

Enhanced Fragmentation Studies for a 40mm Dual Purpose Grenade

NDIA Joint Armaments Conference 16 May 2012

Paul A. Shipley AAI Corporation Hunt Valley, MD

Richard Mills Textron Defense Systems Wilmington, MA

Acknowledgements

- National Small Arms Center
- ARDEC/JSSAP
- Textron Defense Systems

 Warhead designs and analyses
- Systems Dynamics Corporation
 - Warhead initiation electronic circuit designs

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the U.S. Government.

1 = XII RON Systems

Program Overview

- Objective
 - Increase warfighter effectiveness through the use of small fragmenting munitions that provide an increase in Pi/Lethal Area of at least 25% against a specified array of threats in specified scenarios

Contract

- NBCH3090001-0003
- Phase I Design Study
- Quantitative Metrics

		RPP Requirement		
Measure	Current	Threshold (T)	Objective (O)	TRL Level
Small Fragmenting	Pi/Lethal Area	25% over current	>25% over current	Start TRL 2
Munitions- P(I)		systems	systems	End TRL 4

SURON'S

Wstem

Program Approach

- Improve 40mm M433 dual purpose grenade
- Improve both kill mechanisms
 - Fragmentation- primary emphasis
 - Armor Penetration (shaped charge) secondary emphasis
 - Combined optimization tradeoffs

M433 40mm HEDP Cartridge

©2012 AAI Corporation All rights reserved

Requirements Analysis- Key Req'ts

- Maintain dual-purpose projectile design
 - Anti-armor & Anti-personnel
 - Maintain shoulder fire capability (same max impulse)
 - Minimal max range degradation
- Anti-Personnel (Fragmentation)
 - Increase Pi/Lethal Area footprint by 25%
 - Consider full 360 degree lethality effects
 - Consider impact geometry
- Anti-Armor (Shaped Charge)
 - Penetrate RHA- same or better than current
 - Increase behind armor effects

Shaped Charge Tradeoff Analysis

©2012 AAI Corporation All rights reserved

Shaped Charge Modeling Approach (CTH)

Add spin effects of (2D geometry, 3D CTH)

Add spit-back initiation effects

Add 3D fuze component effects with spit-back and spin

2D equivalent geometry of full up 3D run. Utilized for baseline and tradeoffs.

S N (ON UV (UV

Wstenns

TEXTRON Systems

Tradeoff Studies and Performance Measures

- Shaped Charge Trade Studies
 - Detonation Location(s)/ Wave Shaper
 - Liner Geometry
 - Liner Material
 - Explosive Material
 - Confinement
- Performance evaluation measures
 - Spall ring area
 - Spall 1/2 cone angle
 - Average through hole diameter

Detonation Location Configurations

EXTIRON Systems

Detonation Location Effect

Configuration

 No other changes to M433 baseline

Conclusions

- Base detonation with wave shaper offers significant benefit
- Spitback initiation with hollow wave shaper enhances performance and allows current fuze arrangement

Spall Ring Area Spall Ring 1/2 Cone Angle

Avg Thru Hole Dia

©2012 AAI Corporation All rights reserved

Liner Apex Angle Effect

Liner Material Effect

<u>Materials</u>

- Copper (baseline)
- Molybdenum
- Tantalum
- Both materials
 more dense

Configuration

- Liner thickness scaled to obtain equal mass for all materials
- No other changes to M433 baseline

Conclusions

 Significant gain with increased density

Explosive Material Effect

<u>Explosive</u>

- Baseline Comp-A5 (modeled A3)
- LX-14
- PAX-2A (IM Compliant)

Configuration

 No other changes to M433 baseline ¹⁰⁰

Conclusions

- Both replacement explosives offer significant benefit
- PAX-2A gives best performance

Casing Confinement Material Effect

+300%

Explosive

- Baseline-Aluminum
- Substitute steel

Configuration

No other changes to M433 baseline

Conclusions

- Offers significant benefit
- Weight increase a consideration Area

Combined Improvement Effects

Representative Improvements

- Molybdenum liner
- PAX-2A explosive
- Base initiation with wave shaper
- No other changes to M433 baseline

Conclusions

 Significantly exceeds program goals

Conclusions- Shaped Charge

- All options improved performance
 - Detonation Location(s)/ Wave Shaper +600%
 - Liner Design...... +210%

 - Explosive Material......+200%
 - Confinement...... +300%
 - Implementation complexity varies
- Combining options provides significant improvements
- Performance potential significantly exceeds program goals
- Provides trade space for fragmentation improvements

Fragmentation Tradeoff Analyses

©2012 AAI Corporation All rights reserved

Baseline Fragmentation Distribution

- Cross range- Fragmentation primarily from sidewall of steel cup
- Up range- Primarily steel fragments from cup base
- Down range- Primarily aluminum sidewall fragments

©2012 AAI Corporation All rights reserved

Baseline Fragmentation Lethality Directionality

Fragmentation Performance Evaluation Parameters			
Items From Shaped Charge Study	Additional Fragmentation Specific Items		
Detonation Location	Fragment Shape		
Detonation Wave Shaper	Fragment Material		
Explosive Material	Number of Fragments		
Liner Material	Total Fragment Mass		
Liner Shape	Warhead Shape		
Fwd Sidewall Material			

Fragmentation Performance Enhancements Items with ≤ 10% Improvement

Design Parameter	Evaluation Approach
Detonation Location	Base Detonation
Detonation Wave Shaper	Wave Shaper With Base Detonation
Explosive Material	LX-14, PAX-2A, CL-20
Liner Material	Molybdenum
Liner Shape	Shallower Apex Angle
Fragment Shape	Cubes, Spheres, Rods

Designs that benefited shaped charge have negligible benefit to fragmentation

Indicates potential to separate variables for independent optimization

Fragmentation Performance Enhancements Lethal Area Improvement

©2012 AAI Corporation All rights reserved

Fragmentation Performance Enhancements

Conclusions- Fragmentation Improvements

- Individual design improvements offer lower magnitude gains than for shaped charge
- Incremental combination of best designs enable program requirements to be met
- Greatest benefits derive from improving up/down range effectiveness via fragment distribution pattern.
- Can achieve 40-75% improvement in lethal area, exceeds program goals
- Challenge- Most increase projectile weight

Conclusions-System Improvement Options

- Shaped charge and fragmentation improvement approaches exhibit significant independence of variables
- Improvement potential disproportionally skewed in favor of armor penetration versus fragmentation, not reflective of program goals
- Most efficient use of trade space is to reduce shaped charge size/weight allocation to increase fragmentation performance.

JEXTRON System

©2012 AAI Corporation All rights reserved

- Meets program goal of > 25% Pi/Lethality increase
 Armor Penetration (shaped charge)
 - -Fragmentation
- Applies current warhead and explosive technologies
- Conceptual feasibility established via analysis, additional detailed design required to support hardware implementation

