
Enhancements for Multi-Player
Monte-Carlo Tree Search

J. (Pim) A.M. Nijssen and Mark H.M. Winands

Games and AI Group, Department of Knowledge Engineering,
Faculty of Humanities and Sciences,

Maastricht University, Maastricht, The Netherlands
{pim.nijssen,m.winands}@maastrichtuniversity.nl

Abstract. Monte-Carlo Tree Search (MCTS) is becoming increasingly
popular for playing multi-player games. In this paper we propose two en-
hancements for MCTS in multi-player games: (1) Progressive History and
(2) Multi-Player Monte-Carlo Tree Search Solver (MP-MCTS-Solver).
We analyze the performance of these enhancements in two different
multi-player games: Focus and Chinese Checkers. Based on the exper-
imental results we conclude that Progressive History is a considerable
improvement in both games and MP-MCTS-Solver, using the standard
update rule, is a genuine improvement in Focus.

1 Introduction

Multi-player board games are games that can be played by more than two play-
ers. In the past the standard techniques to play these games were maxn [11] and
Paranoid [16]. For computers, even with these techniques, multi-player games are
generally more difficult than two-player games [14]. There are two main reasons
for this. The first reason is that pruning in game trees is more difficult. With
αβ pruning, the size of a tree in a two-player game can be reduced from O(bd)
to O(b

d
2) in the best case. However, when using maxn, safe pruning is hardly

possible. In Paranoid, the size of the game tree can only be reduced to O(b
n−1

n d)
in the best case. If the number of players is large enough, there will be hardly
any reduction. The second reason is coalition forming. Contrary to two-player
games, where two players always play against each other, in multi-player games
coalitions might occur. This can change the behavior of the opponents, making
it more difficult to predict their preferred moves during search.

Over the past years, Monte-Carlo Tree Search (MCTS) [6, 9] has become
increasingly popular for letting computers play board games. It has been applied
successfully in 2-player games such as Go [5–7], Amazons [8, 10], Lines of Action
[18] and Hex [4]. Sturtevant [15] showed that MCTS outperforms maxn and
Paranoid in the multi-player game Chinese Checkers. Moreover, Cazenave [3]
applied MCTS successfully for multi-player Go.

In this paper we propose two new enhancements for MCTS in multi-player
games. The first one is Progressive History, a combination of Progressive Bias

2 J.A.M. Nijssen and M.H.M. Winands

Selection Expension Playout Back propagation

The selection function is applied
recursively

One (or more) leaf
nodes are created

The result of this game is
backpropagated in the tree

One random
game is played

Selection Expansion Playout Back propagation

The selection function is
applied recursively until

the end of the tree

One (or more) leaf nodes
are created

The result of this game is
backpropagated in the tree

One random
game is played

 Repeated X times

Fig. 1. Monte-Carlo Tree Search scheme [5].

[5] and the history heuristic [13]. The second one is a multi-player variant
of Monte-Carlo Tree Search Solver [19], called Multi-Player Monte-Carlo Tree
Search Solver (MP-MCTS-Solver). We test these enhancements in two different
multi-player games: Focus and Chinese Checkers.

The remainder of this paper is structured as follows. In Sect. 2 we describe
MCTS and the two enhancements for multi-player games. In Sect. 3, a brief
explanation of the games that we use as test domain is given. The experiments
and the results are given in Sect. 4. Finally, in Sect. 5 we give the conclusions
that can be drawn from our research and we give an outlook on future research.

2 Monte-Carlo Tree Search Enhancements

In this section we give a brief overview of MCTS and two enhancements. In
Subsection 2.1 we briefly discuss MCTS. Next, we propose Progressive History
in Subsection 2.2. Finally, in Subsection 2.3 MP-MCTS-Solver is introduced.

2.1 MCTS

MCTS [6, 9] is a best-first search technique that uses Monte-Carlo simulations
to guide the search. MCTS consists of four phases (see Fig. 1). We explain them
in detail below.

Selection. The first phase is the selection phase. Here, the search tree is traversed
from the root node until a node is found that contains children that have not
been added to the tree yet. The tree is traversed using the Upper Confidence
bounds applied to Trees (UCT) [9] selection strategy. The child i with the highest
score vi is selected as follows (Formula 1)

Enhancements for Multi-Player Monte-Carlo Tree Search 3

vi =
si

ni
+ C ×

√
ln(np)
ni

, (1)

here si denotes the total score of child i, where a win is being rewarded 1
point and a loss 0 points. The variables ni and np denote the total number of
times that child i and parent p have been visited, respectively. C is a constant,
which determines the exploration factor of UCT.

Expansion. The second phase is the expansion phase. Here, one node is added
to the tree. Whenever a node is found which has children that have not been
added to the tree yet, then one of these children is chosen and added to the tree
[6].

Playout. The third phase is the playout phase. During this phase, moves are
played in self-play until the game is finished. Usually, the playouts are being gen-
erated using random move selection. However, it is also possible to add domain
knowledge to the playouts. Sturtevant [15] proposed to use a strategy, called the
ε-greedy strategy [17], in which the algorithm chooses the most greedy move (the
best move according to a simple move evaluation function) with a probability of
1− ε. A random move is selected with a probability of ε. In our program we use
ε = 0.05.

Backpropagation. Finally, in the backpropagation phase, the result is propagated
back along the previously traversed path up to the root node. In the multi-player
variant of MCTS, the result is a tuple of size N, where N is the number of players.
The value of the winning player is 1, the value of the other players is 0. MCTS
is able to handle games with multiple winners. For instance, if Player 1 and
Player 2 both win in a 3-player game, then the tuple [12 ,

1
2 , 0] is returned. The

multi-player games we use in this paper, Chinese Checkers and Focus, cannot
have multiple winners.

This four-phase process is repeated either a fixed number of times, or until the
time is up. When the process is finished, the method returns the child of the
root node with the highest win rate.

2.2 Progressive History

A problem with MCTS is that it takes a while before enough information is gath-
ered to calculate a somewhat reliable value for a node. Chaslot et al. [5] proposed
Progressive Bias to direct the search according to – possibly time-expensive –
heuristic knowledge. They added to Formula 1 the following component: Hi

ni+1 .
Here Hi represents heuristic knowledge, which depends only on the board config-
uration represented by the node i. The influence of this component is important
when a few number of games has been played, but decreases fast (when more

4 J.A.M. Nijssen and M.H.M. Winands

games have been played) to ensure that the strategy converges to a pure selection
strategy such as UCT.

The problem of Progressive Bias is that heuristic knowledge is needed. A
solution is offered by using the (relative) history heuristic [13, 20], which is used
in MCTS enhancements such as RAVE [7] and Gibbs sampling [1]. The history
heuristic does not require any domain knowledge. The idea behind the history
heuristic is to exploit the fact that moves that are good in a position are also
good in other positions. For each move that has been performed for each player
during the simulations, the number of games and the total score are stored. This
information is used to compute the history score. This score is subsequently
combined – in a more complex way than Progressive Bias – with the UCT
selection strategy.

In this paper we propose a new enhancement, called Progressive History, that
combines Progressive Bias and the history heuristic. The heuristic knowledge Hi

of Progressive Bias is replaced with the history score. The child i with the highest
score vi is selected now as follows (Formula 2)

vi =
si

ni
+ C ×

√
ln(np)
ni

+
sa

na
× W

ni − si + 1
, (2)

here sa represents the score of move a, where each game in which sa was
played resulted in a win adds 1 point and a loss 0 points. na is the number of
times move a has been played in any game in the past. W is a constant which
determines the influence of Progressive History. The higher the value of W , the
longer Progressive History affects the selection of the node.

In Formula 2, W
ni−si+1 represents the Progressive Bias part and sa

na
the history

heuristic part. We remark that, in the Progressive Bias part, we do not divide by
the number of visits as standard is done [5, 19], but by the number of visits minus
the score, i.e. the number of losses. In this way, nodes that do not perform well
are not biased too long, whereas nodes that continue to have a high score stay
biased. To ensure that we do not divide by 0, a 1 is added in the denominator.

In our implementation the move data for Progressive History is stored in a
global table, while RAVE [7] has to keep track of the “all-move-as-first” (AMAF)
[2] values in every node. Keeping track of the values globally instead of locally at
every node saves memory space, but has the risk that it diminishes the benefit.
Another solution to save space is to define move categories, e.g. capture moves.
The disadvantage of this solution is that it is dependent on domain knowledge.

2.3 Multi-Player MCTS-Solver

Recently, Winands et al. [19] developed a method, called Monte-Carlo Tree
Search Solver (MCTS-Solver), to prove the game-theoretical value of a node
in a Monte-Carlo search tree. This method was used successfully for playing the
two-player game Lines of Action [12].

We developed a multi-player variant of MCTS-Solver, called Multi-Player
Monte-Carlo Tree Search Solver (MP-MCTS-Solver). For the multi-player vari-

Enhancements for Multi-Player Monte-Carlo Tree Search 5

A

B C D

E F G H I

Player 3

Player 1

Player 2

[1,0,0] [...] [0,1,0] [0,1,0] [0,1,0]

[0,1,0][0,1,0]

[1,0,0]

Fig. 2. A multi-player search tree

ant, MCTS-Solver has to be modified, in order to accommodate for games with
more than two players. This is discussed below.

Proving a win works similarly as in the two-player version of MCTS-Solver:
if at one of the children a win is found for the player who has to move in the
current node, then this node is a win for this player. If all children lead to a
win for the same opponent, then the current node is also labeled as a win for
this opponent. However, if the children lead to wins for different opponents, then
updating the game-theoretical values becomes a non-trivial task. Update rules
have to be developed to take care of such situations. We tested three different
update rules that are briefly explained below.

(1) The normal update rule only updates proven wins for the same opponent.
This means that only if all children lead to a win for the same opponent, then
the current node is also set to a win for this opponent. Otherwise, the simulation
score is used.

An example is given in Fig. 2. Here, node E is a terminal node where Player
1 has won. It means that node B is a mate-in-1 for Player 1, regardless of the
value of node F. This node receives a game-theoretical value of [1, 0, 0].1 Nodes
G, H, and I all result in wins for Player 2. Then parent node D receives a
game-theoretical value of [0, 1, 0], since this node always leads to a win for the
same opponent of Player 1. The game-theoretical value of node A cannot be
determined in this case, because both Player 1 and Player 2 can win and there
is no win for Player 3.

(2) The paranoid update rule uses the assumption that the opponents of the
root player will never let him win [3, 16]. Again consider Fig. 2. Assuming that
the root player is Player 1, using the paranoid update rule, we can determine
the game-theoretical value of node A. Since we assume that Player 3 will not let
Player 1 win, the game-theoretical value of node A becomes [0, 1, 0].

Note that if there are still multiple winners after removing the root player
from the list of possible winners, then no game-theoretical value is assigned to
the node and the simulation score is used.

1 If a node has a game-theoretical value, then this value is used in the selection phase,
without using either UCT or Progressive History.

6 J.A.M. Nijssen and M.H.M. Winands

The paranoid update rule may not always give the desired result. With the
paranoid assumption, the game-theoretical value of node A is [0, 1, 0] (i.e., a win
for Player 2). This is actually not certain, because it is also possible that Player
3 will let Player 1 win. However, since the game-theoretical value of node A
denotes a win for Player 2, and at the parent of node A Player 2 is to move,
the parent of node A will also receive a game-theoretical value of [0, 1, 0]. This
is actually false, since choosing node A does not give Player 2 a guaranteed win.

Problems may thus arise when a player in a given node gives the win to the
player directly preceding him. In such a case, the parent node will receive a game-
theoretical value which is technically false. This problem can be diminished by
using (3) the first-winner update rule. When using this update rule, the player
will give the win to the player who is the first winner after him. In this way the
player before him will not get the win and, as a result, will not overestimate the
position. When using the first-winner update rule, in Fig. 2 node A will receive
the game-theoretical value [1, 0, 0].

3 Test Domains

We tested the two enhancements in two different games: Focus and Chinese
Checkers. In this section we briefly discuss the rules and the properties of Focus
and Chinese Checkers in Subsection 3.1 and 3.2, respectively.

3.1 Focus

Focus is an abstract multi-player strategy board game, invented in 1963 by Sid
Sackson [12]. This game has also been released under the name Domination.

Focus is played on an 8×8 board where in each corner 3 squares are removed.
It can be played by 2, 3 or 4 players. Each player starts with a number of pieces
on the board. In Fig. 3, the initial board positions for the 2-, 3- and 4-player
variants are given.

(a) 2 players (b) 3 players (c) 4 players

Fig. 3. Set-ups for Focus

Enhancements for Multi-Player Monte-Carlo Tree Search 7

Each turn a player may move a stack, which contains one or more pieces,
orthogonally as many squares as the stack is tall. A player may only move a
stack of pieces if a piece of his color is on top of the stack. Players are also
allowed to split stacks in two smaller stacks. If they decide to do so, then they
only move the upper stack as many squares as the number of pieces that are
being moved.

If a stack lands on another stack, then the stacks are merged. If the merged
stack has a size of n > 5, then the bottom n−5 pieces are captured by the player,
such that there are 5 pieces left. If a player captures one of his own pieces, he
may later choose to place one of his pieces back on the board, instead of moving
a stack.

There exist two variations of the game, each with a different winning condi-
tion. In the standard version of the game, a player has won if all other players
cannot make a legal move. However, games can take a long time to finish. There-
fore, we decided to use the shortened version of the game. In this version, a player
has won if he has either captured a total number of pieces, or a number of pieces
from each player. In the 2-player variant, a player wins if he has captured at
least 6 pieces from the opponent. In the 3-player variant, a player has won if he
has captured at least 3 pieces from both opponents or at least 10 pieces in total.
Finally, in the 4-player variant, the goal is to capture at least 2 pieces from all
opponents or capture at least 10 pieces in total.

3.2 Chinese Checkers

Chinese Checkers is a board game that can be played by 2 to 6 players. This game
has been invented in 1893 and has since then been released by various publishers
under different names. Chinese Checkers is played on a star-shaped board. The
most commonly used board contains 121 fields, where each player starts with 10
checkers. We decided to play on a slightly smaller board [14] (see Fig. 4). In this
version, each player plays with 6 checkers. The advantage of a smaller board is
that games take a shorter amount of time to complete, which means that more
Monte-Carlo simulations can be performed and more experiments can be run.
Also, it allows us to use a stronger evaluation function (see Subsection 4.1).

Fig. 4. A Chinese Checkers board [14].

8 J.A.M. Nijssen and M.H.M. Winands

The goal of each player is to move all his pieces to his own base at the other
side of the board. Pieces may move to one of the adjacent squares or they may
jump over another piece to an empty square. It is also allowed to make multiple
jumps with one piece in one turn. It is possible to create a setup that allows
pieces to jump over a large distance. The first player who manages to fill his
home base wins the game.

4 Experiments

In this section, we describe the experiments that were performed to investigate
the strength of the proposed enhancements to MCTS in Focus and Chinese
Checkers. In Subsection 4.1 we explain the experimental setup. In Subsection
4.2 we describe the experiments and give the results of Progressive History. In
Subsection 4.3, the experiments and the results for MP-MCTS-Solver are given.

4.1 Experimental Setup

The Monte-Carlo engines of Focus and Chinese Checkers have been written in
Java. MCTS, Progressive History, and MP-MCTS-Solver all set their exploration
constant C to 0.2. For the playouts, we apply the ε-greedy strategy [15], with a
95% probability to play the greediest move and a 5% probability to play a random
move. For determining the greediest move in Focus, we apply a simple evaluation
function which assigns a value to each valid move. This value is based on the
number of captured pieces and the amount of stacks that the players control
after moving. For determining the most greedy move in Chinese Checkers, we
use a lookup table [15]. In this table we store, for each possible configuration
of pieces, the minimum number of moves a player should perform before he can
have all pieces in his home base, assuming that there are no opponents’ pieces
on the board. During the mid-game this value is not very accurate, though it is
still useful. In the end-game, however, it leads to optimal play.

In all experiments, the players received 2.5 seconds thinking time to deter-
mine the best move. All experiments were performed on an AMD64 2.4 GHz.
computer. For reference, in Focus around 4,000 games per second are played at
the start of the game. During the end-game around 20,000 games per second are
played. In Chinese Checkers, the number of games per second is slightly lower.
At the start of the game around 3,000 games per second are played. During the
end-game, up to 10,000 games per second are played.

For both games, there may be an advantage regarding the order of play
and the number of different players (i.e. search configurations). To give reliable
results, each possible player setup, with the exception of setups where each player
is of the same search configuration, is played equally often.

Enhancements for Multi-Player Monte-Carlo Tree Search 9

Table 1. Win rates for a Progressive History player with different values of W against
the default MCTS player in Focus.

2 players 3 players 4 players
W wins losses win rate wins losses win rate wins losses win rate

0 1746 1614 52.0% 1720 1640 51.2% 1706 1654 50.8%
0.05 1983 1367 59.0% 2054 1306 61.1% 1931 1429 57.5%
0.1 2009 1351 59.8% 2116 1244 63.0% 1978 1382 58.9%
0.25 2061 1299 61.3% 2115 1245 62.9% 1997 1363 59.4%
0.5 2154 1206 64.1% 2200 1160 65.5% 2013 1347 59.9%
1 2219 1141 66.0% 2196 1164 65.4% 1957 1403 58.2%
3 2089 1271 62.2% 2190 1170 65.2% 2002 1358 59.6%
5 1946 1414 57.9% 2143 1217 63.8% 2001 1359 59.6%
7.5 1722 1638 51.3% 2036 1324 60.6% 1917 1443 57.1%
10 1593 1767 47.4% 1941 1419 57.8% 1911 1449 56.9%

Table 2. Win rates for a Progressive History player with different values of W against
the default MCTS player in Chinese Checkers.

2 players 3 players 4 players
W wins losses win rate wins losses win rate wins losses win rate

0.25 1773 1587 52.8% 1981 1379 59.0% 1913 1447 56.9%
0.5 1955 1405 58.2% 2110 1250 62.8% 1960 1400 58.3%
1 2279 1081 67.8% 2132 1228 63.5% 2079 1281 61.9%
3 2683 677 79.9% 2242 1118 66.7% 2232 1128 66.4%
5 2804 556 83.5% 2211 1149 65.8% 2244 1116 66.8%
10 2795 565 83.2% 2193 1167 65.3% 2337 1023 69.6%
15 2721 639 81.0% 2183 1177 65.0% 2326 1034 69.2%
20 2044 1316 60.8% 2022 1338 60.2% 2124 1236 63.2%

4.2 Progressive History

In the following series of experiments we tested Progressive History (with differ-
ent values of W) against an MCTS player without Progressive History in Focus
and Chinese Checkers.

Table 1 shows that Progressive History, provided the value of W is set cor-
rectly, is a considerable improvement for MCTS in Focus. The best result for
the 2-player variant is achieved with W=1, achieving a win rate of 66.0%. For
the 3-player variant, the best results are achieved with W=1 and W=3, both
winning more than 65% versus an MCTS player without Progressive History. In
the 4-player variant, Progressive History still performs well. With W=3 or W=5
the win rate is still almost 60%.

Table 2 reveals that Progressive History works even better in Chinese Check-
ers. In the 2-player variant, Progressive History easily wins over 80% of the
games, with the best result achieved by the player with W=5, winning 83.5%
of the games. In the 3-player game, the win rate drops to around 65%, but in
the 4-player game, the performance increases again to almost 70% with W=10
or W=15.

10 J.A.M. Nijssen and M.H.M. Winands

Table 3. Win rates for a Progressive History player using W
ni−si+1

against a Progressive

History player using W
ni+1

.

2 players 3 players 4 players
Game wins losses win rate wins losses win rate wins losses win rate

Focus 680 370 64.8% 640 410 61.0% 546 504 52.0%
Chinese Checkers 582 468 57.6% 575 475 54.8% 566 484 53.9%

The reason why Progressive History works so well in Chinese Checkers is that
for this game good moves are not dependent on the global board state. Good
moves are often moves that move a checker far forward, and thus are good moves
in similar, but different states. In Focus, this is much less the case. Good moves
are considerably more dependent on the global board state. Still, Progressive
History is an important enhancement in Focus as well.

In the next series of experiments we verified whether dividing by the number
of losses (W

ni−si+1) instead of the number of games (W
ni+1) in the Progressive

Bias part of Formula 2 is an improvement. In Table 3 the results are given when
the two players played against each other in Focus and Chinese Checkers. The
players used W=5, which is in both cases one of the best settings. We see that for
both games dividing by the number of losses is an improvement for Progressive
History. However, the performance drops when the number of players increases.

4.3 Multi-Player MCTS-Solver

In this section, we give the results of MP-MCTS-Solver with the three different
update rules playing against an MCTS player without MP-MCTS-Solver. We
performed these experiments in Focus, because MCTS-Solver is only successful
in sudden-death games [19]. Chinese Checkers is not a sudden-death game, and
therefore we expect MP-MCTS-Solver not to work well in this game. However,
Focus is a sudden-death game and is therefore an appropriate test domain for
MP-MCTS-Solver.

In the last series of experiments, Progressive History was enabled for both
players with W=5. In Table 4, we see that the standard update rule works well
in Focus. The win rates for the different number of players vary between 53%
and 55%. The other update rules do not perform well. For the 2-player variant,
they behave and perform similar to the standard update rule. The win rates are
slightly lower, which may be caused by statistical noise and a small amount of

Table 4. Win rates for an MP-MCTS-Solver player with different update rules against
the default MCTS player in Focus.

2 players 3 players 4 players
Type wins losses win rate wins losses win rate wins losses win rate

Standard 1780 1580 53.0% 1844 1516 54.9% 1792 1568 53.3%
Paranoid 1745 1615 51.9% 1693 1667 50.4% 1510 1850 44.9%
First-winner 1774 1586 52.8% 1732 1628 51.5% 1457 1903 43.4%

Enhancements for Multi-Player Monte-Carlo Tree Search 11

overhead. In the 3-player variant, the performance drops to just over 50% for
both. In the 4-player variant, the win rate of the player using MP-MCTS-Solver
is even below 50% for the paranoid and the first-winner update rules. Based on
these results we may conclude that only the standard update rule works well.

5 Conclusions and Future Research

In this paper we investigated two enhancements for MCTS in multi-player games.
The first one is Progressive History, a combination of Progressive Bias and the
history heuristic. The second one is MP-MCTS-Solver, a multi-player variant
of MCTS-Solver. We determined the strength of these enhancements in two
different games: Focus and Chinese Checkers.

For Progressive History, we determined its strength by letting it play with
different values of the constant W against an MCTS player without Progres-
sive History. Depending on the game, the number of players and the value of
W , Progressive History wins 60% to 70% of the games against MCTS without
Progressive History. Based on these results, we may conclude that Progressive
History is an important enhancement for MCTS in multi-player games.

We tested MP-MCTS-Solver with three different update rules, namely (1)
standard, (2) paranoid and (3) first-winner. We tested this enhancement only in
Focus, since MP-MCTS-Solver only works well in sudden-death games. Chinese
Checkers is, contrary to Focus, not a sudden-death game. A win rate between
53% and 55% was achieved in Focus with the standard update rule. The other
two update rules achieved similar win rates in the 2-player variant, but were
around or below 50% for the 3- and 4-player variants. We may conclude that
MP-MCTS-Solver performs well with the standard update rule. The other two
update rules, paranoid and first-winner, were not successful in Focus.

In multi-player games, there is still much room for improvement. Progressive
History works well in Focus and Chinese Checkers and may also work well in
other games. This is subject of future research. Moreover, comparisons with
other variants to bias the selection strategy, such as RAVE [7], Gibbs sampling
[1] and prior knowledge [7] should be performed. MP-MCTS-Solver has proven
to be a genuine improvement for the sudden-death game Focus, though more
research is necessary to improve its performance. For instance, one could try to
create new update rules that may improve its performance.

References

1. Y. Björnsson and H. Finnsson. CadiaPlayer: A simulation-based general game
player. IEEE Transactions on Computational Intelligence and AI in Games,
1(1):4–15, 2009.

2. B. Brügmann. Monte Carlo Go. Technical report, Physics Department, Syracuse
University, 1993. ftp://ftp.cse.cuhk.edu.hk/pub/neuro/GO/mcgo.tex.

3. T. Cazenave. Multi-player Go. In H.J. van den Herik, X. Xu, Z. Ma, and M.H.M.
Winands, editors, Computers and Games (CG 2008), volume 5131 of Lecture Notes
in Computer Science (LNCS), pages 50–59, Berlin, Germany, 2008. Springer.

12 J.A.M. Nijssen and M.H.M. Winands

4. T. Cazenave and A. Saffidine. Utilisation de la recherche arborescente Monte-Carlo
au Hex. Revue d’Intelligence Artificielle, 23(2–3):183–202, 2009. In French.

5. G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and
B. Bouzy. Progressive strategies for Monte-Carlo Tree Search. New Mathematics
and Natural Computation, 4(3):343–357, 2008.

6. R. Coulom. Efficient selectivity and backup operators in Monte-Carlo Tree Search.
In H.J. van den Herik, P. Ciancarini, and H.H.L.M. Donkers, editors, Comput-
ers and Games (CG 2006), volume 4630 of Lecture Notes in Computer Science
(LNCS), pages 72–83, Berlin, Germany, 2007. Springer.

7. S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In ICML
’07: Proceedings of the 24th international conference on Machine learning, pages
273–280, New York, NY, USA, 2007. ACM.

8. J. Kloetzer, H. Iida, and B. Bouzy. Playing amazons endgames. ICGA Journal,
32(3):140–148, 2009.

9. L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In J. Fürnkranz,
T. Scheffer, and M. Spiliopoulou, editors, Machine Learning: ECML 2006, volume
4212 of Lecture Notes in Artificial Intelligence, pages 282–293, 2006.

10. R.J. Lorentz. Amazons discover Monte-Carlo. In H.J. van den Herik, X. Xu, Z. Ma,
and M.H.M. Winands, editors, Computers and Games (CG 2008), volume 5131 of
Lecture Notes in Computer Science (LNCS), pages 13–24, Berlin, Germany, 2008.
Springer.

11. C. Luckhart and K.B. Irani. An algorithmic solution of n-person games. In Proceed-
ings of the 5th National Conference on Artificial Intelligence (AAAI), volume 1,
pages 158–162, 1986.

12. S. Sackson. A Gamut of Games. Random House, New York, NY, USA, 1969.
13. J. Schaeffer. The history heuristic. ICCA Journal, 6(3):16–19, 1983.
14. N.R. Sturtevant. An analysis of UCT in multi-player games. In H.J. van den Herik,

X. Xu, Z. Ma, and M.H.M. Winands, editors, Computers and Games (CG 2008),
volume 5131 of Lecture Notes in Computer Science (LNCS), pages 37–49, Berlin,
Germany, 2008. Springer.

15. N.R. Sturtevant. An analysis of UCT in multi-player games. ICGA Journal,
31(4):195–208, 2008.

16. N.R. Sturtevant and R.E. Korf. On pruning techniques for multi-player games.
In Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence, pages
201–207. AAAI Press / The MIT Press, 2000.

17. R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, USA, 1998.

18. M.H.M. Winands and Y. Björnsson. Evaluation function based Monte-Carlo LOA.
In H.J. van den Herik and P.H.M. Spronck, editors, Advances in Computer Games
(ACG 2009), volume 6048 of Lecture Notes in Computer Science (LNCS), pages
33–44, Berlin, Germany, 2010. Springer.

19. M.H.M. Winands, Y. Björnsson, and J-T. Saito. Monte-Carlo Tree Search Solver.
In H.J. van den Herik, X. Xu, Z. Ma, and M.H.M. Winands, editors, Computers and
Games (CG 2008), volume 5131 of Lecture Notes in Computer Science (LNCS),
pages 25–36, Berlin, Germany, 2008. Springer.

20. M.H.M. Winands, E.C.D. van der Werf, H.J. van den Herik, and J.W.H.M. Uiter-
wijk. The relative history heuristic. In H.J. van den Herik, Y. Björnsson, and
N.S. Netanyahu, editors, Computers and Games, volume 3846 of Lecture Notes in
Computer Science (LNCS), pages 262–272, Berlin, Germany, 2006. Springer.

