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Abstract

In this report, the research conducted on entanglement in

topological phases is detailed and summarized. This in-

cludes background developed and an explanation of the

structure of the code written it MATLAB to compute

various aspects of entanglement for topological systems.

Topological phases are generally those that cannot be de-

scribed by Landau symmetry-breaking, including the frac-

tional quantum Hall states (fQHE). From the reading, it

is found that the entanglement entropy (EE) and entangle-

ment spectrum (ES) are useful tools to characterize topo-

logical phases. Further, the code written is successful in

reproducing the results of several papers that calculate the

EE and ES.

1 Introduction

The organization of this report is as follows: �rst an

overview of topological phases, then a brief summary of

important and relevant aspects of entanglement, lastly fol-

lowed by examples and recent developments in addition to

my work so far.

2 Topological Phases

Examples include fractional quantum Hall states, chiral spin

states, and depending on precise de�nitions, topological in-

sulators, etc. Fractional quantum Hall states are the only

experimentally realized examples. They consist of a Gallium

Arsenide heterostructure. They cannot be characterized by

Landau symmetry-breaking. That is, the normal breaking

of symmetries in phases which distinguishes them from each

other is not applicable to these states of matter. Instead,

they are characterized by other properties, such as non-

Abelian geometric phase, fractional statistics and fractional

charge, and topological entanglement entropy. Though most

of the observed phases are Abelian, there are suspected to

be non-Abelian quasiparticles. The name comes from the

e�ective �eld theories that describe the low-energy chiral

spin states. These theories are actually topological quantum

�eld theories, which means they are invariant of the space-

time metric. Topological phases are interesting and rele-

vant because they are an indication that Landau symmetry-

breaking is incomplete. Previously, this symmetry breaking

description was thought to encompass all continuous phase

transitions and orders of matter. Another source of po-

tential for these phases of matter is topological quantum

computing. The idea is to employ a quasiparticle or exci-

tation of a topological phase that is non-Abelian and has

anyonic statistics. Braids are then made in spacetime with

the worldlines of these particles. Di�erent braids represent

di�erent logical operations and the advantage over regular

quantum computing is that topological quantum comput-

ing is resistant to local perturbations. That is, only the

topology of the braids matters for doing computations and

calculations.

3 Entanglement

The idea of entanglement was �rst discussed by Einstein,

Podolsky, and Rosen in the mid 1930s. However, the word

entanglement was not used until Schrodinger later on. They

presented it very di�erently than it is explained today, but

the idea is the same. In a quantum state in which there

is a superposition of states of multiple particles which are

separated, there are correlations in the system that are non-

local. Einstein, Podolsky, and Rosen initially concluded that

this meant quantum mechanics was incomplete, and that

some �hidden variable� existed that described the physics in

a local way. Later on, John Bell proved that this is incorrect,

and that no local, hidden variable theory can describe the

physics of quantum mechanics.

3.1 Schmidt decomposition

Schmidt decomposition is critical for investigating the en-

tanglement of a system. One generally observes the entan-

glement between subparts of the whole system. In order

to compute this entanglement, one has to write the system

in terms of tensor products of states from each part and

Schmidt decomposition allows for this. Schmidt decompo-

1



sition involves taking a partition of a Hilbert space, H into

to parts, HA and HB . Recall singular value decomposition:

take an M ×N matrix (real or complex) and it can be writ-

ten as UΣV ∗, where U is an M ×M unitary matrix, Σ is

a M × N rectangular, diagonal, non-negative real matrix,

and V is a N × N unitary matrix. We can (by singular

value decomposition applied to a matrix representation of

the space) write any element of H as |ψ〉 =
n∑
i=1

ρi |ui〉 ⊗ |vi〉,

where n is min (dimHA,dimHB) and ui, vi form orthogo-

nal bases for HA,HB and ρi non-negative constants. This is

relevant for entanglement in topological phases because we

will compute the entanglement between the two partitions

of the space. The partitions can be in real-space, orbital-

space, particle-space, and interpolations between them as

well.

3.2 Entanglement Entropy

The entanglement entropy is the most primitive tool with

which we can examine the degree of entanglement in a sys-

tem. It is based on the von Neumann entropy of quantum

mechanics, which is further rooted in the Gibbs entropy

from thermodynamics. The idea is to compute take a state

|ψ〉, and consider the density matrix, ρ = |ψ〉 〈ψ|. Then

calculate the reduced density matrix for one of the parti-

tions, either A or B, the result SA = SB . The von Neu-

mann entropy is then −Tr (ρA ln ρA). The functional form

is very clearly similar to the analogous term in thermody-

namics. For topological phases, a scaling law has been seen

to emerge in the computation of this quantity. The scaling

goes as SA = αL− γ+O
(
1
L

)
, where L is the distance scale

describing the physical boundary of the partition. There is

a term that goes as the boundary, terms that go to 0 as the

system becomes large (the thermodynamic limit), and lastly,

a term that is speci�cally topological, γ. This is the topolog-

ical entanglement entropy and characterizes some aspects of

topological phases.

3.3 Entanglement Spectrum

The next most sophisticated tool for examining entan-

glement in topological phases is the entanglement spec-

trum. We can write ρA from a Schmidt decomposition as

exp
(
− ξi2

)
and {ξi} is the entanglement spectrum. The idea

is to de�ne a pseudo-Hamiltonian, HA ≡ − log ρA, and then

the eigenvalues of this operator are pseudo-energy eigenval-

ues. When calculating the entanglement spectrum, there

are a few di�erent ways to partition H. We have the or-

bital cut (OP) which partitions the space based on momen-

tum, we have the real space cut (RS) which uses position

space to partition, we can also partition the Hilbert space

by simply labeling the particles of the system and splitting

them. The entanglement spectrum has been seen to reveal

more about topological phases than the entanglement en-

tropy alone. Li and Haldane asserted that it is natural to

consider this pseudo-Hamiltonian as that of a CFT describ-

ing the edge physics of the system. They asserted that the

multiplicities of the entanglement spectrum would match

the multiplicities of the energy spectrum of the CFT for the

edge.

4 Recent Developments

In the past several years, since the development of the en-

tanglement entropy and spectrum to investigate entangle-

ment in topological phases, research has tried to use the

entanglement spectrum to make predictions about the edge

physics of these states. Here we present some of the most

recent work, particularly the use of a real-space partition in

computing the entanglement spectrum.

4.1 Real-space entanglement spectrum of

QH systems (Dubail, Read, Rezayi)

They de�ne the entanglement spectrum in terms of the

Schmidt decomposition and discuss brie�y the di�erent pos-

sibilities for partitions. DRR claim that in the real space

partition there is locality along the cut, i.e. the correlations

are short-ranged near the partition. They also demonstrate

that this is not the case in OP, where the correlations are

long-ranged along the cut.

Next, the Schmidt decomposition on the sphere is set up.

Then, DRR show that for the ν = 1 QH state, the ES ap-

proaches the edge state spectrum, however the multiplicities

do not match (of the ES and the edge state).

Next, DRR conjecture an asymptotic scaling property: as

the number of particles in the system→∞, the set of ∆ξi =

ξi − ξ0 approach the energy levels of a Hamiltonian that is

the integral of a sum of local operators in a 1 + 1 dimen-

sional �eld theory on a circle for all ∆NA,∆L
A
z , where the

following are de�ned: ∆NA ≡ NA−NA0, ∆LAz = LAz −LAz0.
They note that in the simplest case the low-lying spectrum

should be a straight line.

5 Orbital partition for 1
3 Laughlin

state

The simplest examples in which to examine the topologi-

cal entanglement are those of the fractional quantum Hall
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states, speci�cally, the fermionic Laughlin states. For a �ll-

ing fraction of ν = 1
m , the Laughlin state for a single par-

ticle is zm√
2π2mm!

exp
(
− 1

4 |z|
2
)
. For N particles, we have

∝
∏
i<j

(zi − zj)m e
− 1

4

∑
i
|zi|2

. Consider �rst, N = 2 on a

spherical surface rather than a plane. The wavefunction can

be written as
(
a†1b

†
2 − a†2b

†
1

)3
=

[(
a†1

)3 (
b†2

)3
−

(
a†2

)3 (
b†1

)3
]
+

3

[(
a†1

)(
a†2

)2 (
b†1

)2 (
b†2

)
−

(
a†2

)(
a†1

)2 (
b†2

)2 (
b†1

)]
. In terms of

particle notation, this is equivalent to |−3, 3〉+ 3 |−1, 1〉 up
to factors from the Schwinger boson operators. In this case

the factors are such that the coe�cients in front of each

term are equivalent. So we can write the density matrix as

a diagonal 2× 2 with entries 1
2 .

Fig. 1: Entanglement entropy for various partitions of

Laughlin states for m = 3, 5 and N = 5, 4

6 In Progress

6.1 Numerics

I have written code in MATLAB that is able to compute

the entanglement spectra and entropy for various topologi-

cal states of matter. The code is included as an appendix

to this report. The code is written as several functions and

can currently compute the entropy and spectra for Laughlin

states 1
m on the plane and on the sphere. The code takes as

inputs for the Laughlin states the value ofm and the number

of particles, N . Currently the code can implement an orbital

partition. The analytic forms of the states are computed and

then reduced from the naturally anti-symmetrized form to

accomodate the particle notation. Then it is converted to

an orbital notation with 1 or 0 whether the orbital is occu-

pied or not. Next the reduced density matrix is computed

depending on the partition speci�ed. For su�ciently high

m and N , there are non-diagonal terms in the reduced den-

sity matrix, so it must be diagonalized. Presently the code

implements the native MATLAB diagonalization, but this

may be modi�ed in the future for e�ciency.

Plots have been made to compare the results of the code to

previous work by Haque, et al. They show that the code

is likely just as robust when it comes to computing these

entropies and spectra. However, for more than N = 5 parti-

cles, there is signi�cant computing power necessary to deter-

mine the Laughlin states, so a more abstract method using

characters of matrix representations of the symmetric group

are employed. This code does not implement that yet. The

next steps include converting the code from MATLAB to a

language like C++ or Fortran. Furthermore, the code will

be adapted to accommodate more than the Laughlin states

and for computing systems with more than N = 5 particles.
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8 Appendix: MATLAB code

8.1 Entanglement Entropy calculation

8.2 Convert from particle to orbital notation
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8.3 Reduced density matrix
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8.4 Functional form to state notation
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8.5 Compute polynomial expansion of Laughlin state
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