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Current State of the Art (SOA) Materials  

• RTGs for the past 50 years have either been PbTe  (ZTave 0.7) or SiGe 
(ZTave 0.6) based 

– High level of reliability and redundancy and long life 
– ~6.5% efficiency at the system level  

• Increasing demand for higher scientific payload and higher specific 
power per kilogram 

– Limited amount of expensive heat source….Need Higher ZT materials!! 
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Thermoelectrics: Power Generation 

S, Seebeck coefficient 
σ , electrical conductivity 
λ, total thermal conductivity 
T, temperature 

λ = λlattice + λelectronic 

S = ∆V/∆T 

 Conversion efficiency is a direct function of ZT 
and ∆T  
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Materials, Device production 
(Industry, NASA) 

Radioisotope Power Systems Program:  
Advanced Thermoelectrics Technology Roadmap 

Advanced Thermoelectric Materials (ATOM) (TRL 0-2) 

Advanced TE Couples (ATEC)      (TRL 2-4) 

Technology Maturation (TRL 4-5) 
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Key materials design strategies to achieve high ZT values across wide ∆T 

Yb14MnSb11 Zintl Phase 
104 atoms/unit cell 

Technical Approach to > 20% Efficiency 

• Complex crystal structures 
• Inherently low thermal 
conductivity due to structural 
complexity 

• Need to control and optimize 
electronic properties 
 

 
• Main experimental challenge: 

• Develop synthesis methods 
that enable precise 
stoichiometric control and 
practical scaling up 
 

• Provide theoretical guidance 
using first principles 
simulations 
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Structural Complexity and Thermal Transport 

• Low thermal conductivity in 
complex crystal structures 
– Some of the lowest seen in Zintl 

structures 

Toberer, E. et. al. J. Mater. Chem. 2011, 21, 15843; Star, K. et. al. Manuscript in progress.  

0.6 
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Body centered 
tetragonal 
I41/acd space 
group 
Unit cell: total of 
104 atoms 
Block (4X): 
[MPn4]9-, [Pn3]7-

, 4Pn3-, 14A2+ 

Introduction to Zintl Phases 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

400 500 600 700 800 900 1000 1100 1200 1300

ZT

Temperature (K)

TAGS

"RTG" Si0.8Ge0.2

p-type 

Yb14MnSb11
(Sn flux)

Yb14MnSb11
(ball milled)

• Yb14MnSb11 
– 104 atoms per unit cell 
– TE properties reported in 2006 
– Peak ZT ~1.4 at 1275 K 

– Factor of 3x over SOA SiGe 

Toberer et. al. Adv. Funct. Mater. 2008, 18, 2795; Star, K. et. al. Manuscript in progress.   

• Zintl Structures 
• Covalent, anionic substructures 
• Zintl-Klemm valence count 

• Thermal properties: 
• Complex structures leads to 

low thermal conductivity 
• Electronic properties 

– Semiconducting-metallic 
– Carrier concentration optimized 

through doping 
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AM2Sb2 Zintl compounds 

 CaAl2Si2 structure type 
 slabs of covalently bonded M2Sb2

 

are separated by rows of A atoms 
 M = Zn, Cd, Mn 
 A = Ca, Sr, Yb, Eu 
 only 5 atoms per unit cell  

 

Zn 

Sb 

Sr 
SrZn2Sb2 

E.S. Toberer, A.F. May, et. al. Dalton Trans., 2010, 39, 1046–1054 

YbZn2-xCdxSb2 

One of most studied Zintls,  
peak zT ~ 1.2 at 775 K 
Similar performance to 
skutterudites  
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AZn2Sb2 Carrier Concentrations 

E.S. Toberer, A.F. May, E. Flage-Larsen et. al. Dalton Trans., 2010, 39, 1046–1054 

• Zintl phases: valence precise with expected semiconducting 
properties 

• Classically thought as line compounds 
• Orders of magnitude changes in carrier concentration observed in system 

despite isoelectronic substitution  

Sr –> forms most ionic bonds 
Yb --> forms the most covalent bonds Allred-Rochow electronegativity 
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Role of Defects 

• What causes crystallographic defects?  
– Thermodynamic competition between entropy gain from defect formation vs 

energy needed to form the defect  
– Many types of defects 

 
 
 
 
 
 
 
 
 
 
 
 

• Impact of defects?  
• Some defects can 

significantly impact TE 
properties 
• Previously 

demonstrated in 
other TE material 
systems such as 
oxides, clathrates, 
and chalcogenides  

• Effect of defects not 
studied in Zintl 
phases 

 

http://en.wikipedia.org/wiki/Crystallographic_defect 
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Thermodynamics of Defects in AM2Sb2 

∆Hdefect at 0 K for selected defects in 
CaZn2Sb2 

• Vacancies on the Ca and Zn sites 
have lowest energies 

• In all AZn2Sb2 compounds, A-site 
vacancy is most favorable 

A site vacancies only – at 0 Kelvin 

• Yb vacancies are more favorable 
than ionic Sr vacancies 

Pomrehn, G.; Zevalkink, A.; Zeier, W. G.; van de Walle, A.; Snyder, G. J. Angew. Chem., Int. Ed. 2014, 53, 3422−3426. 
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Expected Carrier Concentration 
Accounting for Defects in AZn2Sb2 

• Calculated trend in carrier concentrations matches trends in experimental 
results 

Pomrehn, G.; Zevalkink, A.; Zeier, W. G.; van de Walle, A.; Snyder, G. J. Angew. Chem., Int. Ed. 2014, 53, 3422−3426. 
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• A vacancies in lead to wide single-
phase region 

• Maximum vacancy concentration 
depends on electronegativity of A 

AZn2Sb2 phase diagram   

• AZn2Sb2 samples have large 
experimental n 

• Trend in n is consistent with 
calculated phase diagrams 

Experimental nH 

AZn2Sb2 phase diagram   

Pomrehn, G.; Zevalkink, A.; Zeier, W. G.; van de Walle, A.; Snyder, G. J. Angew. Chem., Int. Ed. 2014, 53, 3422−3426. 
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0.98 0.99 1.00 1.025 1.05 

Yb deficient Excess Yb   

Nominal Yb content, x, in YbxZn2Sb2 Objective:  
• Determine phase width of YbZn2Sb2  
• Optimize the carrier concentration 
      and ZT via Yb content 

Yb deficient samples 
• Phase pure 
• Linear change in lattice parameters 

and carrier concentration 
Yb excess: 
• Precipitation of secondary phase 
• No change to majority phase 
• Similar carrier concentration 

x in YbxZn2Sb2 

YbZn2Sb2 

Te
m

pe
ra

tu
re

 (K
)  

ZnSb 0.99 0.98 0.97 0.96 

900 

800 

700 

600 

500 

400 

300 

ZnSb  
+  

YbxZn2Sb2 

YbxZn2Sb2 

Predicted phase diagram Predicted behavior: 

Evaluating Impact of  Defects in  
Yb1-δZn2Sb2 

Zevalkink, A.; Zeier, W. G.; Cheng, E.; Snyder, J.; Fleurial, J.-P.; Bux, S. Chem. Mater. 2014, 26, 5710–5717. 
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Experimental Methods 

Synthesis: 
• YbxZn2Sb2 (x = 0.98, 0.99, 1.00,1.025, and 1.05)  

– Ball milling of elements in Ar glove box to homogenize 
powder 

• Hot pressed for 1.5 h at 823 K using 160 MPa of 
pressure. 
– Pellets ~99% of theoretical density 

Special Characterization techniques: 
• High resolution synchrotron powder diffraction data 

were collected using beamline 11-BM at the 
Advanced Photon Source (APS), Argonne National 
Laboratory 
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Results: Synchrotron XRD results 

b) 11-BM Synchrotron XRD 

All samples highly phase pure 
With decreasing nominal Yb content: 

I. Lattice contracts in z-direction 
II. Vegard’s law obeyed in Yb-deficient 

samples ( x < 1.00 ) 
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Results: Carrier Concentration 

Conclusions: 
1. nH confirms calculated Yb-deficient 

stability line. 
2. Max Yb content may be < 1.00 

Assumptions: 
1. composition is “frozen” at 800 K 
2. n varies linearly in single phase region 
3. n is constant outside single phase 

region  

nominal Yb content (x) 
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Results: Transport properties 

Yb-deficient samples: 
• Yb content 

determines nH 
• Yb vacancies lead to 

degenerate behavior 

αmax yields Eg = 0.25 eV 

more 
vacancies 
 

more 
vacancies 
 

Yb-excess samples: 
• Yb content has no 

effect on nH 

Peak Seebeck: 

more 
vacancies 
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SPB model Figure of Merit 

m* = 0.6 at 300 K 
m* = 0.9 at 500 K 

more 
vacancies 
 

• 30% improved average ZT vs p-type skutterudites 
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ZT Yb1-δZn2Sb2 

• Yb deficient samples (lower vacancy concentrations) have optimized carrier 
concentrations 

• Peak zT = 0.85 
• 50% improvement in peak zT, 100% improvement in average zT relative to previous 

literature reports 
• New method of controlling carrier concentration in Zintl phases  
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Defect Chemistry and Thermal Transport 
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• In some systems, vacancies effect thermal transport more than 
electronic 
– Vacancies behave as point defect scattering sites 

 
 

Yb9Mn4.2Sb9 

Yb Mn1 Sb Mn2 

• Crystal structure reported by Bobev 
et al 2010 

• Complex Zintl structure  
• 9 Yb2+ coordinated to chains of 

[Mn4Sb9]19- sublattice of corner 
shared MnSb4 tetrahedra 

• Defect structure 
• Interstitial Mn connecting chains, 
• Nominal Zintl composition: 

Yb9Mn4.5Sb9 
• Difficult to synthesize due to 

high entropy of defect 
formation 

• 44 atoms/UC 
• Orthorhombic structure 

Bobev, S. et. al. Chem. Mater. 2010, 22, 840 
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Interstitial Mn in Yb9Mn4.2Sb9 

• Idealized: Yb9Mn4.5Sb9 structure 
• Partially filled interstitial Mn  

– links Mn4Sb9 sublattice chains  

Mn2 

Mn2 Yb 
Mn1 

Mn2 

Sb 

Interstitial Mn 

Bobev et. al. Inorg. Chem. (2004) 43, 5044-5052 
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Structural Complexity and Thermal 
Properties 

• Yb9Mn4.18Sb9 possesses one of the lowest thermal 
conductivities, 
– Yet it has a relatively smaller unit cell of 44 atoms  

Material
N 

(atoms/UC)
kL(W/
mK)

LaPO4 24 2.5
W3Nb14O44 61 1.8
LaMgAl11O19 64 1.2
La2Mo2O9 624 0.7
α Al14.7Mn3.5Si1.8 138 1.5
Ca5Al2Sb6 26 1.5
Ca3AlSb3 28 1.6
Yb11Sb10 42 0.8
Yb11InSb9 42 0.8
Yb9Mn4.18Sb9 44 0.5
Ba8Ga16Ge30 54 1.1
Yb14AlSb11 104 0.7

Yb9Mn4.18Sb9 

Bux, S. K.; Zevalkink, A.; Janka, O.; Uhl, D.; Kauzlarich, S.; Snyder, J. G.; Fleurial, J.-P. J. Mater. Chem. A 2014, 2, 215–220. 
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Conclusions 

• Defects can play a significant role on the electronic and thermal 
properties of Zintl phases 
• Electronic 

•  DFT predicts large cation vacancy concentrations in A1-δZn2Sb2. 
• Controlling the vacancy concentration allows for control of electronic 

properties, improved zT. 

– Thermal:  
• Defects can lead to low glass like thermal conductivities in already low 

thermal conductivity complex Zintl phases  

• New mechanisms and insights to improve efficiency of 
thermoelectric materials 

• New Zintl phases, could be potential alternates to p-type 
skutterudites for advanced RTG applications 
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