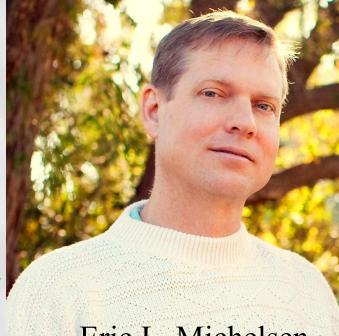


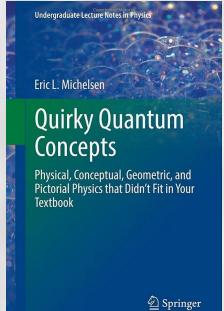
Entanglement, Decoherence, and The Collapse of Quantum Mechanics

A Modern View

Presentation to the San Diego Philosophy Forum, May 27, 2014. Copyright 2014 Eric L. Michelsen. All rights reserved.


Probably, most of what you've heard about Quantum Mechanics is wrong

- Reality is *not* subjective
 - We *don't* get to choose our own reality
- But some of what you've heard is true:
 - Particles can have components in two (or more) places at once
 - Each component evolves in time as if it were the whole particle (the whole mass, whole charge, whole spin)
 - We'll come back to this soon
- Even most physicists get it wrong
 - We need to update our physics education
 - More and more physicists are coming out to "set the record straight" on QM
- Beware of the Internet
 - Especially on technical subjects like physics
 - The most reliable sites are professors'



Who am I?

- Background
 - PhD Physics UCSD, June 2010
 - Research: Lunar Laser Ranging
 - Study of gravity, aka General Relativity
 - My book on quantum mechanics was published in February, 2014, by Springer
 - Quirky Quantum Concepts
 - It's on Amazon!
 - It's a technical book for serious scientists
 - Software Engineering
 - BSEE: electrical engineer for a few decades
 - Integrated Circuits: circuit & device design
 - Digital Signal Processing
 - Interests:
 - Human Rights
 - Medical physics
 - Quantum Field Theory
 - Scuba diving (again someday)

Outline

- Science Talk
- Prelude to Quantum Mechanics
 - Probabilistic reality
 - Superpositions
 - Interference
- The "measurement problem"
- Entanglement
- Motivation for decoherence
- Decoherence overview
- Complementarity?
 - The four distractions
- Consistency, and role of the observer
- Speculation on free will

Thanks to Dr. Eve Armstrong for very helpful comments and suggestions

The purpose of physics is to relate mathematics to reality

Single Stage Fehskens-Malewicki Equations:

burnout velocity: $v_b = \sqrt{\frac{F - mg}{k}} \tanh \left[\frac{t_b}{m} \sqrt{k(F - mg)} \right]$

burnout altitude:

$$y_{b} = \frac{m}{k} \ln \left\{ \cosh \left[\frac{t_{b}}{m} \sqrt{k(F - mg)} \right] \right\}$$

coast altitude:

$$y_{c} = \frac{m_{b}}{2k} \ln \left[\frac{k v_{b}^{2}}{m_{b} g} + 1 \right]$$

coast time:

$$\mathbf{t}_{c} = \sqrt{\frac{\mathbf{m}_{b}}{\mathbf{g} \, \mathbf{k}}} \, \, \mathbf{tan}^{-1} \left[\mathbf{v}_{b} \, \sqrt{\frac{\mathbf{k}}{\mathbf{g} \, \mathbf{m}_{b}}} \, \right]$$

 $\mathbf{k} = \frac{1}{2} \boldsymbol{\rho} \mathbf{C}_D \mathbf{A}$

ho = atmospheric density

 $C_D = drag coefficient$

A = frontal area

 $t_{\rm h}={
m burn\,time}$

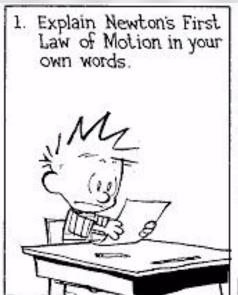
= average thrust

m = average thrusting mass

 $\mathbf{m}_{\mathsf{h}} = \mathsf{burnout}\,\mathsf{mass}$

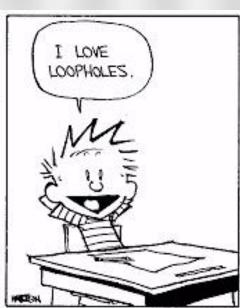
g = acceleration due to gravity

Return



$$-c^{2} \frac{dv}{\left(c^{2}-v^{2}\right)\left(\left(1-\gamma_{e}x\right)v+\gamma_{e}xe\right)} = \frac{dm}{m}$$

dm < 0where


Physics is not math

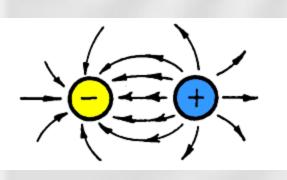
- Physics includes math ...
 - But we don't hide behind it
 - Without a conceptual understanding, math is gibberish

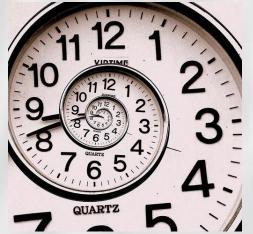
Fundamental (macroscopic) measurable quantities

- How many fundamental (macroscopic) measurable quantities are there?
 - What are they?

Four fundamental (macroscopic)

quantities


• MKSA


• distance: meter, m

• mass: kilogram, kg

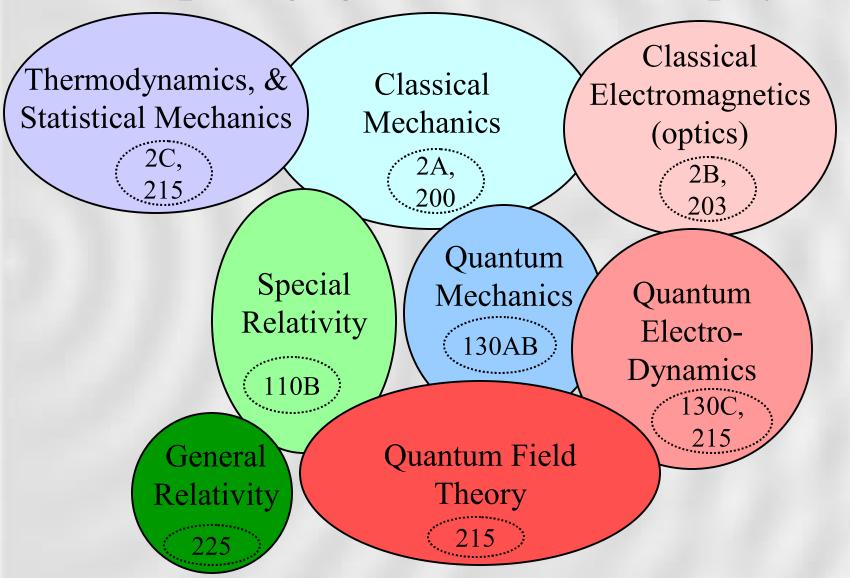
• time: second, s

• charge: ampere => coulomb, C

Science goals

Data for heating crystals			
15-16	Trial	Trial	Trial 3
Alum S=D	4 4 4	4 4 4 4	4 4 4 4 4
Avg= 0.153 Sa/+ S=0.352	0 0	0 0 0	0 0 0
Augus Sugar So 1,246	3.5 3	3.5 3	3.5 3

- "Now in the further development of science, we want more than just a formula.
 - First we have an observation,
 - Then we have numbers that we measure,
 - Then we have a law which summarizes all the numbers.
- But the real *glory* of science is that we can find a way of thinking such that the law is *evident*." Richard Feynman, Feynman Lectures on Physics, Volume 1, p26-3.

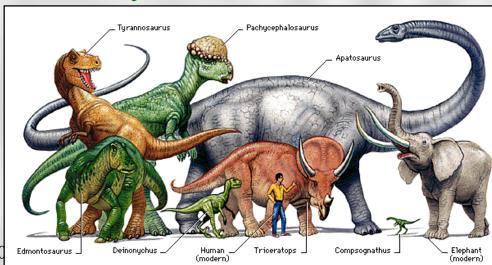


5/27/2014

SD Philosophy Forum, Copyright 2014 Eric L. Michelsen. All rights reserved.

The pedagogical structure of physics

The language of science (1)


- Speculation: a guess
 - Possibly hinted at by evidence, but not well supported
 - The sky is blue because light reflected from the blue ocean illuminates it (not true)
 - Some dinosaurs had green skin (unknown)

Every scientific fact and theory started as a

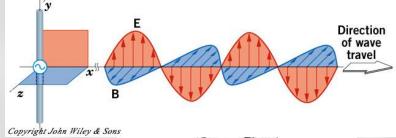
speculation

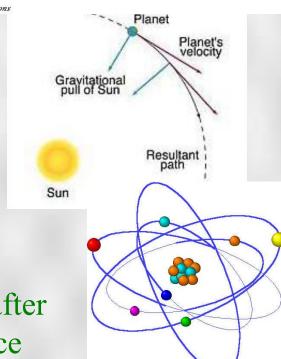
The Ocean Is Big

And The Sky Is Blue

The language of science (2)

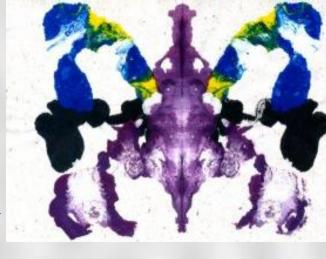
- Fact: A small piece of information
- Backed by solid evidence
 - In hard science, usually repeatable evidence
 - The sky is blue
 - Copper is a good conductor of electricity

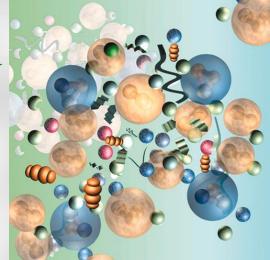


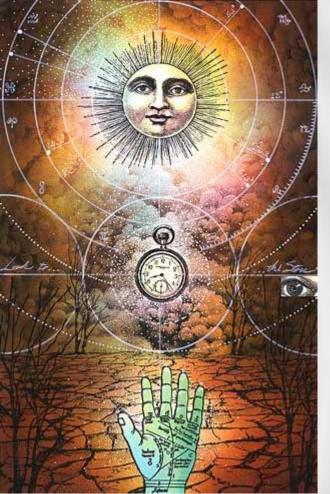

- Despite arguments that "nothing can be proved 100%"
- If someone disputes a fact, it is still a fact
 - I say the earth is flat
 - Does that mean there is a "debate" about the earth's shape?
- "If a thousand people say a foolish thing, it is still a foolish thing."

The language of science (3)

- **Theory**: The highest level of scientific achievement
 - A *quantitative*, *predictive*, *testable* model which unifies and relates a body of facts
 - Every scientific theory was, at one time, *not* generally accepted
 - A theory becomes accepted science *only* after being supported by overwhelming evidence
 - Not a speculation
 - Atomic theory of matter
 - Maxwell's electromagnetic theory
 - Newton's theory of gravity
 - Germ theory of disease



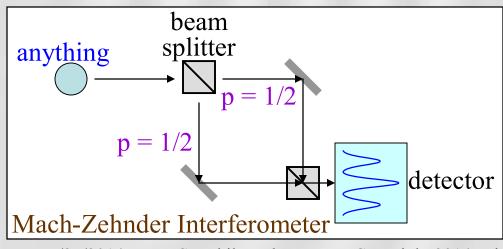


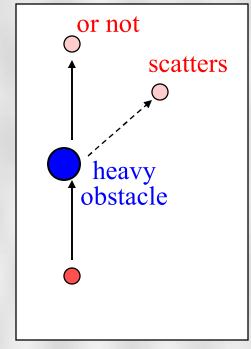


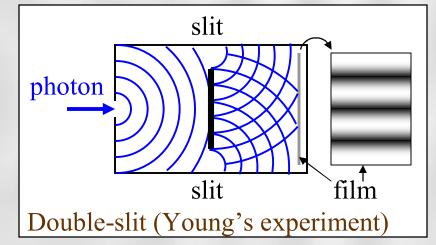
"Interpretations" are not science

- Asking "What is the meaning of the science?" is *not* a scientific question
 - Perhaps it is a philosophical question
- Interpretations are rooted, essentially by definition, in our everyday experience
 - There is no reason to expect that the world beyond our experience should be explainable by our experience
- As a scientist, I don't have an "interpretation" of quantum mechanics
 - It is what it is: the most accurate physical theory ever developed
 - I don't have to like it

What is quantum mechanics?

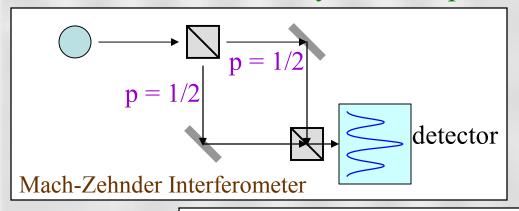

- Is it mystic?
- Or is it science?

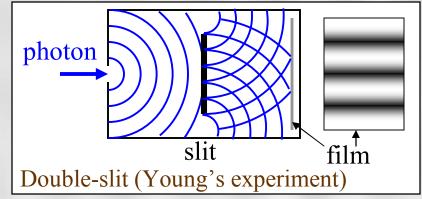


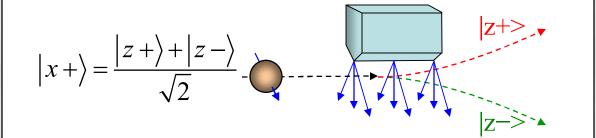


Reality is probabilistic

- The *exact* same setup, measured multiple times, produces different results
- If two possible outcomes never cross paths, they are indistinguishable from a coin toss
 - A particle scatters, or it doesn't
 - Classical probability (nothing weird)
- If two possible outcomes are recombined, we get **interference**
 - Even from one particle at a time
 - Everything is a wave

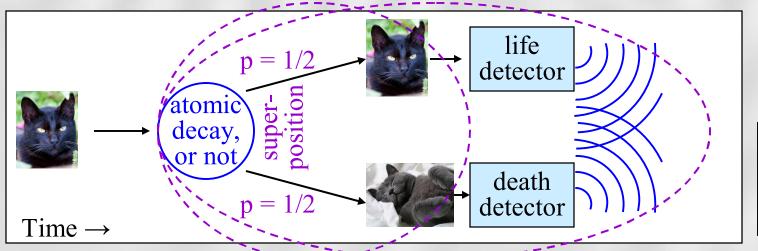






Superpositions: not classical probabilities

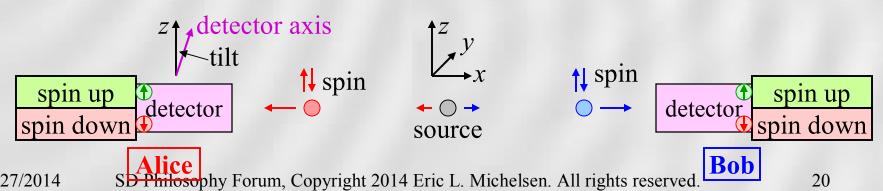
- The particle "divides" and pieces takes both paths
 - Each component gets a "weight," or fraction.
 - Say, $\frac{1}{2}$ and $\frac{1}{2}$, but it could be 1/10 and 9/10, etc.
 - Each component behaves as if it were the *whole* particle (whole mass, whole charge, whole spin, ...)
 - In the end, only one component is observed



What's up with that cat?

- Cat in a box, with an unstable atom rigged to poison
 - If the atom decays, the cat is dead
 - If the atom remains intact, the cat is alive
 - After one half-life the atom is in a *superposition* of ½ decayed and ½ intact
 - It is *not* a classical probability of decay: *not* "decayed" *or* "intact"
 - Implies the cat is in a superposition of dead and alive

This is an example of entanglement


The "measurement problem"

- Why don't we ever measure superpositions?
 - What would that even mean?
 - We always measure definite values
- For decades, it's been said,
 "Measurement 'collapses' the wave-function (quantum state)."
 - Meaning that a measurement eliminates a superposition in favor of a more-definite state
 - What, exactly, is a "measurement"?

Entanglement

- A spin zero source emits 2 particles:
 - One is up (positive), the other is down (negative)
 - Alice & Bob each measure spin, & agree the sum is zero (every time)
- Alice's measuring device gets tilted, introducing an error
 - Therefore, sometimes their measurements are the same (both up or both down)
 - Now her device tilts 90° off: she is wrong ½ the time
- Now Bob's device also gets tilted: He is also wrong ½ the time
 - 1/4 of the time, they're both right, + 1/4 of the time, they're both wrong
 - Classically, the net effect: the measurements add to 0 half the time
- In the actual experiment: the spins always measure the same, they never add to zero
 - As predicted by quantum mechanics, no matter how far apart are Alice and Bob
 - Quantum mechanics is right; classical mechanics is wrong
- Entanglement is "spooky action at a distance"
 - Reality is either nonlocal, or noncausal
 - In light of relativity, those are actually the same thing

Decoherence: motivation

- Resolve the measurement problem
 - Where is the transition from quantum to classical?
 - No observed macroscopic superpositions
- What is a measurement?
 - I.e., when does the quantum state collapse?
 - Can a cat collapse it?
- This is now essentially resolved (as of 1980s)

It's time to bring QM into the modern era

- QM is ~90 years old
 - But it is still taught like the 1930s
 - Modern textbooks still ignore measurement theory
 - Worse, they still teach hand-wavy "collapse" without precise definitions
- A surprising amount of current *scientific* literature is devoted to "interpretations" of QM
 - A surprising amount of decoherence literature is defending basic scientific principles, such as predictions and testability
- Decoherence has been around since the 1980s
 - It has been surprisingly neglected
 - It's not that hard
 - For a quantum physicist, anyway

Decoherence overview

• The decoherence model explains everything from two principles:

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + V\psi$$

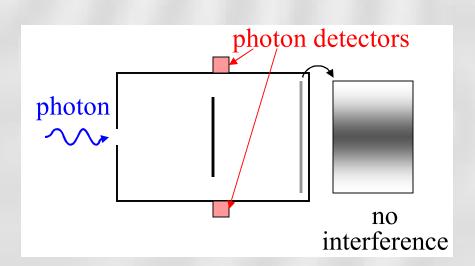
- Time evolution, according to the Schrödinger Equation
- "Mini-collapse" when a result is observed (by me!)
- IMHO my words
 - Decoherence is the simplest, most intuitive QM model
 - Most consistent with other laws of physics
 - It is correct: It predicts the outcomes of experiments
 - Much of the literature discussion around decoherence is meaningless
 - "Decoherence is wrong because it contradicts my preconceived notions of what reality should be like."

quantum state

Interference is the hallmark of quantum mechanics

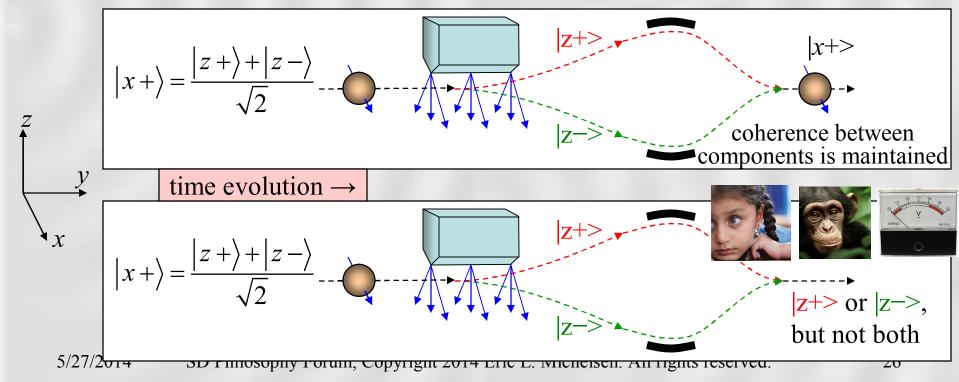
• If it interferes, it's quantum

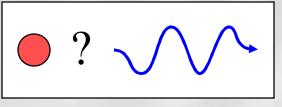
• If it doesn't, it's classical



- Quantum interference requires two things:
 - Recombining two components of the quantum state
 - Many "trials," possibly each of a single particle

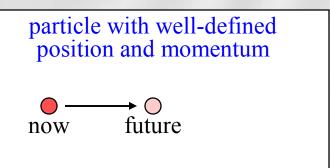
Which way did it go?

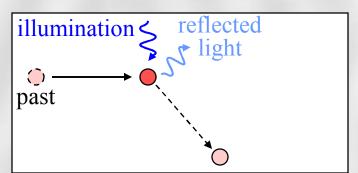

- If we try to see "which way" (welcher Weg) the photon went, we prevent interference
 - Only one photon detector triggers at a time
 - Suggests "complementarity:" it's either a wave, or a particle, but not both at the same time
 - But how does it know which to be?


Aside: it's not just interference

- It's phase coherence between components of any superposition
 - E.g., Stern-Gerlach is *not* a measurement
- Unless we look at the result
 - Or any other macroscopic device gets entangled with the result

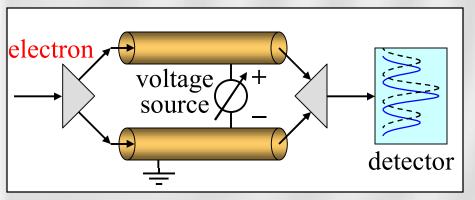
Ye olde complementarity (c. 1929)

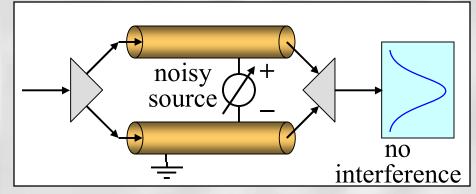

- Prevention of interference led to "Wave-particle duality," aka "complementarity"
 - Particles behave like either a wave or a particle, but not both
 - Which one depends on the experiment
- There are 4 completely different phenomena that have all been called examples of "complementarity" do not
 - Bohr microscope
 - "Fake" decoherence
 - Measurement entanglement
 - "Real" decoherence



(1) Bohr microscope

- Position-momentum uncertainty is from measurement clumsiness
 - Measurement "bumps" the particle out of a consistent state
 - Prevents an interference pattern
- I never liked this
 - Belies the nature of wave-functions
 - It's not: a particle has a well-defined momentum and position, but nature is mean, and won't let you know them both
 - It is: A particle cannot have a well-defined position and momentum
 - The error motivates a search for a "kinder, gentler" measuring device
 - Such a device exists, and disproves "clumsy measurement"! (More soon.)

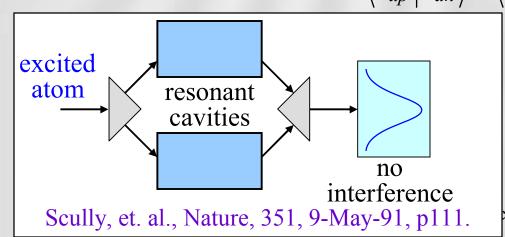




(2) "Fake" Decoherence

- Consider a 2-slit experiment where the energy of one path is controllable
 - Position of interference pattern is then controllable
- What if energy is uncontrollable and unrepeatable, i.e. **noise**?
 - Interference pattern moves randomly, washes out
- Uncontrolled and unrepeatable energy transfer leads to classical probabilities
 - Loss of coherence ~10⁻¹² s

(3) Measurement device entanglement

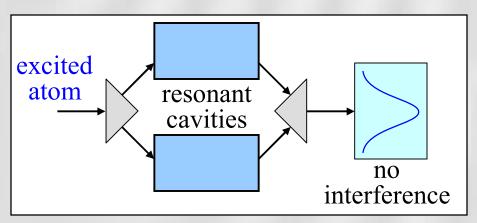

Excited atom radiates a photon into the cavities

$$|a_{up}\rangle + |a_{dn}\rangle \implies |a_{up}\rangle |\gamma_{up}\rangle + |a_{dn}\rangle |\gamma_{dn}\rangle$$
 entanglement!

- Is it a measurement?
- Does it cause collapse?

$$\Pr(x) = \left| \psi_{up}(x) \right| \gamma_{up} \rangle + \psi_{dn}(x) \left| \gamma_{dn} \right|^{2}$$
interference terms
$$= \psi_{up}^{*} \psi_{up} + \psi_{up}^{*} \psi_{dn} \left\langle \gamma_{up} \right| \gamma_{dn} \right\rangle + \psi_{dn}^{*} \psi_{up} \left\langle \gamma_{dn} \right| \gamma_{up} \right\rangle + \psi_{dn}^{*} \psi_{dn}$$

$$\rightarrow \text{no interference because } \left\langle \gamma_{up} \right| \gamma_{dn} \right\rangle = \left\langle \gamma_{dn} \right| \gamma_{up} \right\rangle = 0$$



- 1. The presence or absence of an observer is irrelevant.
 - 2. The non-overlap of the *photon* states is important.

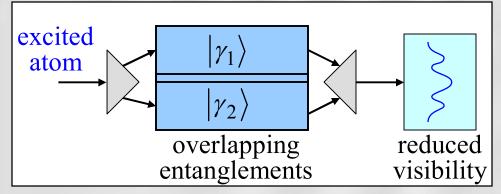
L. Michelsen. All rights reserved.

Measurement device entanglement (cont.)

- This is a kinder, gentler measurement
 - The radiated photon has insignificant effect on the atom's center-of-mass wave-function
 - Disproves the Bohr microscope "clumsy measurement" idea

QNDM: quantum non-demolition measurement

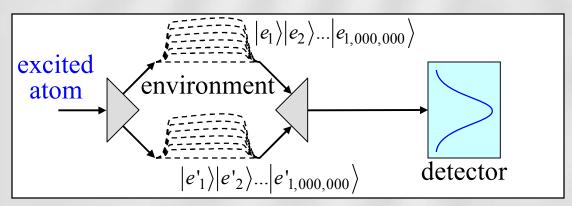
What if the entangled states overlap (i.e., are *not* orthogonal)?


- Then interference is possible
 - With reduced visibility (smaller wiggles)

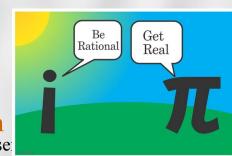
$$\Pr(x) = |sys(x)|^{2} = |\psi_{up}(x)|\gamma_{1}\rangle + |\psi_{dn}(x)|\gamma_{2}\rangle|^{2}$$

$$= |\psi_{up}^{*}\psi_{up}| + |\psi_{up}^{*}\psi_{dn}\langle\gamma_{1}|\gamma_{2}\rangle + |\psi_{dn}^{*}\psi_{up}\langle\gamma_{2}|\gamma_{1}\rangle + |\psi_{dn}^{*}\psi_{dn}\rangle$$

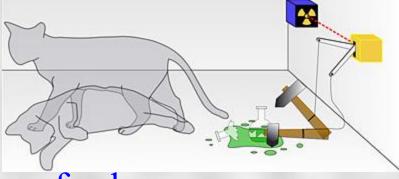
$$\rightarrow \text{interference because } |\langle\gamma_{1}|\gamma_{2}\rangle| = |\langle\gamma_{2}|\gamma_{1}\rangle| \neq 0$$


The overlap of the entangled states sets the *visibility* of any interference

(4) "Real" decoherence


- The two components of the split particle interact with their macroscopic environment
 - Evolving through a cascade of progressively more entanglement with time
 - Even though the environmental states have significant overlap
 - The product of millions of numbers $< 1 \approx 0$

$$\psi = \psi_{up} + \psi_{dn} \rightarrow \psi_{up} |e_1\rangle |e_2\rangle ... |e_{1,000,000}\rangle + \psi_{dn} |e_1\rangle |e_2\rangle ... |e_{1,000,000}\rangle$$
interference terms $\propto \langle e_1 | e_1\rangle \langle e_2 | e_2\rangle ... \langle e_{1,000,000} | e_{1,000,000}\rangle \approx 0$



"Real" decoherence: why we don't measure superpositions

- Real experiments are inevitably connected to their surrounding environment
- Macroscopic ones are connected to billions of particles ("subsystems") in the environment
 - This means they decohere on extremely short timescales, $\sim 10^{-18}$ s
- The decoherence model still requires a [mini]collapse:
 - Consistency: after I see a measurement, all other components of the superposition disappear (the wave function collapses)
 - In the decoherence model, this is the only "weird" phenomenon of quantum mechanics
 - The rest is just a deterministic time evolution of the quantum state according to the Schrödinger equation SD Philosophy Forum, Copyright 2014 Eric L. Michelsen. All rights rese

Total loss of coherence is equivalent to collapse

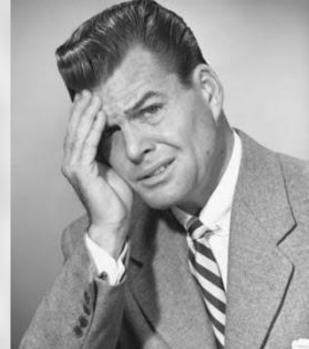
- It doesn't matter what causes loss of coherence (fake or real decoherence)
- Both total loss of coherence *and* (old-fashioned, mythical) collapse lead to *classical* probabilities
 - Equivalent to: the particle is in *one* definite state, but we just don't know which state it is
- But the collapse model has problems:
 - Cannot explain partial coherence (i.e., reduced visibility)
 - Collapse is binary: it happens or it doesn't
 - Decoherence is continuous: relative phase of components becomes smoothly more statistically diverse
 - Interference visibility smoothly drops to zero

Consistency and collapse

- The "consistency postulate" requires a collapse somewhere along the line
 - Once I observe a result, all other possible outcomes disappear: nonlinear (nonunitary?) collapse
 - Even in the decoherence model
- To allow for partial coherence, a physical model *must* defer the collapse to the last possible moment
 - All other time evolution simply follows the Schrodinger equation

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + V \psi - \frac{\text{quantum}}{\text{state}}$$

Observers are macroscopic


- When I look at a measurement device, my macroscopic body totally decoheres the possible measurement outcomes long before my brain can interpret the results
- Therefore, the decoherence model implies that "mini-collapse" can occur only *after* total decoherence
 - I.e., mini-collapse implies classical probabilities
 - This is more complete than old-fashioned collapse, because it connects the measurement all the way to the observer with just entanglement and the Schrödinger Equation
 - It is fully consistent with partial coherence

The role of the observer

- Observers have no say in outcomes
 - no control
 - no choice
- Reality is *not* subjective
 - Science works, even Quantum Mechanics
 - Science predicts future events based on current information
- Quantum Mechanics is probabilistic, but complies with calculable probabilities
- Observation by one person (of a detector) has no effect on measurements by any other observers
 - So far as I am concerned, you are just a big quantum blob

Quantum summary

- A **measurement** is *defined* to be irreversible (for all practical purposes)
 - Implies total loss of coherence
 - Classical probabilities
- The decoherence model is (IMHO) the simplest, most intuitive quantum model
 - Is just the Schrödinger Equation + mini-collapse
 - Eliminates any confusion about when is a measurement,

when is collapse, etc.

- I don't think "interpretations" of QM have any scientific basis
 - Angels on the head of a pin

Is quantum uncertainty an opening for free will?

- As a scientist, I don't talk about this much
 - To date, there is no scientific input on this question
 - "Free will" is a hard thing to measure
- In my view, quantum uncertainty might be a venue for free will
 - Free will is consistent with entanglement
 - Free will is different than so-called "hidden variables"
 - In fact, free will is consistent with all the laws of QM

