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CHAPTER 4 

ENGLISH TO KANNADATRANSLITERATION 

Language transliteration is one of important area in NLP. Machine Transliteration is 

the conversion of a character or word from one language to another without losing its 

phonological characteristics. In other word we can say machine translitaration is an 

orthographical and phonetic convertingprocess. Therefore, both grapheme and phoneme 

information shouldbe considered. The transliteration model must be designed in such a 

way that the phonetic structure of words should be preserved as closely as possible. 

Accurate transliteration of named entities plays an important role in the performance of 

MT and CLIR processes.  

The main purpose of transliteration is to translate the named entities like Person, 

Location, Affiliation, Organization and Technical terms   from source to target language 

according to the alphabetical system of the target language.  The example for Person, 

Location, Affiliation, Organization and Technical terms is as follows: 

Named Entity                    :                      Example 

 Person                            :                      Arathi 

           Location                         :                       Mysore 

          Affiliation                       :                      Secretary 

          Organization                    :                      Indian Public Service 

Technical terms                  :                      modem 

The table 4.1 below shows the NE classification with example for each. Location can 

be split into city, state, country etc. and a Person can be an entertainer, a politician, a 

scientist etc. 
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Table 4.1: NE classification with Examples 

Named 

Entity Type 

Generic Term Examples 

 

Person 

first, middle and last 

names of the people, 

animals and fictional 

charactersaliases 

 

 

 

 

 

 

 

 

Organization 

companies companies press 

agencies,studios,banks,stock 

markets.manufacturers,cooperatives 

subdivisions of 

companies 

newsrooms 

brands - 

political movements political parties,terrorist organizations 

government bodies ministries,councils,courts,political unions of 

countries(e.g.the U.N) 

publications Magazines,newspapers.journals 

musical companies banda,choirs,opera companies,orchestras 

other collections of 

people 

sports clubs,sports teams 

sports clubs associations, theatres, companies,religious 

orders,youth organizations 

 

 

 

 

 

 

 

Location 

roads streets, motorways 

trajectories  - 

regions  villages, towns, cities, provinces, countries, 

conti-nents, dioceses, parishes 

structures  bridges, ports, dams 

 

natural locations  

mountains, mountain ranges, woods, rivers, 

wells,fields, valleys, gardens, nature 

reserves, allotments,beaches, national parks 

 

 

 

public places 

squares, opera houses, museums, schools, 

mar-kets, airports, stations, swimming pools, 

hospitals,sports facilities, youth centers, 

parks, town halls,theaters, cinemas, 

galleries, camping grounds,NASA launch 

pads, club houses, universities, li-braries, 

churches, medical centers, parking 

lots,playgrounds, cemeteries 

 

But in reality each English (source) named entity word can be translated into more 

than one possible target words. The transliteration aim to output the exact target word 

based on the pronunciation of the target language. For example the person name “Akash” 

can be translated into different target Kannada words as shown below.  
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AkAsh  (ಆಕಾಶ್ )  Correct target word according to Kannada pronunciation 

akAsh  (ಅಕಾಶ್ ) 

Akash   (ಆಕಶ್ ) 

akash    (ಅಕಶ್ )   

The transliteration model is built to capture the knowledge of bilingual phonetic 

association and subsequently it is applied to the transliteration process. To build the 

knowledge base, machine learning or rule-based algorithms are adopted. Most of the 

reported works utilize a phonetic clue to resolve the transliteration through a multiple step 

mapping rules and algorithms, such as dictionary lookup, statistical approach, rule-based 

and machine learning-based approaches have been used.  

The transliteration model may be generative or discriminative. Generative model, 

builds a data model based on conditional probability density function.Discriminative 

Model, models the dependence of an unobserved variable „y‟ on an observed variable „x‟. 

The generative model is a full probability model of all variables, whereas a discriminative 

model provides a model only of the target variable(s) conditional on the observed 

variables. Thus a generative model can be used, to generate values of any variable in the 

model, whereas a discriminative model allows only sampling of the target variables 

conditional on the observed quantities. 

In order to handle the transliteration problem from English to Kannada language, 

transliteration models were built by reformulating the transliteration task as sequence 

labelling and classification. English to Kannada transliteration systems were modelled 

using two different methods. The first transliteration model is based on a rule based 

approach where as the other transliteration model is based on statistical approach.   In the 

first method rules were generated automatically using WEKA‟s C4.5 decision tree 

classifier with features extracted from a parallel corpus. The second statistical 

transliteration model was developed using a publicly available structured output SVM 

algorithms. The parameters of the model were automatically learned from a bilingual 

proper name list by resolving different combinations of alignments and unit mappings. 

The systems have been designed and developed to resolve the complexities involved in 
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English to Kannada transliteration and to generate all possible phonetically equivalent 

transliterations. The performance of the models were evaluated and compared. 

4.1 PROBLEMS IN TRANSLITERATION 

Transliteration usually depends on context. For example:        

 English grapheme „a‟ can be transliterated into Kannada graphemes on the basis of 

its context, like „a‟, ‟aa‟, „ei‟ etc. 

 Similarly „i‟ can be transliterated either „i‟ or „ai‟ on the basis of its context. 

 Also on the basis of its context, consonants like „c‟, ‟d‟, ‟l‟, or „n‟, has  multiple 

transliterations in Kannada language. 

The main reason of context dependency is that, vowels in English may correspond to 

long vowels or short vowels or some time combination of vowels in Kannada during 

transliteration. A transliteration system should be designed while considering all these 

barriers. 

4.2 FORMULATING TRANSLITERATION AS SEQUENCE LABELLING AND 

CLASSIFICATION 

Sequence labelling approach aims to assigning a label for each element in a sequence 

of observations.  The main idea behind transliteration using sequence labelling is, mapping 

the letters from source script to the letters of the target script. This is a two step process in 

which the first step performs the segmentation of the source string into transliteration 

units. The second step involves the comparison of source language transliteration units 

with the target language units and resolve different combinations of alignments and unit 

mappings [150]. 

4.2.1 Problem Description 

The problem can be stated formally as a sequence labelling problem from one 

language alphabet to other [151]. In the proposed problem the source language is English 

and the target language is Kannada. Consider a source language word x1 x2... xi... xN, 

where each xi is treated as a word in the observation sequence. Let the equivalent target 
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language orthography of the same word be y1 y2... yi... yN, where each yi is treated as a 

label in the label sequence. The task here is to generate a valid target language word (label 

sequence) for the source language word (observation sequence). Each xi is aligned with its 

phonetically equivalent yi. Here the valid target language alphabet (yi) for a source 

language alphabet (xi) in the input source language word may depend on various factors 

like: 

 The source language alphabet in the input word.  

 The context alphabets surrounding source language alphabet (xi) in the input word. 

 The context alphabets surrounding target language alphabet (yi) in the desired 

output word. 

These generated features are used to generate rules using C4.5 decision tree algorithm 

or train the model using support vector machine. The generated rules and trained models 

are used to predict a target language word (Kannada) for new source language word 

(English). 

4.3 TRANSLITERATION MODEL CREATION 

In the proposed work, the English to Kannada transliteration problem was modelled as 

classification problem using two different approaches. The first transliteration model was 

based on a rule based approach using WEKA‟s C4.5 Decision tree classifier with features 

extracted from a parallel corpus. The second model was based on statistical approach 

using SVM. The model was trained with the same aligned parallel corpus which consists 

of 40,000 words containing names of various places in India. 

4.3.1 Corpus Creation 

The performance of the transliteration model hugely depends on the data with which it 

is trained. Hence it is important to have a large corpus with many examples that highlight 

the intricacies of the language. This will help the transliteration model to study the features 

of the target language so as to produce an accurate transliteration. A parallel corpus 

consisting of 40,000 Indian place names was created, from which the features were 

extracted. During the preprocessing phase, the source language names were segmented 
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and aligned with the corresponding segmented target language names.  The sequence of 

steps in preprocessing is as follows: 

4.3.1.1 Romanization 

WEKA‟s C4.5 Decision tree classifier and SVM support only Roman (ASCII) 

character code but Dravidian language like Kannada does not support this code format and 

support only Unicode character.  Unicode or officially called the Unicode Worldwide 

Character Standard is an entirely new idea in setting up binary codes for text or script 

characters. Unicode is an industry standard whose goal is to provide the means by which 

text of all forms and languages can be encoded for use by computers. So in order to map 

training and testing target data from Unicode to Roman and vice versa, mapping files were 

created. Using the mapping rules that defines English alphabet for each Kannada alphabet, 

Romanizes all the Kannada words. The Table 4.2 below shows the example for 

Romanization. 

Table 4.2: Romanization 

English place names Kannada Romanized Kannada 

Karnataka ಕರ್ಾಟಕ karnATaka 

samathpur ಸಭತನಪರ್ samatpur 

mumbai ಭನೆಂಬೈ muMbai 

4.3.1.2 Segmentation 

An important phase in machine transliteration process is segmentation and alignment. 

Efficiency of the transliteration model mainly depends on segmentation of source 

language and target language words into transliteration units (n-grams) and aligning the 

source language n-grams with corresponding target language n-grams. So before training 

the transliteration model, the transliteration units are obtained by segmenting the source 

and the target language words. 

The rules for segmentation have been derived to suit phonetic reproduction of English 

names into Kannada.The English Names are segmented based on vowels, consonants, 
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digraphs and trigraphs into English transliteration units. The segments or units can be 

synonymously called as English n-grams. 

Vowels :  a, e, i, o, u 

Consonants : b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z 

Digraphs: bh, ch, dh, gh, kh, ph, rh, sh, th, wh, zh, ng, nj 

Trigraphs: ksh   

When more than one vowel occur together, they are combined like  aa, ae, ai, ao, au, 

ia, ie, io, etc., to form a single unit. 

Similarly Romanized Kannada names are segmented based on vowels, consonants, 

digraphs and trigraphs into Kannada transliteration units. The segments or units can be 

synonymously called as Kannada n-grams. Table 4.3 shows example for segmentation. 

Table 4.3: Segmentation 

English Romanized Kannada 

k a r n a t a k a k a R n A T a k a 

s a m a t h p u r s a m a t p u r 

m u m b a i m u M b a i 

4.3.1.3 Alignment 

Alignment is the final step in the preprocessing phase. Alignment is a most important 

phase in the transliteration process in which the one to one mapping between English 

language n-grams and the Kannada language n-grams is performed. Proper alignment of 

source language n-grams with phonetically equivalent target language n-grams is required 

to generate an efficient transliteration model. Alignment is based on the number of 

transliteration units in the segmented English and Romanized Kannada place names. The 

corresponding transliteration units in English and Romanized Kannada words are aligned 

if the number of units in the corresponding English and Romanized Kannada words are 

equal. Otherwise inserting an empty symbol „^‟ or combining the adjacent units in the 
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Romanized Kannada words, the units in the source place name are properly align to the 

unit in the target place name. Examples below shows, how the alignments of source and 

target words take place under different situation. Where „S‟ and „T‟ denotes source and 

target language words respectively. 

Case 1: When the number of units are same: 

Before alignment                                             After alignment 

k a r n a t a k a ( S )                                      k | a | r | n | a | t | a | k | a 

(9 units)                                                                (9 units) 

k a R n A T a k a ( T )                                     k | a | R | n | A | T | a | k | a 

(9 units)                                                                (9 units) 

Case 2: Alignment of words by combining adjacent units: 

Before alignment  After alignment 

s a m a t h p u r ( S )                                   s | a | m |a | th | p | u | r 

(9 units)                                                                 (8 units) 

s a m a t p u r ( T )                                      s | a | m | a | t | p | u | r 

(8 units)                                                                (8 units) 

Case 3: Alignment of words by inserting empty symbol: 

Before alignment                                              After alignment 

b o m b a y ( S)                                         b | o | m | b | a | y 

(6 units)                                                            (6 units) 

b A M b e ( T )                                         b | A | M | b | e | ^ 

(5 units)                                                           (6 units) 
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Convert these aligned source and target names in a column format based on the 

sequence labelling approach and SVM training input data format. The token is expected to 

be the first column of the line. The tag to predict takes the second column in the output. 

The column separator is the blank space. A sequence of tokens forms a word and each 

word is marked with boundary as shown below. The features required for training are 

defined with a window size of 5 elements and the core being the third position. 

k k 

a a 

r R 

n n 

a A 

t T 

a a 

k k 

a a 

. . 

b b 

o A 

m M 

b b 

a e 

y ^ 

. . 
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4.3.1.4 Mapping Analysis 

From the results of segmentation and alignment, it is noted that an English n-gram can 

be mapped into one or more Kannada n-grams. A dictionary consisting of all English n-

grams and their corresponding mapping Kannada n-grams (Class labels) was created from 

the training corpus. The frequency of an each English n-gram, i.e., number of occurrences 

of an English n-gram in the training corpus, along with the corresponding mapping label 

frequency is also maintained in the dictionary. The dictionary is referred during the 

training and the prediction process of transliteration. 

4.4 TRANSLITERATION METHODOLOGIES USED 

In the proposed work, English to Kannada transliteration task was modelled as 

classification problem using sequence labelling approach in two different ways. The first 

transliteration model was based on a rule based approach where as other one is based on 

statistical approaches. A well aligned parallel corpus consists of 40,000 words containing 

Indian place names were used to extract mapping features and dictionary. These generated 

features were used to generate rules using C4.5 decision tree algorithm. On the other hand, 

the parallel corpus features were used to train the model using support vector machine.  

The generated rules and trained models are used to predict a target language word 

(Kannada) for new source language word (English). 

4.4.1 Transliteration Using WEKA 

Fig. 4.1 shows the architecture of the proposed transliteration model. The 

transliteration model is divided into the following four phases: i) Preprocessing phase ii) 

Feature extraction and Dictionary creation Phase iii) Rule Generation Phase and 

iv)Transliteration phase. 

4.4.1.1 Preprocessing 

During the preprocessing phase, the source language names are romanized, segmented 

and aligned with the corresponding segmented target language names as explained in the 

section 4.3. 
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Fig. 4.1:Rule Based Transliteration System 

4.4.1.2 Feature Extraction and Dictionary Creation 

The feature extraction and dictionary creation was based on the aligned corpus. It was 

identified to consist of 150 unique English n-grams and 255 unique labels in the aligned 

corpus. A dictionary containing English n-grams with their mapping labels and the 

mapping label frequency was generated from the parallel corpus.  For feature generation, 

the proposed system considered a centered window of five tokens, from which basic and 

n-gram patterns were evaluated to form binary features. The valid target language n-gram 

(yi) for a source language n-gram (xi) in the given source language input word is decided 

by considering the source language context features such as source language n-gram (xi), 

two left context n-grams (xi-2, xi-1) and two right context n-grams (xi+1, xi+2 ). The 

features specifying the start and end of words are also extracted and encoded as binary 

features. Thus for each „xi‟, a vector of size 752binary features were created.The feature 

patterns corresponding to each source language n-gram „xi‟ were generated to form a 

multi- class training set.  For example the binary feature for n-gram „k‟ in “Karnataka” can 

be identified as follows: 



146 
 

Source Name:         k  a  r   n  a  t  a  k  a 

Target Name:         k  a  R  n A T  a  k   a      

 

For all 150 English n-grams, features are generated. For example the feature generated 

for n-gram „ae‟ in sparse representation is as shown in Fig. 4.2. The left most column 

indicates the different class values associated with the same n-gram „ae‟. 

4.4.1.3 Generate Rules Using C4.5 Decision Tree Classifier 

WEKA is a collection of machine learning algorithms implemented in Java [152]. 

WEKA consists of a large number of learning schemes for classification and regression 

numeric prediction  like decision trees, support vector machines, instance-based 

classifiers, Bayes decision schemes, neural networks and clustering etc. It also provides 

Meta classifiers like bagging and boosting, evaluation methods like cross-validation and 

bootstrapping, numerous attribute selection methods and pre-processing techniques. A 

graphical user interface provides loading of data, applying machine learning algorithms 

and visualizing the built models. A Java interface available to all algorithms enables 

embedding them in any user‟s program.  
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Fig. 4.2: Features Generated for n-gram „ae‟ 

WEKA uses C4.5 algorithm to build decision trees from a set of training data using 

the concept of information entropy [152,153]. The training data is a set S = s1, s2,…of 

already classified samples. Each sample si = x1, x2,... is a vector where x1, x2,... represent 

attributes or features of the sample. The training data is augmented with a vector C = c1, 

c2,... , where c1, c2,... represent the class to which each sample belongs.  At each node of 

the tree, C4.5 chooses one attribute of the data that most effectively splits its set of 

samples into subsets enriched in one class or the other. Its criterion is the normalized 

information gain (difference in entropy) that results from choosing an attribute for splitting 

the data. The attribute with the highest normalized information gain is chosen to make the 

decision. The C4.5 algorithm then recurses on the smaller sublists. This algorithm has a 

few base cases as follows: 
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i) All the samples in the list belong to the same class. When this happens, it simply 

creates a leaf node for the decision tree saying to choose that class. 

ii) None of the features provide any information gain. In this case, C4.5 creates a 

decision node higher up the tree using the expected value of the class and 

iii) Instance of previously-unseen class encountered. In this case C4.5 creates a 

decision node again that higher up the tree using the expected value. 

C4.5 Decision tree classification algorithm uses features and extract mapping rules for 

each and every n-gram and builds decision trees from these rules using the concept of 

information entropy.  Each branch node in a decision tree represents a choice between a 

number of alternatives, and each leaf node represents a classification or decision. A leaf 

node attribute produces a homogeneous result (all in one class), which does not require 

additional classification testing. The attribute with the highest normalized information gain 

is chosen to make the decision. The information entropy is calculated as  

Entropy(s) =–p1 log2( p1 ) –p2 log2 ( p2 ) – …… 

For example the rulesgenerated for the n-gram „q‟ from the feature pattern for the 

proposed transliteration system is as shown in Fig. 4.3. 
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Fig. 4.3: RulesGenerated for n-gram „q‟ 

4.4.1.4 Generate Transliteration System 

The set of all generated rules were used to develop the transliteration model. During 

Transliteration phase, each word that is to be transliterated is first segment into a sequence 

of English n-grams and extracts the feature vector for each English n-gram. Using the 

transliteration model, predict the corresponding feature vector (class labels) for each n-

gram in English test word. The sequence of predicted class labels forms a transliterated 

word for the given English word. The sequence of predicted class labels for each English 

word is converted into Unicode to form a transliterated Kannada word. 

4.4.2 Transliteration Using Support Vector Machine Tool 

The second transliteration model was based on statistical approach developed using 

publicly available structured output SVM algorithms [154]. The transliteration model is 

shown in Fig. 4.3.The whole model has three important phases: i) preprocessing phase, ii) 

training phase using SVM and iii) transliteration phase to generate Kannada 

transliterations for a given English Name. 
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Fig. 4.4: Statistical Based Transliteration Model 

4.4.2.1 Data Pre-processing Phase 

During the pre-processing phase, the source language (English) names were 

romanized, segmented and aligned with the corresponding segmented target language 

(Kannada) names and a well fledged parallel corpus was created. The aligned source 

language and target language names were given as input sequence X=x1,x2, .., xn and 

label sequence Y=y1,y2,…,yn respectively in the two column format, as required by 

SVMTool for training the transliteration model. Each row, called as a token, contains an 

English n-gram and the corresponding aligned Kannada n-gram in two columns. The two 

columns were separated by space (s). It is important to note that, each token should have 

equal number of columns. A sequence of tokens forms a word and each word is marked 

with boundary. In the proposed system, the features required for training were defined 

with a window size of 5 elements and the core being the third position. A sample of five 

names in the SVMTool column format is given below: 
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sh S 

i i 

v v 

a a 

n n 

. . 

r r 

a A 

k k 

e E 

sh S 

. . 

r r  

a a 

m m 

e E 

sh S 

 . . 

h h 

a a 

r r 

i i 
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. . 

v v 

i i 

sh S 

a A 

l l 

. . 

4.4.2.2 Training Phase 

The preprocessing phase converts the corpus into SVM input file format in which 

aligned source language and target language names were given as input sequence and label 

sequence respectively for training. During training, features were extracted automatically 

by the SVMlight. A dictionary was generated from the aligned training corpus, with all 

possible class labels for each n-gram in the source language word. When considering the 

occurrence of an n-gram xilabelled as yi, this example is used as a positive example for 

class yi and a negative example for all other classes. During the training phase the model 

was trained for every class in order to distinguish between examples of this class and all 

the rest. Also SVM generate a dictionary which consists of all possible class labels for 

each n-gram in the source language name. This dictionary avoids the excessive negative 

examples while training the model and training becomes faster. 

SVMlight is an implementation of Vapnik‟s SVMs (Vapnik, 1995) in C, developed by 

Thorsten Joachims. SVM learning uses linear kernel and the learning time remains linear 

with respect to the number of examples. Training was performed using SVMTlearn 

component of SVMlight. The SVMTlearn algorithm extracts all feature patterns and other 

relevant information from the training corpus in the form different model files.The 

config.svmt file consists of a path to the „Training Corpus‟ and a „Model Name‟ that 

should be set before SVMTlearn algorithm. SVMTlearn behavior is easily adjusted 

through a configuration file. The usage of SVMTlearn is as shown below. 

Usage: SVMTlearn [options] <config-file> 
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Options: 

 - V verbose 0: none verbose 

 1: low verbose [default] 

 2: medium verbose 

 3: high verbose 

Example: SVMTlearn -V 2 config.svmt 

4.4.2.3 Transliteration Phase 

SVMlight uses SVMTagger module for testing the transliteration system. The names 

to be translated are first converted into a single coumn format with word boundary. The 

file name containing the „Test Data‟ and the „Model Name‟, which refer the models 

generated by the SVMTlearn are given as input arguments to the SVMTagger as shown 

below. The SVMTagger classifier predicts all possible class labels for a given sequence of 

source language alphabets and selects only the most probable class labels. 

SVMTagger -T 0 KAN_TRANS <input.txt > output.txt 

Where „KAN_TRANS‟ is the model name, „inpu.txt‟ and „output.txt‟ indicates input file 

output files respectively. The predicted label sequence for each English word is converted 

into Unicode to obtain the transliterated Kannada word. 

4.4.3 Evaluation and Results 

Given a SVMTool predicted tagging output and the corresponding gold-standard, 

SVMTeval of SVMlight evaluates the performance of the English to Kannada 

transliteration system. Based on the dictionary created during training time, results are 

presented for different sets of n-gram such as known n-grams vs. unknown n-grams, 

ambiguous n-grams vs. unambiguous n-grams. A different view of these same results can 

be seen from the class of ambiguity perspective i.e. n-grams sharing the same kind of 

ambiguity may be considered together. N-grams sharing the same degree of 

disambiguation complexity, determined by the size of their ambiguity classes, can also be 

grouped. The usage of SVMTeval is as shown below. 
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Usage: SVMTeval [mode] <model><gold><pred> 

mode: 0 - complete report (everything) 

1 - overall accuracy only [default] 

2 - accuracy of known vs unknown words 

3 - accuracy per level of ambiguity 

4 - accuracy per kind of ambiguity 

5 - accuracy per class 

model: model name, in this case KAN_TRANS 

gold: correct tagging file 

pred: predicted tagging file 

A collection of 3000 names that were out of corpus was used for computing the 

efficiency of the proposed model. The model was evaluated by considering top 5 

transliterations. Scores were calculated for individual transliterated segments, by 

comparing them with the set of good quality reference transliteration. The scores were 

then averaged over the whole corpus to find an estimate of the transliteration‟s overall 

quality.  

Table 4.4: Transliteration Accuracy 

 

Output 

Accuracy 

WEKA SVM 

Top1 72.4% 81.25% 

Top2 76.2% 85.88% 

Top3 78.1% 87.64% 

Top4 80.5% 89.11% 

Top5 83.38% 91.32% 
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The transliteration is considered correct, only if it exactly matches the one in the gold-

standard. The transliteration system also generates a list of possible transliterations for any 

given name. The evaluation results of the transliteration models in terms of Top-1 i.e. the 

correct transliteration is the top candidate, Top2- the correct transliteration is the second 

candidate in the list, Top3- the correct transliteration is the third, Top4 and Top5 are 

presented. The number of possible transliterations can be increased by considering the 

next best class labels which in turn increase the accuracy of the transliteration model. The 

transliteration accuracy of the proposed models are shown in Table 4.4. The Fig. 4.5 

shows the sample graphical user interface screen shot of the proposed English to Kannada 

transliteration system. 

 

Fig. 4.5:GUI of English to Kannada Transliteration system 

4.5 SUMMARY 

In this research work, there are two different English to Kannada transliteration 

systems were developed to handle named entity translation using rule based as well as 

statistical approach. The performance of both of these systems depends on the size and 

scalability of the aligned corpus and the corpus creation is the key and most time 

consuming task in this work. In the rule based system, using WEKA‟s C4.5 Decision Tree 

algorithm, rules were generated automatically based on the features extracted from an 
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aligned bilingual parallel corpus. These generated rules are then used to develop the 

transliteration model. Identifying the different source n-grams and target class labels in the 

corpus, extracting features for each source n-gram based on sequence labelling approach 

and generating rules for each source n-gram based on these features are the main 

objectives of the rule based transliteration system. The statistical based approach is 

simpler than the rule based approach. Once we a well organized, large sized aligned 

parallel corpus, and then we can easily learn the features and other peculiarities of the 

language using an SVM machine learning algorithm. The learned model is then used as a 

transliteration system.  

The experiments showed that, the statistical based approach using SVM 

performbetterthan the rule based approach using WEKA.  The performance of the 

proposed transliteration models can be improved by increasing the corpus size to cover 

more named entity words, which in turn extracts more feature information.    The proposed 

SVM based transliteration model was successfully adapted in the proposed rule based 

English to Kannada MT system for translating named entities from English to Kannada 

language. 
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