
135

CHAPTER 4

ENGLISH TO KANNADATRANSLITERATION

Language transliteration is one of important area in NLP. Machine Transliteration is

the conversion of a character or word from one language to another without losing its

phonological characteristics. In other word we can say machine translitaration is an

orthographical and phonetic convertingprocess. Therefore, both grapheme and phoneme

information shouldbe considered. The transliteration model must be designed in such a

way that the phonetic structure of words should be preserved as closely as possible.

Accurate transliteration of named entities plays an important role in the performance of

MT and CLIR processes.

The main purpose of transliteration is to translate the named entities like Person,

Location, Affiliation, Organization and Technical terms from source to target language

according to the alphabetical system of the target language. The example for Person,

Location, Affiliation, Organization and Technical terms is as follows:

Named Entity : Example

 Person : Arathi

 Location : Mysore

 Affiliation : Secretary

 Organization : Indian Public Service

Technical terms : modem

The table 4.1 below shows the NE classification with example for each. Location can

be split into city, state, country etc. and a Person can be an entertainer, a politician, a

scientist etc.

136

Table 4.1: NE classification with Examples

Named

Entity Type

Generic Term Examples

Person

first, middle and last

names of the people,

animals and fictional

charactersaliases

Organization

companies companies press

agencies,studios,banks,stock

markets.manufacturers,cooperatives

subdivisions of

companies

newsrooms

brands -

political movements political parties,terrorist organizations

government bodies ministries,councils,courts,political unions of

countries(e.g.the U.N)

publications Magazines,newspapers.journals

musical companies banda,choirs,opera companies,orchestras

other collections of

people

sports clubs,sports teams

sports clubs associations, theatres, companies,religious

orders,youth organizations

Location

roads streets, motorways

trajectories -

regions villages, towns, cities, provinces, countries,

conti-nents, dioceses, parishes

structures bridges, ports, dams

natural locations

mountains, mountain ranges, woods, rivers,

wells,fields, valleys, gardens, nature

reserves, allotments,beaches, national parks

public places

squares, opera houses, museums, schools,

mar-kets, airports, stations, swimming pools,

hospitals,sports facilities, youth centers,

parks, town halls,theaters, cinemas,

galleries, camping grounds,NASA launch

pads, club houses, universities, li-braries,

churches, medical centers, parking

lots,playgrounds, cemeteries

But in reality each English (source) named entity word can be translated into more

than one possible target words. The transliteration aim to output the exact target word

based on the pronunciation of the target language. For example the person name “Akash”

can be translated into different target Kannada words as shown below.

137

AkAsh (ಆಕಾಶ್) Correct target word according to Kannada pronunciation

akAsh (ಅಕಾಶ್)

Akash (ಆಕಶ್)

akash (ಅಕಶ್)

The transliteration model is built to capture the knowledge of bilingual phonetic

association and subsequently it is applied to the transliteration process. To build the

knowledge base, machine learning or rule-based algorithms are adopted. Most of the

reported works utilize a phonetic clue to resolve the transliteration through a multiple step

mapping rules and algorithms, such as dictionary lookup, statistical approach, rule-based

and machine learning-based approaches have been used.

The transliteration model may be generative or discriminative. Generative model,

builds a data model based on conditional probability density function.Discriminative

Model, models the dependence of an unobserved variable „y‟ on an observed variable „x‟.

The generative model is a full probability model of all variables, whereas a discriminative

model provides a model only of the target variable(s) conditional on the observed

variables. Thus a generative model can be used, to generate values of any variable in the

model, whereas a discriminative model allows only sampling of the target variables

conditional on the observed quantities.

In order to handle the transliteration problem from English to Kannada language,

transliteration models were built by reformulating the transliteration task as sequence

labelling and classification. English to Kannada transliteration systems were modelled

using two different methods. The first transliteration model is based on a rule based

approach where as the other transliteration model is based on statistical approach. In the

first method rules were generated automatically using WEKA‟s C4.5 decision tree

classifier with features extracted from a parallel corpus. The second statistical

transliteration model was developed using a publicly available structured output SVM

algorithms. The parameters of the model were automatically learned from a bilingual

proper name list by resolving different combinations of alignments and unit mappings.

The systems have been designed and developed to resolve the complexities involved in

138

English to Kannada transliteration and to generate all possible phonetically equivalent

transliterations. The performance of the models were evaluated and compared.

4.1 PROBLEMS IN TRANSLITERATION

Transliteration usually depends on context. For example:

 English grapheme „a‟ can be transliterated into Kannada graphemes on the basis of

its context, like „a‟, ‟aa‟, „ei‟ etc.

 Similarly „i‟ can be transliterated either „i‟ or „ai‟ on the basis of its context.

 Also on the basis of its context, consonants like „c‟, ‟d‟, ‟l‟, or „n‟, has multiple

transliterations in Kannada language.

The main reason of context dependency is that, vowels in English may correspond to

long vowels or short vowels or some time combination of vowels in Kannada during

transliteration. A transliteration system should be designed while considering all these

barriers.

4.2 FORMULATING TRANSLITERATION AS SEQUENCE LABELLING AND

CLASSIFICATION

Sequence labelling approach aims to assigning a label for each element in a sequence

of observations. The main idea behind transliteration using sequence labelling is, mapping

the letters from source script to the letters of the target script. This is a two step process in

which the first step performs the segmentation of the source string into transliteration

units. The second step involves the comparison of source language transliteration units

with the target language units and resolve different combinations of alignments and unit

mappings [150].

4.2.1 Problem Description

The problem can be stated formally as a sequence labelling problem from one

language alphabet to other [151]. In the proposed problem the source language is English

and the target language is Kannada. Consider a source language word x1 x2... xi... xN,

where each xi is treated as a word in the observation sequence. Let the equivalent target

139

language orthography of the same word be y1 y2... yi... yN, where each yi is treated as a

label in the label sequence. The task here is to generate a valid target language word (label

sequence) for the source language word (observation sequence). Each xi is aligned with its

phonetically equivalent yi. Here the valid target language alphabet (yi) for a source

language alphabet (xi) in the input source language word may depend on various factors

like:

 The source language alphabet in the input word.

 The context alphabets surrounding source language alphabet (xi) in the input word.

 The context alphabets surrounding target language alphabet (yi) in the desired

output word.

These generated features are used to generate rules using C4.5 decision tree algorithm

or train the model using support vector machine. The generated rules and trained models

are used to predict a target language word (Kannada) for new source language word

(English).

4.3 TRANSLITERATION MODEL CREATION

In the proposed work, the English to Kannada transliteration problem was modelled as

classification problem using two different approaches. The first transliteration model was

based on a rule based approach using WEKA‟s C4.5 Decision tree classifier with features

extracted from a parallel corpus. The second model was based on statistical approach

using SVM. The model was trained with the same aligned parallel corpus which consists

of 40,000 words containing names of various places in India.

4.3.1 Corpus Creation

The performance of the transliteration model hugely depends on the data with which it

is trained. Hence it is important to have a large corpus with many examples that highlight

the intricacies of the language. This will help the transliteration model to study the features

of the target language so as to produce an accurate transliteration. A parallel corpus

consisting of 40,000 Indian place names was created, from which the features were

extracted. During the preprocessing phase, the source language names were segmented

140

and aligned with the corresponding segmented target language names. The sequence of

steps in preprocessing is as follows:

4.3.1.1 Romanization

WEKA‟s C4.5 Decision tree classifier and SVM support only Roman (ASCII)

character code but Dravidian language like Kannada does not support this code format and

support only Unicode character. Unicode or officially called the Unicode Worldwide

Character Standard is an entirely new idea in setting up binary codes for text or script

characters. Unicode is an industry standard whose goal is to provide the means by which

text of all forms and languages can be encoded for use by computers. So in order to map

training and testing target data from Unicode to Roman and vice versa, mapping files were

created. Using the mapping rules that defines English alphabet for each Kannada alphabet,

Romanizes all the Kannada words. The Table 4.2 below shows the example for

Romanization.

Table 4.2: Romanization

English place names Kannada Romanized Kannada

Karnataka ಕರ್ಾಟಕ karnATaka

samathpur ಸಭತನಪರ್ samatpur

mumbai ಭನೆಂಬೈ muMbai

4.3.1.2 Segmentation

An important phase in machine transliteration process is segmentation and alignment.

Efficiency of the transliteration model mainly depends on segmentation of source

language and target language words into transliteration units (n-grams) and aligning the

source language n-grams with corresponding target language n-grams. So before training

the transliteration model, the transliteration units are obtained by segmenting the source

and the target language words.

The rules for segmentation have been derived to suit phonetic reproduction of English

names into Kannada.The English Names are segmented based on vowels, consonants,

141

digraphs and trigraphs into English transliteration units. The segments or units can be

synonymously called as English n-grams.

Vowels : a, e, i, o, u

Consonants : b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z

Digraphs: bh, ch, dh, gh, kh, ph, rh, sh, th, wh, zh, ng, nj

Trigraphs: ksh

When more than one vowel occur together, they are combined like aa, ae, ai, ao, au,

ia, ie, io, etc., to form a single unit.

Similarly Romanized Kannada names are segmented based on vowels, consonants,

digraphs and trigraphs into Kannada transliteration units. The segments or units can be

synonymously called as Kannada n-grams. Table 4.3 shows example for segmentation.

Table 4.3: Segmentation

English Romanized Kannada

k a r n a t a k a k a R n A T a k a

s a m a t h p u r s a m a t p u r

m u m b a i m u M b a i

4.3.1.3 Alignment

Alignment is the final step in the preprocessing phase. Alignment is a most important

phase in the transliteration process in which the one to one mapping between English

language n-grams and the Kannada language n-grams is performed. Proper alignment of

source language n-grams with phonetically equivalent target language n-grams is required

to generate an efficient transliteration model. Alignment is based on the number of

transliteration units in the segmented English and Romanized Kannada place names. The

corresponding transliteration units in English and Romanized Kannada words are aligned

if the number of units in the corresponding English and Romanized Kannada words are

equal. Otherwise inserting an empty symbol „^‟ or combining the adjacent units in the

142

Romanized Kannada words, the units in the source place name are properly align to the

unit in the target place name. Examples below shows, how the alignments of source and

target words take place under different situation. Where „S‟ and „T‟ denotes source and

target language words respectively.

Case 1: When the number of units are same:

Before alignment After alignment

k a r n a t a k a (S) k | a | r | n | a | t | a | k | a

(9 units) (9 units)

k a R n A T a k a (T) k | a | R | n | A | T | a | k | a

(9 units) (9 units)

Case 2: Alignment of words by combining adjacent units:

Before alignment After alignment

s a m a t h p u r (S) s | a | m |a | th | p | u | r

(9 units) (8 units)

s a m a t p u r (T) s | a | m | a | t | p | u | r

(8 units) (8 units)

Case 3: Alignment of words by inserting empty symbol:

Before alignment After alignment

b o m b a y (S) b | o | m | b | a | y

(6 units) (6 units)

b A M b e (T) b | A | M | b | e | ^

(5 units) (6 units)

143

Convert these aligned source and target names in a column format based on the

sequence labelling approach and SVM training input data format. The token is expected to

be the first column of the line. The tag to predict takes the second column in the output.

The column separator is the blank space. A sequence of tokens forms a word and each

word is marked with boundary as shown below. The features required for training are

defined with a window size of 5 elements and the core being the third position.

k k

a a

r R

n n

a A

t T

a a

k k

a a

. .

b b

o A

m M

b b

a e

y ^

. .

144

4.3.1.4 Mapping Analysis

From the results of segmentation and alignment, it is noted that an English n-gram can

be mapped into one or more Kannada n-grams. A dictionary consisting of all English n-

grams and their corresponding mapping Kannada n-grams (Class labels) was created from

the training corpus. The frequency of an each English n-gram, i.e., number of occurrences

of an English n-gram in the training corpus, along with the corresponding mapping label

frequency is also maintained in the dictionary. The dictionary is referred during the

training and the prediction process of transliteration.

4.4 TRANSLITERATION METHODOLOGIES USED

In the proposed work, English to Kannada transliteration task was modelled as

classification problem using sequence labelling approach in two different ways. The first

transliteration model was based on a rule based approach where as other one is based on

statistical approaches. A well aligned parallel corpus consists of 40,000 words containing

Indian place names were used to extract mapping features and dictionary. These generated

features were used to generate rules using C4.5 decision tree algorithm. On the other hand,

the parallel corpus features were used to train the model using support vector machine.

The generated rules and trained models are used to predict a target language word

(Kannada) for new source language word (English).

4.4.1 Transliteration Using WEKA

Fig. 4.1 shows the architecture of the proposed transliteration model. The

transliteration model is divided into the following four phases: i) Preprocessing phase ii)

Feature extraction and Dictionary creation Phase iii) Rule Generation Phase and

iv)Transliteration phase.

4.4.1.1 Preprocessing

During the preprocessing phase, the source language names are romanized, segmented

and aligned with the corresponding segmented target language names as explained in the

section 4.3.

145

Fig. 4.1:Rule Based Transliteration System

4.4.1.2 Feature Extraction and Dictionary Creation

The feature extraction and dictionary creation was based on the aligned corpus. It was

identified to consist of 150 unique English n-grams and 255 unique labels in the aligned

corpus. A dictionary containing English n-grams with their mapping labels and the

mapping label frequency was generated from the parallel corpus. For feature generation,

the proposed system considered a centered window of five tokens, from which basic and

n-gram patterns were evaluated to form binary features. The valid target language n-gram

(yi) for a source language n-gram (xi) in the given source language input word is decided

by considering the source language context features such as source language n-gram (xi),

two left context n-grams (xi-2, xi-1) and two right context n-grams (xi+1, xi+2). The

features specifying the start and end of words are also extracted and encoded as binary

features. Thus for each „xi‟, a vector of size 752binary features were created.The feature

patterns corresponding to each source language n-gram „xi‟ were generated to form a

multi- class training set. For example the binary feature for n-gram „k‟ in “Karnataka” can

be identified as follows:

146

Source Name: k a r n a t a k a

Target Name: k a R n A T a k a

For all 150 English n-grams, features are generated. For example the feature generated

for n-gram „ae‟ in sparse representation is as shown in Fig. 4.2. The left most column

indicates the different class values associated with the same n-gram „ae‟.

4.4.1.3 Generate Rules Using C4.5 Decision Tree Classifier

WEKA is a collection of machine learning algorithms implemented in Java [152].

WEKA consists of a large number of learning schemes for classification and regression

numeric prediction like decision trees, support vector machines, instance-based

classifiers, Bayes decision schemes, neural networks and clustering etc. It also provides

Meta classifiers like bagging and boosting, evaluation methods like cross-validation and

bootstrapping, numerous attribute selection methods and pre-processing techniques. A

graphical user interface provides loading of data, applying machine learning algorithms

and visualizing the built models. A Java interface available to all algorithms enables

embedding them in any user‟s program.

147

Fig. 4.2: Features Generated for n-gram „ae‟

WEKA uses C4.5 algorithm to build decision trees from a set of training data using

the concept of information entropy [152,153]. The training data is a set S = s1, s2,…of

already classified samples. Each sample si = x1, x2,... is a vector where x1, x2,... represent

attributes or features of the sample. The training data is augmented with a vector C = c1,

c2,... , where c1, c2,... represent the class to which each sample belongs. At each node of

the tree, C4.5 chooses one attribute of the data that most effectively splits its set of

samples into subsets enriched in one class or the other. Its criterion is the normalized

information gain (difference in entropy) that results from choosing an attribute for splitting

the data. The attribute with the highest normalized information gain is chosen to make the

decision. The C4.5 algorithm then recurses on the smaller sublists. This algorithm has a

few base cases as follows:

148

i) All the samples in the list belong to the same class. When this happens, it simply

creates a leaf node for the decision tree saying to choose that class.

ii) None of the features provide any information gain. In this case, C4.5 creates a

decision node higher up the tree using the expected value of the class and

iii) Instance of previously-unseen class encountered. In this case C4.5 creates a

decision node again that higher up the tree using the expected value.

C4.5 Decision tree classification algorithm uses features and extract mapping rules for

each and every n-gram and builds decision trees from these rules using the concept of

information entropy. Each branch node in a decision tree represents a choice between a

number of alternatives, and each leaf node represents a classification or decision. A leaf

node attribute produces a homogeneous result (all in one class), which does not require

additional classification testing. The attribute with the highest normalized information gain

is chosen to make the decision. The information entropy is calculated as

Entropy(s) =–p1 log2(p1) –p2 log2 (p2) – ……

For example the rulesgenerated for the n-gram „q‟ from the feature pattern for the

proposed transliteration system is as shown in Fig. 4.3.

149

Fig. 4.3: RulesGenerated for n-gram „q‟

4.4.1.4 Generate Transliteration System

The set of all generated rules were used to develop the transliteration model. During

Transliteration phase, each word that is to be transliterated is first segment into a sequence

of English n-grams and extracts the feature vector for each English n-gram. Using the

transliteration model, predict the corresponding feature vector (class labels) for each n-

gram in English test word. The sequence of predicted class labels forms a transliterated

word for the given English word. The sequence of predicted class labels for each English

word is converted into Unicode to form a transliterated Kannada word.

4.4.2 Transliteration Using Support Vector Machine Tool

The second transliteration model was based on statistical approach developed using

publicly available structured output SVM algorithms [154]. The transliteration model is

shown in Fig. 4.3.The whole model has three important phases: i) preprocessing phase, ii)

training phase using SVM and iii) transliteration phase to generate Kannada

transliterations for a given English Name.

150

Fig. 4.4: Statistical Based Transliteration Model

4.4.2.1 Data Pre-processing Phase

During the pre-processing phase, the source language (English) names were

romanized, segmented and aligned with the corresponding segmented target language

(Kannada) names and a well fledged parallel corpus was created. The aligned source

language and target language names were given as input sequence X=x1,x2, .., xn and

label sequence Y=y1,y2,…,yn respectively in the two column format, as required by

SVMTool for training the transliteration model. Each row, called as a token, contains an

English n-gram and the corresponding aligned Kannada n-gram in two columns. The two

columns were separated by space (s). It is important to note that, each token should have

equal number of columns. A sequence of tokens forms a word and each word is marked

with boundary. In the proposed system, the features required for training were defined

with a window size of 5 elements and the core being the third position. A sample of five

names in the SVMTool column format is given below:

151

sh S

i i

v v

a a

n n

. .

r r

a A

k k

e E

sh S

. .

r r

a a

m m

e E

sh S

 . .

h h

a a

r r

i i

152

. .

v v

i i

sh S

a A

l l

. .

4.4.2.2 Training Phase

The preprocessing phase converts the corpus into SVM input file format in which

aligned source language and target language names were given as input sequence and label

sequence respectively for training. During training, features were extracted automatically

by the SVMlight. A dictionary was generated from the aligned training corpus, with all

possible class labels for each n-gram in the source language word. When considering the

occurrence of an n-gram xilabelled as yi, this example is used as a positive example for

class yi and a negative example for all other classes. During the training phase the model

was trained for every class in order to distinguish between examples of this class and all

the rest. Also SVM generate a dictionary which consists of all possible class labels for

each n-gram in the source language name. This dictionary avoids the excessive negative

examples while training the model and training becomes faster.

SVMlight is an implementation of Vapnik‟s SVMs (Vapnik, 1995) in C, developed by

Thorsten Joachims. SVM learning uses linear kernel and the learning time remains linear

with respect to the number of examples. Training was performed using SVMTlearn

component of SVMlight. The SVMTlearn algorithm extracts all feature patterns and other

relevant information from the training corpus in the form different model files.The

config.svmt file consists of a path to the „Training Corpus‟ and a „Model Name‟ that

should be set before SVMTlearn algorithm. SVMTlearn behavior is easily adjusted

through a configuration file. The usage of SVMTlearn is as shown below.

Usage: SVMTlearn [options] <config-file>

153

Options:

 - V verbose 0: none verbose

 1: low verbose [default]

 2: medium verbose

 3: high verbose

Example: SVMTlearn -V 2 config.svmt

4.4.2.3 Transliteration Phase

SVMlight uses SVMTagger module for testing the transliteration system. The names

to be translated are first converted into a single coumn format with word boundary. The

file name containing the „Test Data‟ and the „Model Name‟, which refer the models

generated by the SVMTlearn are given as input arguments to the SVMTagger as shown

below. The SVMTagger classifier predicts all possible class labels for a given sequence of

source language alphabets and selects only the most probable class labels.

SVMTagger -T 0 KAN_TRANS <input.txt > output.txt

Where „KAN_TRANS‟ is the model name, „inpu.txt‟ and „output.txt‟ indicates input file

output files respectively. The predicted label sequence for each English word is converted

into Unicode to obtain the transliterated Kannada word.

4.4.3 Evaluation and Results

Given a SVMTool predicted tagging output and the corresponding gold-standard,

SVMTeval of SVMlight evaluates the performance of the English to Kannada

transliteration system. Based on the dictionary created during training time, results are

presented for different sets of n-gram such as known n-grams vs. unknown n-grams,

ambiguous n-grams vs. unambiguous n-grams. A different view of these same results can

be seen from the class of ambiguity perspective i.e. n-grams sharing the same kind of

ambiguity may be considered together. N-grams sharing the same degree of

disambiguation complexity, determined by the size of their ambiguity classes, can also be

grouped. The usage of SVMTeval is as shown below.

154

Usage: SVMTeval [mode] <model><gold><pred>

mode: 0 - complete report (everything)

1 - overall accuracy only [default]

2 - accuracy of known vs unknown words

3 - accuracy per level of ambiguity

4 - accuracy per kind of ambiguity

5 - accuracy per class

model: model name, in this case KAN_TRANS

gold: correct tagging file

pred: predicted tagging file

A collection of 3000 names that were out of corpus was used for computing the

efficiency of the proposed model. The model was evaluated by considering top 5

transliterations. Scores were calculated for individual transliterated segments, by

comparing them with the set of good quality reference transliteration. The scores were

then averaged over the whole corpus to find an estimate of the transliteration‟s overall

quality.

Table 4.4: Transliteration Accuracy

Output

Accuracy

WEKA SVM

Top1 72.4% 81.25%

Top2 76.2% 85.88%

Top3 78.1% 87.64%

Top4 80.5% 89.11%

Top5 83.38% 91.32%

155

The transliteration is considered correct, only if it exactly matches the one in the gold-

standard. The transliteration system also generates a list of possible transliterations for any

given name. The evaluation results of the transliteration models in terms of Top-1 i.e. the

correct transliteration is the top candidate, Top2- the correct transliteration is the second

candidate in the list, Top3- the correct transliteration is the third, Top4 and Top5 are

presented. The number of possible transliterations can be increased by considering the

next best class labels which in turn increase the accuracy of the transliteration model. The

transliteration accuracy of the proposed models are shown in Table 4.4. The Fig. 4.5

shows the sample graphical user interface screen shot of the proposed English to Kannada

transliteration system.

Fig. 4.5:GUI of English to Kannada Transliteration system

4.5 SUMMARY

In this research work, there are two different English to Kannada transliteration

systems were developed to handle named entity translation using rule based as well as

statistical approach. The performance of both of these systems depends on the size and

scalability of the aligned corpus and the corpus creation is the key and most time

consuming task in this work. In the rule based system, using WEKA‟s C4.5 Decision Tree

algorithm, rules were generated automatically based on the features extracted from an

156

aligned bilingual parallel corpus. These generated rules are then used to develop the

transliteration model. Identifying the different source n-grams and target class labels in the

corpus, extracting features for each source n-gram based on sequence labelling approach

and generating rules for each source n-gram based on these features are the main

objectives of the rule based transliteration system. The statistical based approach is

simpler than the rule based approach. Once we a well organized, large sized aligned

parallel corpus, and then we can easily learn the features and other peculiarities of the

language using an SVM machine learning algorithm. The learned model is then used as a

transliteration system.

The experiments showed that, the statistical based approach using SVM

performbetterthan the rule based approach using WEKA. The performance of the

proposed transliteration models can be improved by increasing the corpus size to cover

more named entity words, which in turn extracts more feature information. The proposed

SVM based transliteration model was successfully adapted in the proposed rule based

English to Kannada MT system for translating named entities from English to Kannada

language.

4.6 PUBLICATIONS

1. Antony P J, Ajith V P and Soman K P: “Feature Extraction Based English to Kannada

Transliteration”, Third International Conference on Semantic E-business and

Enterprise Computing (SEEC-2010).

2. Antony P J, Ajith V P and Soman K P: “Kernel Method for English to Kannada

Transliteration”, International Conference on-Recent Trends in Information,

Telecommunication and Computing (ITC 2010), Paper is archived in the IEEE Xplore

and IEEE CS Digital Library.

