Engr354: Digital Logic Circuits

Chapter 2: Introduction to Logic Circuits

Dr. Curtis Nelson

Chapter 2 Objectives

- Define and illustrate basic logic functions and circuits;
- Present Boolean algebra for dealing with logic functions;
- Illustrate logic gates and synthesis of simple circuits;
- Review CAD tools and the VHDL hardware description language.

Binary Logic Circuits

- Logic circuits perform operations on digital signals;
- These circuits are implemented using electronic components;
- Binary logic circuits can be found in one of two states
- 0 or 1 ;
- off or on;
- down or up;
- not asserted or asserted;
- etc.

Switch Representation

(a) Two states of a switch

(b) Symbol for a switch

Switch Example

(a) Simple connection to a battery

(b) Using a ground connection as the return path

Two Basic Functions

(a) The logical AND function (series connection)

$$
\mathrm{L}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}+\mathrm{x}_{2}
$$

$\mathrm{L}=1$ if $\mathrm{x}_{1}=1$ or $\mathrm{x}_{2}=1$
$\mathrm{L}=0$ otherwise
(b) The logical OR function (parallel connection)

A Series-Parallel Example

Truth Tables

- All combinations of inputs on the left;
- Outputs on the right;
- 2-input AND and OR functions shown below.

x_{1}	x_{2}	$x_{1} \cdot x_{2}$	$x_{1}+x_{2}$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1
AND			

3-Input And and Or Functions

x_{1}	x_{2}	x_{3}	$x_{1} \cdot x_{2} \cdot x_{3}$	$x_{1}+x_{2}+x_{3}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Basic Gates

(a) AND gates

(b) OR gates

(c) NOT gate

Example Using Basic Gates

Sequencing of Inputs

Truth table for f

Timing Diagram

Example

- Draw a timing diagram below:

Boolean Algebra

- In 1849, George Boole published a scheme for describing logical thought and reasoning;
- In 1930s, Claude Shannon applied Boolean algebra to describe circuits built with switches;
- Boolean algebra provides the mathematical foundation for digital design.

Notation

- INVERSION: $\overline{\mathrm{x}}=\mathrm{x}^{\prime}=$! $\mathrm{x}=$ NOT x

$$
\begin{aligned}
& \overline{\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)}=\overline{\mathrm{x}_{1}+\mathrm{x}_{2}}=\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right){ }^{\prime}=!\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) \\
& =\operatorname{NOT}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)
\end{aligned}
$$

- AND: $x_{1} \cdot x_{2}=x_{1} \wedge x_{2}=x_{1} x_{2}$
- OR: $\mathrm{x}_{1}+\mathrm{x}_{2}=\mathrm{x}_{1} \vee \mathrm{x}_{2}$

Precedence of Operations

- In the absence of parentheses, operations are performed in this order: NOT, AND, OR

$$
\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{2}{ }^{\prime}=\left(\mathrm{x}_{1} \mathrm{x}_{2}\right)+\left(\left(\mathrm{x}_{1}{ }^{\prime}\right)\left(\mathrm{x}_{2}{ }^{\prime}\right)\right)
$$

Principle of Duality

- On the following pages, axioms and theorems are listed in pairs to show the principle of duality;
- Given a logic expression, its dual is found by exchanging + and • operators and 0 's and 1's;
- The dual of any true statement is always true.

Axioms of Boolean Algebra

1. $0 \cdot 0=0$
$1+1=1$
2. $1 \cdot 1=1$
$0+0=0$
3. $0 \cdot 1=1 \cdot 0=0$
$1+0=0+1=1$
4. if $x=0$ then $\bar{x}=1$
if $x=1$ then $\bar{x}=0$

Single-Variable Theorems

5. $x \cdot 0=0$
6. $x \cdot 1=x$
7. $x \cdot x=x$
8. $x \cdot \bar{x}=0$
9. $\overline{\overline{\mathrm{X}}}=\mathrm{x}$
$\mathrm{x}+1=1$
$\mathrm{x}+0=\mathrm{x}$
$\mathrm{x}+\mathrm{x}=\mathrm{x}$
$\mathrm{x}+\overline{\mathrm{x}}=1$
R

2- and 3-Variable Properties

10a. $x \cdot y=y \cdot x$
Commutative
10b. $x+y=y+x$
$11 \mathrm{a} . \mathrm{x} \cdot(\mathrm{y} \cdot \mathrm{z})=(\mathrm{x} \cdot \mathrm{y}) \cdot \mathrm{z} \quad$ Associative
11b. $x+(y+z)=(x+y)+z$
12a. $x \cdot(y+z)=x \cdot y+x \cdot z \quad$ Distributive
12b. $x+y \cdot z=(x+y) \cdot(x+z)$

2- and 3-Variable Properties

13a. $x+x \cdot y=x$
Absorption
13b. $x \cdot(x+y)=x$
14a. $x \cdot y+x \cdot \bar{y}=x$
Combining
14b. $(x+y) \cdot(x+\bar{y})=x$
15a. $\overline{x \cdot y}=\bar{x}+\bar{y}$
DeMorgan's Thm
15b. $\overline{x+y}=\bar{x} \cdot \bar{y}$
16. $x+\bar{x} \cdot y=x+y \quad x \cdot(\bar{x}+y)=x \cdot y$

Truth Table Proof of DeMorgan's Theorem

15a. $\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}} \quad$ DeMorgan's Theorem

x	y	$x \cdot y$	$\bar{x} \cdot y$	\bar{x}	\bar{y}	$\bar{x}+\bar{y}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0
$\underbrace{}_{\text {THS }}$	$\underbrace{}_{\text {RHS }}$					

Boolean Algebra Examples

1) $(a+b)\left(a^{\prime}+b^{\prime}\right)=$
2) $a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a b b^{\prime} c^{\prime}+a b \prime c=$
3) $a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a c^{\prime} b c^{\prime}+a b c^{\prime}+a b^{\prime} c^{\prime}+a b b^{\prime} c=$
4) $a b^{\prime}+b a^{\prime}$
5) b^{\prime}
6) $b^{\prime}+c^{\prime}$

Synthesis

- Synthesis is the process of creating a circuit from a specification, i.e. a truth table, schematic, VHDL code, etc.

x_{1}	x_{2}	$f\left(x_{1} \cdot x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

Two Implementations of the Function \boldsymbol{f}

(a) Sum-of-products form

(b) Minimal-cost realization

Minterms and Maxterms

- Minterms
- For a function of n variables, a product term in which each of the n variables appears once is called a minterm
- Variables may appear in complemented or uncomplemented form;
- A given minterm is formed by including x_{i} if $x_{i}=1$ and by including $\operatorname{not}\left(\mathrm{x}_{\mathrm{i}}\right)$ if $\mathrm{x}_{\mathrm{i}}=0$.
- Maxterms (Principle of duality applies)
- For a function of n variables, a sum term in which each of the n variables appears once is called a maxterm
- Variables may appear in complemented or uncomplemented form.
- A given maxterm is formed by including x_{i} if $x_{i}=0$ and by including $\operatorname{not}\left(\mathrm{x}_{\mathrm{i}}\right)$ if $\mathrm{x}_{\mathrm{i}}=1$.

Three-Variable Minterm and Maxterm Table

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

Sum-of-Products (SOP) Form

- A function f can be represented by an expression that is a sum of minterms.
- For example, the function below could be represented as

$$
f\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=!\mathrm{x}_{1}!\mathrm{x}_{2} \mathrm{x}_{3}+\mathrm{x}_{1}!\mathrm{x}_{2}!\mathrm{x}_{3}+\mathrm{x}_{1}!\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{1} \mathrm{x}_{2}!\mathrm{x}_{3}
$$

- Using short hand notation

$$
\begin{aligned}
& f\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\mathrm{m}_{1}+\mathrm{m}_{4}+\mathrm{m}_{5}+\mathrm{m}_{6} \text { or } \\
& f\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\sum \mathrm{m}(1,4,5,6)
\end{aligned}
$$

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1} \cdot x_{2} \cdot x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
1	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Product-of-Sums (POS) Form

- The same function f can be represented by an expression that is a product of sums of maxterms (this follows from DeMorgan's laws).
- For example, the function below could also be represented as

$$
f\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right)\left(\mathrm{x}_{1}+!\mathrm{x}_{2}+\mathrm{x}_{3}\right)\left(\mathrm{x}_{1}+!\mathrm{x}_{2}+!\mathrm{x}_{3}\right)\left(!\mathrm{x}_{1}+!\mathrm{x}_{2}+!\mathrm{x}_{3}\right)
$$

- Using short hand notation,

$$
\left.\begin{array}{rl}
f\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) & =\mathrm{M}_{0} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{7} \text { or } \\
f\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) & =\Pi \mathrm{M}(0,2,3,7) \\
& \begin{array}{c|ccc||c}
\text { Row } \\
\text { number }
\end{array} \\
\hline & x_{1}
\end{array} x_{2} \quad x_{3}\right) \mid f\left(x_{1} \cdot x_{2} \cdot x_{3}\right) .
$$

Canonical

- A logic expression is said to be canonical if each term contains all variables, either complemented or uncomplemented.

2-Variable Example

- Synthesize the following function using four different, but equivalent, expressions
- Minterm form;
- Maxterm form;
- Canonical form;
- Minimum form.

x_{1}	x_{2}	$f\left(x_{1} \cdot x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

NAND and NOR Gates

(a) NAND gates

(b) NOR gates

DeMorgan's Theorems in Terms of Logic Gates

(a) $\overline{X_{1} X_{2}}=\bar{X}_{1}+\bar{X}_{2}$

(b) $\overline{X_{1}+x_{2}}=\bar{x}_{1} \bar{x}_{2}$

- Function vs. Gate

SOP Implementation Using NAND Gates

,

POS Implementation Using NOR Gates

,

Example

- Synthesize the following function using four different, but equivalent, expressions
- Minterm form;
- Maxterm form;
- Canonical form;
- Minimum form.

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	$\mathbf{1}$	1
0	$\mathbf{1}$	0	1
0	$\mathbf{1}$	$\mathbf{1}$	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Canonical SOP Implementation

(a) Sum-of-products realization

Canonical POS Implementation

(b) Product-of-sums realization

Minimal Implementation

Textbook Problem 2.28 Brown $3^{\text {rd }}$ Ed.

- Design the simplest circuit that has three inputs, a, b, and c , which produces an output value of 1 whenever two or more of the input variables have the value of 1 ; otherwise, the output has to be 0 .
- Implement the circuit three different ways
- With minimum and/or logic;
- With nand logic gates only;
- With nor logic gates only.

Design Entry

- Truth tables
- Practical only for small circuits.
- Schematic capture
- Interconnect symbols in some library;
- Facilitates hierarchical design;
- Good for medium-to-large circuits;
- Difficult to use for very large circuits.

Design Entry - Continued

- Hardware description languages (HDL's)
- Similar to a programming language;
- VHDL and Verilog HDL are IEEE standards;
- Provide design portability;
- Allow for sharing and design reuse;
- Support hierarchical design;
- Can be combined with schematics.

Logic Synthesis

- Logic synthesis, or logic optimization, is the process of translating a truth table, schematic, or VHDL code into a network of logic gates;
- What makes a circuit good depends on the application - do you want to optimize for speed, area, power?

Simulation

- A functional simulator is used to determine if a designed circuit operates correctly from a logic perspective.
- Circuit verification
- User provides input values to the circuit;
- Simulator determines the circuit response;
- User checks responses against desired outputs.
- A timing simulator is used to check correctness by incorporating the electrical characteristics of a logic design in addition to the logical performance. This simulation requires
- Technology mapping;
- Layout synthesis.

A Typical CAD System

VHDL

- VHDL - Very high speed integrated circuit hardware description language;
- Original IEEE standard adopted in 1987;
- Revised standard in 1993;
- Originally used for documentation and simulation;
- Now, it is also used for synthesis;
- Very complex language, but only a subset is needed to design a wide range of circuits.

Representing Digital Signals in VHDL

- Each logic signal in a circuit is a data object in VHDL code;
- Data objects in VHDL are assigned types;
- A simple type is BIT which is used for objects that can take only 2 values: 0 or 1 .

A Simple Logic Function Example

ENTITY example1 IS
PORT (x1.x2. x3 : IN BIT ;
f : OLT BIT) :
END cxample1;
ARCHITECTURE LogicFunc: OF example1 IS BEGIN
$\mathrm{f}<=(\mathrm{x} 1 \mathrm{AND} \times 2)$ OR (NOT x2 AND x3) : END LogicFunc:

Chapter 2 Summary

- Defined and illustrated basic logic functions and circuits;
- Presented Boolean algebra for dealing with logic functions;
- Illustrated logic gates and synthesis of simple circuits;
- Reviewed CAD tools and the VHDL hardware description language.

