5,0.75} and η ∈ {0.1,0.2, ...,0.9}. Once again, as

expected, the algorithm’s performance improves as we reduce the value of p (i.e.,

the probability of occurrence of thermal disturbances).

The simulation studies show that our online algorithm outperforms the baseline

control method. However, simulations have a number of limitations. First, simu-

lations involve the manipulation of a number of variables of a model representing
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Figure 6.3: Competitive ratio of the online algorithm against the optimal algorithm
when random thermal sources drawn from Binomial distribution.

a real system. However, it is possible that the reality of the system as a whole

can be lost while manipulating of a single variable. Secondly, certain systems or

components of a realistic situation are not transparent. Some factors have a lot of

influence on the overall system, but they have indistinct relations in the overall sys-

tem and can therefore not be represented in a model. Therefore, it is important to

implement our control algorithms in real-world air-conditioning system and carry

out an empirical study to evaluate its performance.



CHAPTER 7

Implementation

In this chapter, we present the empirical studies we conducted to evaluate the

performance of our algorithm in a small-scale experimental setup using one air-

conditioner. The algorithm’s performance was evaluated under several control sce-

narios. The chapter includes an explanation of the experimental setup; a brief

description of the hardware platform; a description of the control strategies and

their relative performance; and discussion on the results.

7.1 Experimental setup

The experiment is setup in a room in a house using a custom wireless control sys-

tem that includes a network of wireless temperature sensors and a controller. The

size of the room is about 5m× 4m× 3.5m (L×W ×H). A pictorial representation

of our system is shown in Fig. 7.1. The figure shows approximate positioning of

the hardware in the room.
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Figure 7.1: Pictorial representation of the experimental setup
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The system comprises (i) an array of XBee enabled Arduino 1 boards equipped

with temperature sensors, (ii) two Arduino controlled electric heaters, (iii) a spilt

type air-conditioner, and (iv) a central controller Arduino. Arduino is chosen as

the hardware platform because of its flexibility and ease of use for development of

real-world control applications like in our case. It can receive input from a variety

of sensors and can also control virtually any appliance. Arduino projects can be

stand-alone (as in our case) or they can communicate with and receive commands

from software running on a computer.

The Arduino boards in our system are programmed to measure temperature

within the room. After collection, this information is transmitted to the controller

Arduino via a wireless link. ZigBee 2 is used as the wireless communication pro-

tocol to send temperature data to the controller Arduino. To enable wireless com-

munication via ZigBee protocol, each Arduino is equipped with an XBee radio

module. Also, two Arduinos have 2000 W electric heaters connected to them.

Heaters are used as random fluctuating heat sources and are controlled in a random

fashion through relay by the Arduino they are connected to.

The primary function of the controller Arduino is to control the on/off functions

of the air-conditioner unit according to the readings from the network of wireless

temperature sensors. The controller Arduino is equipped with an XBee radio mod-

ule, a temperature sensor, an Infrared (IR) emitter for sending actuation signals

to the air-conditioner, and the control software. It was decided to control the air-

conditioner through infrared because (a) it is wireless control method, and (b) it

is non-invasive, thus requiring no retrofit. The controller Arduino analyzes the in-

1Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hard-
ware and software. It’s used for creating interactive objects or environments. The microcontroller
on an Arduino board is programmed using the Arduino programming language and the Arduino
development environment. For details go to www.arduino.cc

2ZigBee is a specification for a suite of high level communication protocols using small, low-
power digital radios based on the IEEE 802.15.4-2003 standard for wireless home area networks.
It’s intended to be simpler and less expensive and is targeted at applications that require a low data
rate, long battery life, and secure networking.
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formation received from the other Arduinos over XBee network, which includes

the temperature measurements and status of the heaters (ON/OFF). The controller

then sends actuation signals over infrared link to the air-conditioner. The controller

also periodically sends the temperature measurements, air-conditioner status, and

information about the random heat sources to the remote server for storage. Please

see Appendix A for a detailed explanation of the hardware platform development.

7.2 Actual experiments

A variety of experiments were conducted over a period of one week. Several con-

trol scenarios were tried by changing the input temperature signal to the algorithm.

Evaluation of a scenario occurred over a twenty-four hour period. During the ex-

periments, the room heaters were automatically turned on and off by the connected

Arduinos in a random fashion. Any change in the status of heater was immediately

sent to the controller Arduino via XBee link. In addition, each Arduino periodically

transmitted temperature sensor readings via XBee link to the controller Arduino.

The controller Arduino sent data to a remote server twice per minute. Finally, the

temperature setpoints i.e. T min
des and T max

des were set to 23.5◦C and 26◦C respectively

during the entire experiment in view of external weather. The following scenarios

were evaluated. Our focus is on how to make use of the information available from

a network of sensors, and how different methods of using the information affect

energy performance and thermal comfort.

7.2.1 Average room temperature

In this scenario, the online algorithm running on the controller Arduino tries to

maintain the average room temperature within the permissible range or deadband

(i.e. T min
des = 23.5◦C, T max

des = 26◦C). The purpose of this scenario is to minimize

aggregate discomfort in the room. The controller Arduino takes an average of
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all the temperature sensors deployed in the room and feeds the result as the in-

put temperature signal to the online algorithm. It should be noted that there is

no direct communication among individual sensors; individual sensors only send

their temperature readings to the controller Arduino whenever there is a change in

temperature.

Recall from chapter 5 that our online algorithm aims to find the optimal bal-

ance between the frequency of ON commands sent to the air-conditioner and the

thermal comfort. This is achieved by balancing the cost of transmitting the ON

command immediately with the cost of delaying the ON command. The wireless

temperature sensors continuously track the change of temperature. When there is

an arrival of a thermal source anywhere in the room (i.e. when a room heater is

turned on), our online algorithm running on controller Arduino makes an estimate

of the temperature impact of the thermal source and sets a timer τ such that when

the timer expires, an ON command is sent to the air-conditioner. If a new thermal

source is detected before the timer expires, the algorithm updates the timer accord-

ingly. To be able to set a timer τ that does not result in thermal discomfort, we use

trial-and-error to find a value for η ∈ [0,1] that optimally balances the frequency

of ON commands and thermal comfort (see eqn. (5.5) and (5.6)).

To maintain average room temperature in the permissible range, the air-condit-

ioner is set to full swing mode by the controller Arduino so that cold air from

the air-conditioner is propagated uniformly across the room. The data collected

during the experiment is retrieved from the remote server and plotted in Fig. 7.2.

The figure shows temperature readings from all four sensors, the ON/OFF status

of the air-conditioner and heaters, and the timer (on the secondary y-axis). For the

convenience of visualization, only a small portion of the collected is plotted (as

indicated by the x-axis).
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Figure 7.2: Data collected during average room temperature control scenario

7.2.2 Zone of interest

In this scenario, the online algorithm running on the controller Arduino focuses

only on a zone of interest in the room (e.g. where people usually sit or where there

is high population density and insufficient temperature). The algorithm maintains

temperature inside the target zone in the permissible range. The difference from

the previous scenario is that the algorithm considers the temperature readings only

from sensors deployed in zone of interest, whereas readings from sensors outside

the zone of interest are not taken into consideration during decision making. In the

previous scenario, on the other hand, readings from all sensors were considered

during decision making.

Similar to the previous scenario, individual sensors only communicate with

the controller Arduino and not with one another. The algorithms sets and updates

the timer τ in response to arrival of thermal sources in zone of interest. Also, the

controller Arduino sets the air-conditioner to direct cold air flow towards the target

zone. A small portion from the data collected during this experiment is plotted in

Fig. 7.3. It should be noted that sensor 1 was deployed in the target zone.

kelbassioni
Cross-Out
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Figure 7.3: Data collected during zone of interest control scenario

7.2.3 Comparison with on-off control

In on-off control, the air-conditioner output is switched only when the temperature

crosses the setpoint. The purpose of this scenario is to obtain performance data

similar to the classical ON/OFF control method for comparison with the online

algorithm. To make decisions, the controller Arduino considers the temperature

readings only from the sensor deployed very close to the air-conditioner. The con-

troller Arduino simply turns on the air-conditioner whenever the measured tem-

perature from the sensor reaches T max
des and turns it off when the temperature drops

back to T min
des . Like before, a portion from the data collected during this experiment

is plotted in Fig. 7.4. It should be noted that Sensor 4 was deployed close to the

air-conditioner.

7.2.4 Comparison with air-conditioner’s default control

Our final scenario is to execute the air-conditioner’s default control method for a

twenty-four hour period. The controller Arduino performs no actuation/decision

making. The wireless control network simply collects measurements from temper-
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Figure 7.4: Data collected during on-off control scenario

ature sensors and sends it over the internet to the remote server for storage. Data

collected during this final experiment is shown in Fig. 7.5. The temperature curves

in the figure are relatively smoother compared to the previous control scenarios.

This is because the air-conditioner in our experiment uses inverter compressor tech-

nology (variable frequency drive), where the system varies the compressor speed

in response to temperature changes. Inverter based air-conditioners do not work

by maintaining the temperature within the deadband and keep it relatively con-

stant instead (see section A.5 of Appendix A for details). A temperature of 24◦C

was chosen as the setpoint which is roughly the average of T min
des and T max

des used in

previous control scenarios.

7.3 Calculation of air-conditioner’s energy consumption

To calculate the energy consumption by the air-conditioner in case of first three

control scenarios, we assume a fixed-speed compressor operation that only oper-

ates either at 0% or 100% capacity. This is because our algorithm works by keeping
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Figure 7.5: Data collected during air-conditioner’s default control scenario

the air-conditioner either on or off. The air-conditioner in our experiment, however,

has a variable-speed compressor. Therefore, we try to achieve full capacity oper-

ation by choosing the lowest available setpoint. We use the principle that when

the difference between room temperature and setpoint is high, inverter-based air-

conditioners operate at nearly full capacity (see section A.5 of Appendix A). For

the first three control scenarios, the difference between the overall average tem-

perature and the setpoint temperature T min
des is more than 7◦C (see the difference

between the second and third rows in Table 7.1), therefore we assume that the air-

conditioner operates at 100% capacity in case of the first three control scenarios.

On the other hand, in case of the default control scenario, we assume 50% oper-

ational capacity because the average and setpoint temperatures are close to each

other. (see section A.5 of Appendix A for the justifications behind our assump-

tions.) We multiply the total air-conditioner running time (2nd row in Table 7.1)

by the capacity (3rd row) to get the total energy consumption (4th row). The plotted

results are presented in Fig. 7.6.
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Table 7.1: Calculation of air-conditioner energy consumption
online-avg online-zone on-off default

AC ON Duration 17.51 hrs 6.09 hrs 18.62 hrs 24 hrs
Overall Avg Temp 24.57◦C 25.75◦C 24.55◦C 24.84◦C
Setpoint T min

des 17◦C 17◦C 17◦C 24◦C
Estimated Capacity 100%/6.9 kW100%/6.9 kW100%/6.9 kW50%/3.45 kW
Energy Consumption 120.82 kWh 42.02 kWh 128.49 kWh 82.8 kWh

Figure 7.6: Comparative energy consumption by air conditioner for control scenar-
ios

7.4 Calculation of total thermal comfort and sensor net-

work energy consumption

We use the total thermal disturbance caused by each control scenario as a measure

of its thermal comfort. A higher thermal disturbance means lower thermal comfort

and vice versa. Recall from chapter 4 that thermal disturbance at a given time is

the difference between T max
des and the actual room temperature. Figure 7.7 shows

the total thermal disturbance caused by each scenario during its twenty-four hour

evaluation period. For each scenario, it shows the thermal disturbance for each

sensor as well overall disturbance.
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Figure 7.7: Comparative thermal disturbance

Similarly, the sensor network energy consumption is measured in terms of

its communication frequency or the number of ON commands sent to the air-

conditioner. Fig. 7.8 shows the number of ON commands sent by the controller for

the first three scenario. Recall that no commands were sent to the air-conditioner

in the default scenario.

Figure 7.8: Comparison of total ON commands sent to the air-conditioner
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7.5 Observations

1. For the first control scenario (i.e., online algorithm with average room tem-

perature), the readings from all temperature sensors follow a similar pattern

i.e., change in temperature is uniform across all sensors for the entire du-

ration of the scenario (Fig.7.2). This is because chilled air was uniformly

distributed across the room and also the algorithm considered readings from

all sensors while making decisions.

2. The air-conditioner output switching frequency is significantly higher in case

of second control scenario (i.e., online algorithms with zone of interest). This

is because of smaller area of focus which results in faster cycling between

T min
des and T max

des (see the temperature readings from sensor 1 in Fig. 7.3).

3. Fig. 7.9 shows the variations in average room temperature over time for each

scenario. We can observe that the average room temperature is higher for

zone of interest scenario. This is because the algorithm maintains thermal

comfort only within zone of interest and ignores area outside the zone, thus

resulting in higher average temperature.

4. In case of the first two control scenarios, it can be observed that the timer is

directly affected by random heat sources. The timer’s value is decreased/inc-

reased in response to activation/disappearance of heat sources (Fig. 7.2, 7.3).

5. The sensors do not exhibit uniform behavior when the on-off control sce-

nario is in effect (Fig. 7.4). It can be observed that Sensor 3 is less responsive

to the air-conditioner as compared to other sensors. The reason is that the

air-conditioner makes control decisions based on only one sensor deployed

close to the air-conditioner. Note that the air-conditioner was set to auto

mode to ensure autonomous operation and prevent any external influence.
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Figure 7.9: Average room temperature comparison between control scenarios

6. The default control scenario maintains comparatively constant average room

temperature (Fig. 7.9) due to its inverter-based compressor operation. How-

ever, like the on-off control scenario, the sensors do not follow uniform be-

havior. For example, Sensor 1 and 2 show slight swings in temperature while

Sensor 3 and Sensor 4 exhibit rather stable temperature patterns (Fig. 7.5).

7. Looking at the air-conditioner’s energy consumption (Fig. 7.6), it is obvious

that zone of interest control scenario results in the least energy consumption,

followed by the air-conditioner’s default control scenario. The simple on-off

scenario is most expensive with respect to energy consumption.

8. Finally to shed some light on the trade-off between thermal comfort and

energy consumption of wireless sensors, it is observed that the number of ON

commands sent by zone of interest control scenario is almost three times as

high as the ON commands sent by other two scenarios (Fig. 7.8). Whereas,

for the same scenario, the thermal disturbance in the zone of interest (i.e.

sensor 1) is very low (Fig 7.7).
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Conclusion and Future Work

While intelligent systems for smart buildings have been a popular research topic,

online optimization approach has been explored to a lesser extent. In this the-

sis, we investigated a new breed of research problems by applying online algo-

rithms to wireless sensor based smart building control. We provide the first study

of optimizing the trade-off between the battery lifetime of wireless sensor and the

effectiveness of HVAC remote control in the presence of uncertain fluctuations

in room temperature. We present both an effective optimal offline algorithm and

a 2-competitive online algorithm and evaluate their performance through simula-

tions. We also implement and evaluate our control algorithms in real-world air-

conditioning system and conclude the following based on our observations:

1. The specific control scenario can significantly affect the air-conditioners’ en-

ergy consumption as well as overall thermal comfort. In zone of interest sce-

nario, we demonstrated that it is possible to achieve upto 50% reduction in

energy consumption and still provide comfortable environment only where
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necessary. However, it may result in thermal discomfort outside the zone of

interest.

2. The battery consumption of the wireless sensors greatly depends on the con-

trol algorithm. This is evident from the difference in the number of ON

commands sent to the air-conditioner between the control scenarios.

3. The battery life time of the wireless sensors also depends to some extent

on the rate of cycling between T min
des and T max

des , which in turn depends on

external weather and thermal characteristics of the room. The faster the rate

of cycling, the higher the frequency of the control commands sent to the

air-conditioner and vice versa.

4. The sensor network energy consumption is directly linked with thermal com-

fort. Trying to improve thermal comfort will increase sensor network energy

consumption and vice versa. It is, therefore, important to find a good trade-

off between the two conflicting goals.

There are plenty of research opportunities to extend the results of this work

to a more general context. So far, we devised a deterministic online algorithm.

It is well-known that randomized online algorithms can exhibit both improved

theoretical competitive ratio and practical performance. For the on-going work,

we will study randomized online algorithms for wireless sensor controlling air-

conditioning systems, and evaluate their performance.

In a general setting, there may be multiple sensors and multiple air condition-

ing systems. Intelligent coordination among sensors can enable optimized control

over multiple system parameters (e.g., temperature, wind, ventilation). This inter-

action among multi-input and multi-control systems in a networked setting will be

a challenging yet important research problem.
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Several other possibilities can be explored with our system; it may be possible

to minimize consumption during peak hours by simply shifting energy consump-

tion by pre-cooling or pre-heating the thermal space ahead of peak hours, and then

allowing the temperature to drift gradually during a high price period.

Another research direction is to use integrated sensors (CO2, PIR, humidity)

to exercise control according to human behavior and room conditions. For ex-

ample, the algorithm can make online decisions regarding turning on/off the air-

conditioner in unoccupied zones. Moreover, our wireless control system can easily

be integrated with building managements systems for demand responsive air con-

ditioning control.



APPENDIX A

Hardware Platform Setup

In this appendix, we outline the development procedure of our hardware platform.

Our system comprises several Arduinos connected through a wireless XBee net-

work to the controller Arduino which communicates with the air-conditioner via an

infrared (IR) link. The system also includes two Arduino-controlled room heaters.

We discuss important aspects of the system including (1) setting up an XBee wire-

less network, (2) designing an Arduino with temperature measurement and heater

control, (3) designing the controller Arduino, (4) decoding the IR protocol used

between the air-conditioner and the remote control, (5) calculating air-conditioner

energy consumption, and (6) configuring the remote server.

A.1 Configuring XBee network

To equip an Arduino with wireless communication capability, it must have an XBee

radio module. However, before connecting the XBee to the Arduino, we have to
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configure it. This means that each XBee needs to have a device (self) ID and a

network ID. The device ID must be unique for each XBee whereas the network ID

must be the same for all XBees otherwise they will not be able to communicate

with each other. The XBee modules can be configured as follows:

• Mount the XBee module on an XBee Explorer USB and connect it to a com-

puter as shown in Fig. A.1

Figure A.1: An XBee module mounted on XBee Explorer USB

• Launch X-CTU software, select appropriate COM port, and then click on

the Modem Configuration tab and click on the read button (Fig. A.2). Set

the network ID and device ID as shown. Also set the communication mode

to FFFF to change the XBee module to broadcast mode. To finish the con-

figuration, click on the write button to store the new settings on the XBee

module.

Figure A.2: XBee Radio Module Configuration through X-CTU
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A.2 Sender Arduinos

In order to equip an Arduino with wireless communication capabilities, we con-

nect a properly configured XBee module to it. An XBee shield is mounted on the

Arduino to simplify the task of interfacing the XBee module with the Arduino.

A snapshot of an XBee-enabled Arduino with a connected temperature sensor is

shown in Fig. A.3.

Figure A.3: An XBee-enabled Arduino with a connected temperature sensor

Recall that the room heaters used in the experiments is controlled by an Ar-

duino using a relay. Live wire of the heater is connected to a relay which makes

it possible to control the heater simply by turning the relay on and off. Fig. A.4

shows an XBee-equipped Arduino with a temperature sensor and heater.

Figure A.4: An XBee-enabled Arduino with a room heater and temperature sensor



APPENDIX A. HARDWARE PLATFORM SETUP 59

A.3 Central controller

The central controller implements the air-conditioning control strategies. It is actu-

ally a combination of two Arduino boards – Arduino Ethernet board and Arduino

Uno board. Two Arduino boards have to be used instead of one because the in-

frared (IR) library for Arduino had several conflicts with other Arduino libraries.

Accordingly, a separate Arduino board is used whose only responsibility is to send

IR commands to the air-conditioner. See Fig. A.5 for a snapshot of the actual

controller that we designed and developed.

Figure A.5: A snapshot of the actual controller

The main tasks performed by the Arduinos are described below:

a)- Arduino Ethernet board: It has the following duties:

1. Receiving data from other Arduinos over XBee network. The board is equipped

with an XBee radio module to enable wireless communication via XBee.

2. Execution of the control strategy and send commands to the attached Ar-
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duino Uno for onward transmission to the air-conditioner.

3. Sending data over the internet to a remote server for storage in a database.

The board is equipped with a temperature sensor so that it can also measure

temperature for control purpose and/or sending it to the remote server. Addition-

ally, a small LCD display is connected to the board which displays status/error

messages.

When powered on, the Arduino Ethernet board first performs various initializa-

tion related tasks like fetching the remote server address, establishing connection

with the server, activating XBees network etc. Once the initialization is complete,

it executes the control strategy and, if necessary, sends a control signal to the air-

conditioner. Whenever it receives new temperature measurements and/or heater

status data, it again executes the control strategy and sends the control signal ac-

cordingly.

b)- Arduino Uno board: Its sole responsibility is to send control commands to the

air-conditioner over IR link. An IR emitter is attached to the Arduino Uno which

enables sending all the IR commands that are sent by remote controller. To achieve

this, the IR protocol used by the remote controller has been decoded as described

in the next section. The Arduino Uno sends the appropriate IR control signal to

the air-conditioner based on the command it receives from the Ethernet board over

I2C bus. Arduino Wire library is used to transfer data/commands from the Ethernet

board to Arduino Uno via I2C bus.

A.4 Decoding infrared protocol
Before we can send infrared (IR) commands to the air-conditioner from Arduino,

we first need to crack the protocol of the IR remote control. We use an IR re-

ceiver connected to Arduino to receive and decipher the IR commands sent by

the remote control. Mitsubishi air-conditioner was used in the experiments, there-
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fore the decoding process is applicable to Mitsubishi remote controls. With minor

modifications, the procedure can be adapted to decode IR protocols used by other

vendors.

The air-conditioner remote control protocol is quite different from typical TV,

DVD, satellite receiver, and other remote control protocols. That is because the

settings are stored on the remote control itself rather than the air-conditioner. This

means that whenever a button is pressed, the remote control sends the complete set

of parameters such as temperature, fan settings, swing, and others.

After analyzing different codes emitted by the original remote control, we were

able to understand the codes and generate them ourselves. Now, we can exercise

fine-grained control over the air-conditioner. We can set temperature, fan speed,

and air flow direction by sending the appropriate IR command. Whenever a but-

ton on the remote control is pressed, a total of 20 bytes are sent as specified by

Mitsubishi remote control protocol. Table A.1 lists the details for each byte. The

example row in the table is the sequence of bytes in the IR signal when the OFF

button is pressed on the remote control.

Table A.1: Structure of IR packet sent by Mitsubishi remote control
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A.5 Calculation of air-conditioner energy consumption

We used a split-type air-conditioner in our experiments (see Table A.2 for specifi-

cations1).

Table A.2: Specifications of the air-conditioner used in the experiments
Model Mitsubishi MS-E24VD
Capacity 6.9 kW/2.0 ton
Indoor Upper Operating Limit 32◦C Dry Bulb / 23◦C Wet Bulb
Indoor Lower Operating Limit 21◦C Dry Bulb / 15◦C Wet Bulb
Outdoor Upper Operating Limit 52◦C Dry Bulb
Outdoor Lower Operating Limit 21◦C Dry Bulb

The air-conditioner uses inverter technology, where the inverter receives infor-

mation from sensors monitoring operating conditions, and adjusts the revolution

speed of the compressor, which directly regulates air-conditioner output. When the

room temperature is higher than the set-point, the air-conditioner runs on higher

capacity in order to quickly bring down the temperature. Once the room tem-

perature drops to the desired temperature, the inverter lowers the air-conditioner

capacity and start consuming the same amount of energy while maintaining the

temperature at desired level. The process is shown in Fig. A.62. By looking at

the measured capacity, it can be seen that the air-conditioner runs at roughly 50%

capacity on average when it reaches the setpoint. Thus, the energy consumption of

the air-conditioner in our system, when operated for 24 hours, can be calculated as

follows:

Power Consumption = Operating Capacity × Rated Capacity (A.1)

= 50%×6.9 kW = 3.45 kW

Energy Consumption = Power Consumption × Duration (hours) (A.2)

= 3.45 kW×24 hours = 82.8 kWh
1Source: http://www.tochalelectric.com/userfiles/files/MS-E24VD/Catalogue/MS-E24VD.pdf
2Source: http://www.mitsubishielectric.com/bu/air/technologies/inverter.html
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Figure A.6: Air-conditioner operation control with inverter technology

A.6 Configuring remote server
As mentioned previously, the controller Arduino periodically sends data to a re-

mote server where it is stored for later analysis. A dedicated Amazon EC2 server

has been set up for this purpose. The server basically runs two PHP scripts:

one to receive the data sent by the controller Arduino and store it in a MySQL

database and the second script to display live data to the user via a web browser

(see Fig. A.7).

Figure A.7: A snapshot of live data displayed via a web page
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Proof of Lemma 1

In this section, we prove Lemma 1 that we used in chapter 4. The differential

equations are again listed here:

dT̃ (t)
dt

=
1

c ·Mair
·
(

dQin(t)
dt

− dQac(t)
dt

)
(B.1)

dQin(t)
dt

=
Tod− T̃ (t)

Req
(B.2)

dQac(t)
dt

=
c ·Mac · (T̃ (t)−Tac)

Eac
(B.3)

Where dQin(t)
dt is the heat flowing into the room from outside environment and

dQac(t)
dt is the chilled air flowing from air-conditioning system into the room. By
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substituting, Eqn. (B.2) and Eqn. (B.3) into Eqn. (B.1), we obtain

dT̃ (t)
dt

=
1

c ·Mair
·
(

Tod− T̃ (t)
Req

− c ·Mac · (T̃ (t)−Tac)

Eac

)
=

Eac ·Tod−Eac · T̃ (t)−Req · c ·Mac · (T̃ (t)−Tac)

c ·Mair ·Req ·Eac

=
Eac ·Tod +Req · c ·Mac ·Tac

c ·Mair ·Req ·Eac

−
Eac +Req · c ·Mac

c ·Mair ·Req ·Eac
· T̃ (t) (B.4)

Let

C1 =
Eac ·Tod +Req · c ·Mac ·Tac

c ·Mair ·Req ·Eac

C2 =
Eac +Req · c ·Mac

c ·Mair ·Req ·Eac

Then, Eqn. (B.4) can be written as:

dT̃ (t)
dt

= C1−C2 · T̃ (t)

By rearrangement,

dT̃ (t)
C1
C2
− T̃ (t)

= C2 ·dt

Integrating both sides with respect to t,

− log |C1

C2
− T̃ (t)|= C2 · t +C
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By substituting t = 0 (i.e., initial condition), we obtain

− log |C1

C2
− T̃ (t)|= C2 · t− log |C1

C2
− T̃ (0)|

eC2·t =

C1
C2
− T̃ (0)

C1
C2
− T̃ (t)

T̃ (t) =
C1

C2
−
(
C1

C2
− T̃ (0)

)
· e−C2·t (B.5)

This concluded the proof as Eqn. (B.5) is the same as Eqn. (4.4).
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Calculation of Room Thermal Resistance

The building thermal model used in this research (during the theoretical part and

simulations) requires the total equivalent (also called lumped) thermal resistance,

Req, of the entire room. Therefore, we include a simple example on how to calcu-

late Req using the rooms dimensions, number and sizes of windows and the type of

insulation used in walls. Table C.1 shows the room geometry and insulation details

used for calculation of Req.

From the values in Table C.1, we can calculate the equivalent resistances of the

walls as follows.

RWall =
LWall

kWall×Wallarea
(C.1)
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Table C.1: Room geometry and insulation details
Description Value
Room length (Lenroom) 10 m
Room width (Widroom) 5 m
Room height (Htroom) 4 m
Roof pitch (Pitroo f ) 40
Number of windows (Numwindows) 4
Height of windows (Htwindows) 1 m
Width of windows (Widwindows) 1 m
Wall insulation having glass wool (Lwalls) 0.2 m
Window insulation (Lwindows) 0.01 m
Thermal conductivity of walls (Kwalls) 0.038
Thermal conductivity of windows (Kwindows) 0.78

Where,

Wallarea = (2 ·Lenroom ·Htroom)+(2 ·Widroom ·Htroom)

+[2 · (1/cos(Pitroo f /2)] · (Widroom ·Lenroom)

+[(tan(Pitroo f ) ·Widroom)]−Windowarea

Similarly, the equivalent resistance of windows is calculated as:

RWindow =
LWindow

kWindow×Windowarea
(C.2)

Where,

Windowarea = Numwindows ·Htwindows ·Widwindows

From Eqns. C.2 and C.1, Req is calculated as.

Req =
RWall×RWindow

RWall +RWindow
(C.3)
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Sensor Power Consumption

In order to maximize the battery life-time of wireless sensors, it is important to

understand the energy consumed by each component of a wireless sensor node.

Therefore, we provide power consumption data for each unit (i.e., transceiver,

micro-controller, and sensor) in common wireless sensor nodes (see Tables D.1-

D.3). The power consumption survey was originally carried out by [5].

Table D.1: Power Consumptions of Transceivers and in Common Wireless Sen-
sors.

Transceiver
Model

Transmission
(mA)

Reception
(mA)

Sleep (mA)

TR1000 12 3.8 0.0007
CC1000 10.4 7.4 0.03
CC2500 21.6 12.8 0.0004
nRF2401A 10.5 18 0.0004
CC2420 17.4 18.8 0.4
RF230 14.5 15.5 0.00002
MC13192 30 37 0.5
JN5121 45 50 0.0004
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Table D.2: Power Consumptions of MCUs in Common Wireless Sensors.

MCU Model AT163 AT128 80c51 MSP430 HCS08
Active (mA) 5 5.5 4.3 1.8 4.3
Sleep (mA) 0.025 0.015 0.19 0.00512 0.0005

Table D.3: Power Consumptions of Sensor Module in Common Wireless Sensors.
Sensor Module SHT15 TSL2561 ADXL202
Function Humidity, Temperature Light Accelerometer
Current (mA) 0.55 0.24 0.6

From the tables, it is evident that radio communication is most energy-intensive

among the three operations (i.e., sensing, processing, and communication). Specif-

ically, the transceiver power consumption can get as high as 28 times compared the

power consumption of micro-controller (see Table D.1 and D.2). The ratio be-

comes even higher when compared to the power consumption of the sensor mod-

ules. For these reasons, we aim to maximize the battery life-time of the wireless

sensor by optimizing the update frequency of the control commands sent to the

air-conditioner.
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Key Notations used in the thesis
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Table E.1: Key Notations used in the thesis

Notation Definition
T̃ (t) Ambient room temperature at time t (unit: degree Celsius)

T0 Initial ambient room temperature at time t = 0

Tod Outdoor temperature
Tac Temperature of the cold air from air-conditioner

Mair Total air mass inside the room
Mac Air mass flow through air-conditioner (Kg/hr)

Eac Air conditioner efficiency

c Heat capacity of the air at constant pressure

Req Equivalent thermal resistance of the entire room

W (t) Sequence of impulsive thermal sources

wi Level of thermal intensity entering the room at time t

a Sequence of arrivals of impulsive thermal sources

T max
des Maximal desirable temperature

T min
des Minimal desirable temperature

Tτ(t) Temperature of thermal sources

X Set of decision variables

xk Time that the kth ON command is issued by the wireless sensor

D(x) Thermal disturbance given decision variable x

[x]+ max(x, 0)

Ttk(t) Temperature of the room after kth ON command

η Weight assigned to balance the update frequency and the thermal
comfort

AOFL Offline Algorithm

Cost[i, j] Minimum cost when the last and second to last ON command are
transmitted at time ti and ti−j respectively

Costmin[i] Minimum cost when the last ON command is transmitted at time
ti

idx[i] Array to record j when Costmin[i]← Cost[i, j]

σk Set of thermal sources arrived between the (k−1)-th and the k-th
ON commands

AONL Online Algorithm

Di j(τ) Total thermal disturbance accumulated from the start of the sub-
sequence to the latest arrival

tj The time when the timer was first set after transmission of the last
ON command

λ Mean and variance of the Poisson distribution

p Success probability. A parameter required by Binomial
distribution
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