
ENVI Version 4.3
July, 2006 Edition
Copyright © ITT VIsual Information Solutions
All Rights Reserved

ENVI
Programmer’s
Guide

20PRG43DOC

Restricted Rights Notice
The ENVI®, IDL®, ION Script™, ION Java™, ENVI Zoom™, ENVI DEM Extraction Module™, ENVI FLAASH Module™, ENVI NITF
Module™, and ENVI Intelligent Digitizer Plug-in™ software programs and the accompanying procedures, functions, and documentation
described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the restrictions stated in the license
agreement. ITT Visual Information Solutions reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty
ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the license
agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any others
resulting from use of the ENVI, ENVI Zoom, IDL, or ION software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to reproduce this
particular document provided such copies are for your use only and are not sold or distributed to third parties. All such copies must contain
the title page and this notice page in their entirety.

This software and its associated documentation are subject to the controls of the Export Administration Regulations (EAR). It has been
determined that this software is classified as EAR99 under U.S. Export Control laws and regulations, and may not be re-transferred to any
destination expressly prohibited by U.S. laws and regulations. The recipient is responsible for ensuring compliance to all applicable U.S.
Export Control laws and regulations.

Acknowledgments
ENVI® and IDL® are registered trademarks of ITT Industries, registered in the United States Patent and Trademark Office, for the computer program
described herein. ION™, ION Script™, ION Java™, ENVI Zoom™, EZ, Dancing Pixels, Pixel Purity Index, PPI, n-Dimensional Visualizer, Spectral
Analyst, Spectral Feature Fitting, SFF, Mixture-Tuned Matched Filtering, MTMF, 3D SurfaceView™, Band Math, Spectral Math, ENVI Extension, Empirical
Flat Field Optimal Reflectance Transformation (EFFORT), Virtual Mosaic, ENVI DEM Extraction Module™, ENVI FLAASH Module™, ENVI NITF
Module™, and ENVI Intelligent Digitizer Plug-in™ are trademarks of ITT Visual Information Solutions.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001 The Board of Trustees of the University of Illinois. All rights
reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All
rights reserved.

CDF Library. Copyright © 2002 National Space Science Data Center, NASA/Goddard Space Flight Center.

NetCDF Library. Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996 Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004 Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, Inc., 1991-2003.

BandMax®. Copyright © 2003 The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835. Foreign
Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which Kodak has a commercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

MODTRAN is licensed from the United States of America under U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.

FLAASH is licensed from Spectral Sciences, Inc. under a U.S. Patent Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (http://www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Overview .. 11
About This Guide ... 12
Extending ENVI ... 13

Band and Spectral Math User Functions .. 13
Batch Mode .. 13
User Functions ... 13
ENVI Menu Files ... 14
Interactive User Routines ... 14
Compiling ... 14
Custom File Input ... 14
Toggle Catch .. 15

Introduction to ENVI Programming ... 16
Library Routines .. 16
ENVI Save Files ... 16
Differences in File I/O Between ENVI and IDL ... 16
The ENVI and IDL Library Directories ... 17
Common Keywords for ENVI Library Routines ... 17

Band and Spectral Math User Functions .. 19
Introduction .. 20
Band Math .. 21

Writing Band Math User Functions ... 21
Compiling Band Math User Functions .. 21
Examples .. 22
ENVI Programmer’s Guide 5

6

Spectral Math .. 26
Writing Spectral Math User Functions .. 26
Compiling Spectral Math User Functions .. 26
Examples .. 26

Batch Mode .. 31
Batch Mode ... 32

Hybrid Batch Mode .. 32
Initiating Batch Mode ... 33
Exiting Batch Mode .. 35
Writing Batch Mode Routines .. 36

Using ENVI Library Routines in IDL Programs ... 36
Using ENVI Recording to Write Batch Code .. 37

Message Logging in Batch Mode ... 39
Using the Batch Mode Log File ... 39

Helpful Tips for Batch Mode .. 40
Making a Shortcut for Initiating Batch Mode .. 40

Examples of ENVI Batch Mode Routines .. 42
Example: File Statistics (Non-Interactive) ... 42
Example: Saturation Stretch (Non-Interactive) .. 43

User Functions .. 47
Introduction .. 48
User Functions .. 49
Modifying the ENVI Menus ... 50

Working with the Menu Files .. 50
Example: Writing a Simple User Function .. 52

Adding Widgets to User Functions .. 55
Compound Widgets .. 56

WIDGET_EDIT ... 56
WIDGET_GEO .. 56
WIDGET_MAP ... 57
WIDGET_MENU .. 57
WIDGET_MULTI ... 58
WIDGET_OUTF ... 58
WIDGET_OUTFM .. 59
WIDGET_PARAM .. 59
WIDGET_PMENU .. 59
WIDGET_RGB .. 60
WIDGET_SLABEL ... 60
WIDGET_SLIST ... 61
WIDGET_SSLIDER .. 61
WIDGET_STRING ... 61
WIDGET_SUBSET ... 62
Contents ENVI Programmer’s Guide

7

WIDGET_TOGGLE .. 62
Auto-Managed Widget Events ... 63

WIDGET_AUTO_BASE ... 63
AUTO_WID_MNG ... 63

Trapping Errors in User Functions ... 67
Input/Output Error Handling .. 67
Using CATCH for Unexpected Non-Input/Output Errors ... 68

Using Processing Routines and Tiling .. 69
Tiled Processing Routines .. 70
Non-Tiled Processing Routines ... 78
Processing Status Report .. 80

Adapting User Functions for ENVI .. 82
Using FORWARD_FUNCTION or COMPILE_OPT STRICTARR 82
Using RESOLVE_ALL to Find and Compile Dependent Routines 82
Creating a Save File ... 82

Programming Tools .. 85
Introduction .. 86
Plotting .. 87

Example: Plotting Data .. 87
Creating Vector Plot Symbols .. 88

Reports .. 90
Example: Creating a Report ... 90

RGB Color Triplets .. 91
Example: Getting RGB Color Values .. 91

File Information .. 92
Example: Basic Image Information ... 92
Example: Map Information .. 92

Managing Files ... 94
ENVI_PICKFILE ... 94
ENVI_SELECT ... 95
ENVI_OPEN_FILE ... 95
ENVI_FILE_MNG .. 96
ENVI_GET_FILE_IDS ... 96
Example: Choosing Files Interactively .. 96

Accessing Image Data .. 97
ENVI_GET_DATA ... 97
ENVI_GET_SLICE ... 97

Creating ENVI Format Files ... 98
Saving Image Data to Memory .. 98
Saving Image Data to Disk .. 98
Creating New Files from Existing ENVI Files .. 98
ENVI Programmer’s Guide Contents

8

Interactive User Routines ... 101
Introduction .. 102
Plot Functions ... 103

Example: Plot Function .. 104
Spectral Analyst Functions ... 105

Example: Spectral Analyst Function .. 106
User-Defined Map Projection Types .. 108

Example: User-Defined Map Projection .. 109
User-Defined Units ... 111
User-Defined RPC Reader .. 112

Example: User-Defined RPC Reader ... 114
User Move Routines ... 116

User-Defined Move Routines .. 116
Example: Simple User-Defined Move Routine ... 117
Example: Widget User-Defined Move Routine ... 117
Example: User-Defined Motion Routine ... 119

Custom File Input .. 121
Types of Image Storage .. 122
Parsing Image File Headers .. 123

Example: Parsing a Keyword/Value Header ... 123
Example: Parsing a Positional Header ... 124

Custom File Readers ... 125
Spatial Read Routines ... 126

Example: Unsigned Integer Spatial Reader ... 126
Spectral Read Routines ... 128

Example: Unsigned Integer Spectral Reader ... 128

Additional Topics in ENVI Programming .. 131
Coordinate Systems in ENVI ... 132

File Coordinates ... 132
Image (Pixel) Coordinates ... 132
XSTART and YSTART ... 132

Regions of Interest .. 134
Processing with ROIs ... 134
Selecting ROIs ... 135
Using ROI Data .. 137
Using ROI DIMS Pointers ... 139
Using ROI Addresses ... 140

Using Endmember Collection Widgets .. 142
Working with Display Groups .. 144

DISP_GET_LOCATION ... 144
DISP_GOTO .. 144
ENVI_CLOSE_DISPLAY ... 144
Contents ENVI Programmer’s Guide

9

ENVI_DISP_QUERY .. 144
ENVI_GET_IMAGE ... 145

ENVI Installation Components .. 146
ENVI Subdirectories .. 146
The Menu Directory ... 147
The Map_Proj Directory .. 147

Index .. 149
ENVI Programmer’s Guide Contents

10
Contents ENVI Programmer’s Guide

Chapter 1

Overview
This chapter covers the following topics:
About This Guide . 12
Extending ENVI . 13

Introduction to ENVI Programming 16
ENVI Programmer’s Guide 11

12 Chapter 1: Overview
About This Guide

The ENVI Programmer’s Guide provides sample code and instruction on programming in
ENVI. This guide is intended as a supplement to the following guides:

• ENVI Help

• ENVI Reference Guide

• IDL Reference Guide

In order to program in ENVI, you must have an ENVI + IDL software license and
installation. ENVI + IDL provides complete access to all IDL functions, therefore allowing
you to customize ENVI. You can write user functions and batch mode routines, and access
the ENVI command line using the ENVI + IDL package. For more information, see the ENVI
Installation and Licensing Guide.
About This Guide ENVI Programmer’s Guide

Chapter 1: Overview 13
Extending ENVI

The term “extending ENVI” has a broad meaning and covers a variety of customizations.
Whether you are creating simple enhancements or large-scale complex additions, you will
benefit from understanding the programming concepts and tools used in ENVI.

Common ENVI extensions include user functions that incorporate the following:

• Band Math and Spectral Math operations

• Batch mode routines

• Spatial, spectral, or region of interest (ROI) processing

• Custom file input methods

• Report and plotting tools.

Many ENVI library routines are available to help you write custom routines while
maintaining the same look-and-feel as ENVI. This manual provides several interactive
examples and sample routines to help you understand and develop custom routines.

Note
You need ENVI + IDL to use the ENVI command line and programming extensibility.

Band and Spectral Math User Functions

You can enter most Band Math and Spectral Math expressions directly in ENVI’s Band Math
and Spectral Math dialogs, respectively. Or, you can write user functions to handle the data
input, output, and user interfaces. With Band Math, you can input data from any bands (or a
file), process the data, and output a band. Spectral Math allows you to input spectra from a
plot or file, process them, and output a spectrum. When writing Band Math or Spectral Math
user functions, you do not need to make menu changes, create parameter widgets, or perform
I/O as you would with an ENVI library routine. You only need to provide the processing
calculation within your function. See “Band and Spectral Math User Functions” on page 19
for more information.

Batch Mode

Performing a linear sequence of ENVI processing tasks in a non-interactive manner is called
batch mode. You can write a batch mode routine (an IDL program) and call it from the ENVI
menu system to perform the tasks, or you can start batch mode from the IDL command line.
Batch mode uses the ENVI_DOIT library routine, which provides the processing portion of a
user function without requiring any user interaction. See “Batch Mode” on page 31 for more
information.

User Functions

User functions are programs you write in IDL, C, Fortran, or another other high-level
language, that perform a specific ENVI processing task. You can integrate them into ENVI
and run them from the ENVI menu system. User functions get input data from ENVI and
enter results directly into ENVI. Also, ENVI provides a set of library routines and
ENVI Programmer’s Guide Extending ENVI

14 Chapter 1: Overview
programming tools written in IDL to handle input, output, plotting, reports, and file
management. You can use many of the ENVI library routines (such as classification) in user
functions or batch mode routines. ENVI compound widgets simplify the process of writing
widget interfaces, and they give user functions the same look-and-feel as ENVI. See “User
Functions” on page 49 and “Programming Tools” on page 85 for more information.

ENVI Menu Files

The ENVI main menu bar (defined by envi.men) and Display group menu bar (defined by
display.men) are configurable items located in the menu subdirectory of the ENVI
installation. These two ASCII files outline the placement of menu buttons, pull-down menus,
and separators. They also define the procedure called when you select the menu item. You
can reposition menu items or add new items, depending on your needs and preferences. ENVI
does not distinguish between ENVI and user-event handlers, which ensures that user events
are easily integrated. See “User Functions” on page 49 for more information.

Interactive User Routines

Interactive user routines are processes that ENVI applies or calls automatically in a session.
You can supply additional routines to use along with the default methods in ENVI. You can
add interactive routines for plot functions, spectral analysis functions, and user-defined move
routines. See “Interactive User Routines” on page 101 for more information.

Compiling

After writing a custom routine (user function, interactive user routine, or custom file reader),
you should place the resulting .pro or .sav file in the save_add directory of your ENVI
installation. This allows the routine to be automatically compiled or restored when ENVI is
started. Use only lowercase names (including extensions) for files placed in the save_add
directory. You can change the location of the save_add directory, as desired, in your ENVI
preferences or configuration file.

As an alternative, you can compile .pro files within ENVI only if you have ENVI + IDL, by
selecting File → Compile IDL Module from the ENVI main menu bar. This allows you to
debug the routine during development. If you have standalone ENVI, you must use a
compiled (.sav) file to add a user function to ENVI. See “Adapting User Functions for
ENVI” on page 82 for more information.

Custom File Input

You can write a custom file input routine to open and read your data format on-the-fly. When
opening an unsupported file format automatically (without prompting for the file
information), the input routine parses the file header and places the bands in the Available
Bands List. Custom readers can access data stored in unsupported storage formats on-the-fly
in ENVI, without converting to an ENVI format. See “Custom File Input” on page 121 for
more information.
Extending ENVI ENVI Programmer’s Guide

Chapter 1: Overview 15
Toggle Catch

When developing user functions, you may find it useful to disable the mechanism ENVI uses
to catch errors. Displaying the catch mechanism causes ENVI to halt execution at the error
and allows the routine’s variables to be examined. The error message is printed in the IDL log
window, and variables can be examined using the ENVI command line.

See “ENVI_TOGGLE_CATCH” in the ENVI Reference Guide for a full list of keywords and
example usage.
ENVI Programmer’s Guide Extending ENVI

16 Chapter 1: Overview
Introduction to ENVI Programming

Library Routines

Library routines are IDL-based functions and procedures that you call from an IDL or ENVI
command line (or incorporate into a user function or batch mode routine) that encompass
nearly all of the functionality in ENVI. For example, the library routine MATH_DOIT lets
you perform Band Math on a spatial data set, just like you would by selecting Basic Tools →
Band Math from the ENVI main menu bar. The ENVI Reference Guide contains a complete
index and full reference page for each library routine.

Most of ENVI’s library routines require user interaction. When writing your own code to call
ENVI library routines, you must explicitly handle all aspects of a library routine. As a result,
most of the ENVI library routines require many more keywords than a typical IDL routine.
Because so much information often must be passed into an ENVI library routine, they
typically use keywords instead of positional parameters, to prevent you from having to pass
information in a specific sequence.

For example, consider performing a simple maximum likelihood classification with your own
code. You could perform the same classification in batch mode using the routine ENVI_DOIT
with the CLASS_DOIT keyword. If you perform this classification interactively, you must
specify the name of the input file, spatial and spectral subsets for the input file, ROIs to use as
the training sets, whether the ROI data should be collected from an input file or another file, a
probability threshold, whether to generate rule images, and whether the results should be
saved to file or memory. You must specify these parameters in your code, using keywords to
ENVI_DOIT.

ENVI Save Files

ENVI is broken into several small IDL files called ENVI save files (.sav). These are binary
format files, stored in the save directory of your ENVI installation, that contain ENVI library
routines and internal variables required to run ENVI.

On a Windows PC, save files are typically in the following location, where xx is the ENVI
version:

c:\RSI\IDLxx\products\ENVIxx\save

On a Unix platform, save files are typically in the following location:

/usr/local/rsi/idl_x.x/products/envi_x.x/save.

When you start ENVI, only a small subset of these save files that enable core functionality are
restored.

If you have standalone ENVI (not ENVI + IDL), you must create and compile a save file in
order to add a user function to ENVI. See “Creating a Save File” on page 82 for more
information.

Differences in File I/O Between ENVI and IDL

File input/output (I/O) for ENVI programming differs significantly from IDL programming.
In IDL, file I/O requires you to obtain a logical unit number (LUN) for the file and to use IDL
Introduction to ENVI Programming ENVI Programmer’s Guide

Chapter 1: Overview 17
procedures such as OPENR, READU, OPENW, and WRITEU to read from and write to the
file. In contrast, all file I/O for the ENVI library routines is controlled internally, so you never
need to obtain an LUN. Instead, all ENVI library routines require you to specify the input file
by a unique file ID (FID). The FID is essentially a pointer to the data file, but it is not an
LUN. When a file needs to be accessed, ENVI internally obtains an LUN for the file, reads or
writes the required data, and then frees the LUN. Thus, ENVI does not consume or reserve
any LUNs. This method of file I/O allows you to open an unlimited number of files in ENVI
simultaneously, while IDL only provides 128 LUNs.

Instead of using OPENR to open a file, ENVI provides several different types of library
routines for opening files. Each of these routines returns an FID for the file that was opened.
The FID is then passed to the ENVI library routine that needs to access the data. ENVI also
provides routines that read data from the file into an IDL array that you can use when you
need direct access to the data. Examples include ENVI_GET_DATA (to read spatial image
data), ENVI_GET_SLICE (to read a spectral slice of an image), and ENVI_GET_TILE (to
read a large image using tiling). The routine ENVI_GET_IMAGE is further used to retrieve
image data from a display group. In a similar fashion, when the results of an ENVI library
routine include an output image—whether saved to disk or memory—the ENVI routine
returns the FID for the result.

The ENVI and IDL Library Directories

ENVI and IDL both have a library directory called lib. The purpose of these two directories
is quite different, so it is important to choose the right one when saving your procedure files.

• The ENVI lib directory contains the IDL code used for some of ENVI’s routines. The
ENVI developers provided these files as examples. However, they are not actually
used by ENVI. So, if you edit the code in one of these files, running the corresponding
program from the ENVI menu system will not reflect the changes you made. The ENVI
lib directory is also not in IDL’s default path. It is directly under the main ENVI
directory. On a Windows platform, lib is typically in the following location, where
xx is your current version of IDL, and yy is your current version of ENVI:

X:\RSI\IDLxx\products\ENVIyy\lib

• The IDL lib directory, on the other hand, contains procedure files used by IDL. For
example, the common IDL function CONGRID (which resizes an array) is built into
IDL, but it is written in IDL and stored in IDL’s lib directory. Thus, the IDL lib
directory is always in IDL’s default path and is within the main IDL directory. On a
Windows platform, lib is typically in the following location:

X:\RSI\IDLxx\lib

You can edit IDL’s path to include a new directory, but IDL always locates any file saved in
its lib directory (without any special editing of the IDL path).

Common Keywords for ENVI Library Routines

Several keywords are common to nearly every ENVI library routine. These keywords control
basic file input and output for processing. See “Common Keywords” in the ENVI Reference
Guide for a list and definitions.
ENVI Programmer’s Guide Introduction to ENVI Programming

18 Chapter 1: Overview
Introduction to ENVI Programming ENVI Programmer’s Guide

Chapter 2

Band and Spectral Math
User Functions
This chapter covers the following topics:
Introduction . 20
Band Math . 21

Spectral Math . 26
ENVI Programmer’s Guide 19

20 Chapter 2: Band and Spectral Math User Functions
Introduction

Band Math and Spectral Math provide some of the simplest programming interfaces for
processing spatial and spectral data, respectively. Math functions do not require you to
change menus, create processing parameter widgets, perform I/O, or other items necessary in
a library routine. Instead, ENVI does all the work so that you can concentrate on the
processing function.
Introduction ENVI Programmer’s Guide

Chapter 2: Band and Spectral Math User Functions 21
Band Math

ENVI’s Band Math function accesses data spatially by mapping user-defined variables to
bands or files. You can use ENVI’s Band Math dialog to define the bands or files used as
input, to call a user Band Math function, and to write the result to a file or memory. See
“Band Math” in ENVI Help for complete details about writing proper Band Math
expressions.

Writing Band Math User Functions

Since ENVI + IDL gives you access to IDL functionality, you can use the power of built-in
IDL features, IDL user functions, or your own routines to perform custom Band Math
operations. The only requirement for these functions is that they accept one or more image
arrays as input and that they output a single-band, 2D array with the same dimensions as the
input bands.

Band Math user functions are simple to write and execute as Band Math expressions. For
example, to execute a function called BM_RATIO with two input bands, enter the following
in the Enter an expression field of the Band Math dialog:

bm_ratio(b1, b2)

The function declaration for this routine is as follows:

FUNCTION bm_ratio, b1, b2

The processing that takes place within the Band Math user function has the same constraints
as Band Math expressions. Input data are tiled; therefore, functions like min() and max()
are invalid since they return only the minimum or maximum of the current tile and not the
minimum or maximum of the input band.

The function accepts the input bands, processes the data, and returns the result. Functions
have the following model:

FUNCTION bm_func, b1, [b2,..., bn, parameters and keywords]
processing steps
RETURN, result

END

To be compatible with tiled processing, custom Band Math functions should avoid processing
that requires the entire band in memory at one time.

Compiling Band Math User Functions

Once the user function is complete, you should place the resulting .pro or .sav file in the
save_add directory. This allows the user function to be automatically compiled or restored
when ENVI is started.

As an alternative, you can compile .pro files within ENVI only if you have ENVI + IDL, by
selecting File → Compile IDL Module from the ENVI main menu bar. If you have
standalone ENVI, you must use a compiled (.sav) file to add a user function to ENVI. See
“Adapting User Functions for ENVI” on page 82 for more information.
ENVI Programmer’s Guide Band Math

22 Chapter 2: Band and Spectral Math User Functions
Examples

Following are simple examples of Band Math user functions. Note that these examples only
illustrate the process of executing your own custom functions. In most cases, you can apply
algorithms directly in the Band Math dialog without having to write a user function. These
examples assume you have ENVI + IDL.

Band Math User Function 1

The following example is a very simple user function that adds two bands.

1. Enter the following into a text editor and save the file as user_bm1.pro in the
save_add directory of your ENVI installation:

FUNCTION user_bm1, b1, b2
RETURN, b1 + b2

END

2. Start ENVI. From the ENVI main menu bar, select File → Open Image File and open
a multi-band image file. The Available Bands List appears.

3. From the ENVI main menu bar, select Basic Tools → Band Math. The Band Math
dialog appears. Type the following in the Enter an expression field.

user_bm1(b1, b2)

Click OK. The Variables to Bands Pairings dialog appears.

4. The variable B1 is highlighted by default. Map this variable to a specific band by
highlighting a band name in the Available Bands List in the Variables to Bands
Pairings dialog. Highlight the B2 variable and map it to another band in the Available
Bands List.

5. Select output to File or Memory and click OK. The output image appears in the
Available Bands List.

Band Math User Function 2

The following example is a user function that converts the data type of a variable to byte, then
inverts the values.

1. Enter the following into a text editor and save the file as user_bm2.pro in the
save_add directory of your ENVI installation:

FUNCTION user_bm2, b1
lut = 255 - BINDGEN(256)
b1 = BYTSCL(b1)
b1 = lut[b1]
RETURN, b1

END

2. Start ENVI. From the ENVI main menu bar, select File → Open Image File and open
an image file. The Available Bands List appears.

3. From the ENVI main menu bar, select Basic Tools → Band Math. The Band Math
dialog appears. Type the following in the Enter an expression field.

user_bm2(b1)
Band Math ENVI Programmer’s Guide

Chapter 2: Band and Spectral Math User Functions 23
Click OK. The Variables to Bands Pairings dialog appears.

4. The variable B1 is highlighted by default. Map this variable to a specific band by
highlighting a band name in the Available Bands List in the Variables to Bands
Pairings dialog.

5. Select output to File or Memory and click OK. The output image appears in the
Available Bands List.

Band Math User Function 3

The following example is a user function that replaces variable B1 with the values of variable
B2 at each B1 location that has a value of 0. This function is useful for taking a classification
image and replacing the unclassified pixels with those of another classification image.

1. Enter the following into a text editor and save the file as user_bm3.pro in the
save_add directory of your ENVI installation:

FUNCTION user_bm3, b1, b2
b1 = (b1 EQ 0)*b2 + (b1 NE 0)*b1
RETURN, b1

END

2. Start ENVI. From the ENVI main menu bar, select File → Open Image File and open
a multi-band image file. The Available Bands List appears.

3. From the ENVI main menu bar, select Basic Tools → Band Math. The Band Math
dialog appears. Type the following in the Enter an expression field:

user_bm3(b1, b2)

Click OK. The Variables to Bands Pairings dialog appears.

4. The variable B1 is highlighted by default. Map this variable to a specific band by
highlighting a band name in the Available Bands List in the Variables to Bands
Pairings dialog. Highlight the B2 variable and map it to another band in the Available
Bands List.

5. Select output to File or Memory and click OK. The output image appears in the
Available Bands List.

Band Math User Function 4

The following example is a user function that calculates a normalized difference vegetation
index (NDVI) and scales it into the byte data range. Note that the MIN and MAX keywords
are required in the function call to BYTSCL to ensure that the same minimum and maximum
values are used for scaling all tiles of a tiled image (for more information, see “IDL Tips for
Use in Band Math” in ENVI Help).

Note
An infrared image band near 0.8 µm should be used for the B1 variable, while a red band
near 0.6 µm should be used for the B2 variable.
ENVI Programmer’s Guide Band Math

24 Chapter 2: Band and Spectral Math User Functions
1. Enter the following into a text editor and save the file as user_bm4.pro in the
save_add directory of your ENVI installation:

FUNCTION user_bm4, b1, b2
NDVI_float = (float(b1) - b2) / (float(b1) + b2)
b1 = BYTSCL(NDVI_float, min = -1.0, max = 1.0)
RETURN, b1

END

2. Start ENVI. From the ENVI main menu bar, select File → Open Image File and open
a multi-band image file (see Note above). The Available Bands List appears.

3. From the ENVI main menu bar, select Basic Tools → Band Math. The Band Math
dialog appears. Type the following in the Enter an expression field:

user_bm4(b1, b2)

Click OK. The Variables to Bands Pairings dialog appears.

4. The variable B1 is highlighted by default. Map this variable to a specific band by
highlighting a band name in the Available Bands List in the Variables to Bands
Pairings dialog. Highlight the B2 variable and map it to another band in the Available
Bands List.

5. Select output to File or Memory and click OK. The output image appears in the
Available Bands List.

Band Math User Function 5

The following steps demonstrate how to create a user function that calculates a ratio and
optionally checks for divide-by-zero errors:

1. Open a text editor and type the following:

(b1 + b2) / (b1 - b2)

2. Declare the function with two input bands (b1 and b2) and a keyword check:

FUNCTION bm_ratio, b1, b2, check=check

3. Calculate the denominator:

den = float(b1) - b2

4. If the keyword check is set, find the location of all zeros:

IF (keyword_set(check)) THEN ptr = WHERE(den EQ 0., count) $
ELSE count = 0

5. Temporarily set denominator values to 1.0, preventing the trap handler from being
called when a divide-by-zero error occurs:

IF (count GT 0) THEN den[ptr] = 1.0

The program will not crash if a divide-by-zero occurs, but it is faster to set the values to
1.0 to avoid trap-handler overhead.

6. Calculate the remaining ratio:

result = (float(b1) + b2) / den

7. If there were any divide-by-zeros, set the result to 0.0:
Band Math ENVI Programmer’s Guide

Chapter 2: Band and Spectral Math User Functions 25
if (count GT 0) THEN result[ptr] = 0.0

8. Finally, the result is returned from the function:

RETURN, result

9. Following is the full Band Math function:

FUNCTION bm_ratio, b1, b2, check=check
den = float(b1) - b2
IF (keyword_set(check)) THEN ptr = WHERE(den EQ 0., count) $

ELSE count = 0
IF (count GT 0) THEN den[ptr] = 1.0
result = (float(b1) + b2) / den
IF (count GT 0) THEN result[ptr] = 0.0
RETURN, result

END

10. Save the file as mfband.pro in the save_add directory of your ENVI installation.

11. Start ENVI. From the ENVI main menu bar, select File → Open Image File and open
a multi-band image file (see Note above). The Available Bands List appears.

12. From the ENVI main menu bar, select Basic Tools → Band Math. The Band Math
dialog appears. Type the following in the Enter an expression field to calculate the
ratio without divide-by-zero checking:

bm_ratio(b1, b2)

13. Or, to calculate the ratio with divide-by-zero checking, enter the following expression:

bm_ratio(b1, b2, /check)

Click OK. The Variables to Bands Pairings dialog appears.

14. The variable B1 is highlighted by default. Map this variable to a specific band by
highlighting a band name in the Available Bands List in the Variables to Bands
Pairings dialog. Highlight the B2 variable and map it to another band in the Available
Bands List.

15. Select output to File or Memory and click OK. The output image appears in the
Available Bands List.
ENVI Programmer’s Guide Band Math

26 Chapter 2: Band and Spectral Math User Functions
Spectral Math

Use Spectral Math to apply mathematical expressions or IDL procedures to spectra (and to
selected multiband images). You can use ENVI’s Spectral Math dialog to define the spectra
or files used as input, call a Spectral Math user function, and write the result to a plot window,
file, or memory. See “Spectral Math” in ENVI Help for instructions on writing proper
Spectral Math expressions.

Writing Spectral Math User Functions

Because ENVI + IDL provides access to IDL functionality, you can use the power of built-in
IDL features, IDL user functions, or write your own user functions to perform Spectral Math
operations. The only requirement for these functions is that they accept one or more vectors
(spectra) as input and that they output a vector result.

Spectral Math user functions are simple to write and execute as Spectral Math expressions.
They accept the input spectra, process the data, and return the result. Functions have the
following model:

FUNCTION sm_func, s1, [s2,..., sn, parameters and keywords]
processing steps
RETURN, result

END

The output of a Spectral Math user function is a single spectrum or spectra with the same
number of bands as the input. When an input parameter is mapped to a file, a whole line of
spectra are processed at a time.

Compiling Spectral Math User Functions

Once the user function is complete, you should place the resulting .pro or .sav file in the
save_add directory. This allows the function to be automatically compiled or restored when
ENVI is started.

As an alternative, you can compile .pro files within ENVI only if you have ENVI + IDL, by
selecting File → Compile IDL Module from the ENVI main menu bar. If you have
standalone ENVI, you must use a compiled (.sav) file to add a user function to ENVI. See
“Adapting User Functions for ENVI” on page 82 for more information.

Examples

Following are simple examples of Spectral Math user functions. Note that these examples are
only intended to illustrate the process of executing your own custom functions. In most cases,
you can apply algorithms directly in the Spectral Math dialog without having to write a user
function. These examples assume you have ENVI + IDL.

Example: Spectral Math User Function 1

The following example is a simple user function that adds two spectra.

1. Enter the following into a text editor and save the file as user_sm1.pro in the
save_add directory of your ENVI installation:
Spectral Math ENVI Programmer’s Guide

Chapter 2: Band and Spectral Math User Functions 27
FUNCTION user_sm1, s1, s2
RETURN, s1+s2

END

2. Start ENVI. From the ENVI main menu bar, select File → Open Image File and open
an image file containing spectra. The spectra can be from a multi-band image (that is, a
Z Profile), a spectral library, or an ASCII file. The Available Spectra List appears.

3. From the ENVI main menu bar, select Basic Tools → Spectral Math. The Spectral
Math dialog appears. Type the following in the Enter an expression field.

user_sm1(s1, s2)

Click OK. The Variables to Spectra Pairings dialog appears.

4. The variable S1 is highlighted by default. Map this variable to a specific spectra by
highlighting a spectra name in the Available Spectra List (in the Variables to Spectra
Pairings dialog). Highlight the S2 variable and map it to another spectra in the
Available Spectra List.

5. Select output to File or Memory and click OK. The output image appears in the
Available Bands List.

Example: Spectral Math User Function 2

The following example is a simple user function that computes the average of six spectra.

1. Enter the following into a text editor and save the file as user_sm2.pro in the
save_add directory of your ENVI installation:

FUNCTION user_sm2, s1, s2, s3, s4, s5, s6
average = (s1+s2+s3+s4+s5+s6)/6.
RETURN, average

END

2. Start ENVI. From the ENVI main menu bar, select File → Open Image File and open
an image file containing at least six spectra. They can be from a multi-band image (that
is, a Z Profile), a spectral library, or an ASCII file. The Available Spectra List appears.

3. From the ENVI main menu bar, select Basic Tools → Spectral Math. The Spectral
Math dialog appears. Type the following in the Enter an expression field:

user_sm2(s1,s2,s3,s4,s5,s6)

4. The variable S1 is highlighted by default. Map this variable to a specific spectra by
highlighting a spectra name in the Available Spectra List (in the Variables to Spectra
Pairings dialog). Highlight the remaining variables and map them to other spectra in
the Available Spectra List.

5. Select output to File or Memory and click OK. The output image appears in the
Available Spectra List.

Example: Spectral Math User Function 3

The following steps demonstrate how to create a user function that calculates a ratio and
optionally checks for divide-by-zero errors.
ENVI Programmer’s Guide Spectral Math

28 Chapter 2: Band and Spectral Math User Functions
1. Open a text editor and type the following to declare the function with two input spectra
(S1 and S2) and a keyword check:

FUNCTION sm_ratio, s1, s2, check=check

2. If the keyword check is set, find the location of any zeros:

IF (keyword_set(check)) THEN ptr = WHERE(s2 EQ 0., count) $
ELSE count = 0

3. Temporarily set values of 0 to 1.0, preventing the trap handler from being called when
a divide-by-zero error occurs:

IF (count GT 0) THEN s2[ptr] = 1.0

The program will not crash if a divide-by-zero occurs, but it is faster to set the values to
1.0 to avoid trap-handler overhead.

4. Calculate the ratio:

result = float(s1) / s2

5. If there were any divide-by-zero errors, set the result to 0.0:

IF (count GT 0) THEN result[ptr] = 0.0

6. Finally, the result is returned from the function:

RETURN, result

7. Following is the full Spectral Math function:

FUNCTION sm_ratio, s1, s2, check=check
IF (keyword_set(check)) THEN ptr = WHERE(s2 EQ 0., count) $

ELSE count = 0
IF (count GT 0) THEN s2[ptr] = 1.0
result = float(s1) / s2
IF (count GT 0) THEN result[ptr] = 0.0
RETURN, result

END

8. Save the function as mfspec.pro and place it in the save_add directory of the ENVI
installation.

9. Start ENVI. From the ENVI main menu bar, select File → Open Image File and open
an image file containing spectra. The spectra can be from a multi-band image (that is, a
Z Profile), a spectral library, or an ASCII file. The Available Spectra List appears.

10. Display the image and plot two spectra by selecting Tools → Profiles → Z Profile
(Spectrum) from the Display group menu bar.

11. From the ENVI main menu bar, select Basic Tools → Spectral Math. The Spectral
Math dialog appears. Type the following in the Enter an expression field to perform
the ratio without divide-by-zero checking.

sm_ratio(s1, s2)

12. Or, to perform the ratio with divide-by-zero checking, enter the following expression:

sm_ratio(s1, s2, /CHECK)

13. The variable S1 is highlighted by default. Map this variable to a specific spectra by
highlighting a spectra name in the Available Spectra List (in the Variables to Spectra
Spectral Math ENVI Programmer’s Guide

Chapter 2: Band and Spectral Math User Functions 29
Pairings dialog). Highlight the S2 variable and map it to another spectra in the
Available Spectra List.

14. Select output to File or Memory and click OK. The output image appears in the
Available Spectra List.
ENVI Programmer’s Guide Spectral Math

30 Chapter 2: Band and Spectral Math User Functions
Spectral Math ENVI Programmer’s Guide

Chapter 3

Batch Mode
This chapter covers the following topics:
Batch Mode . 32
Initiating Batch Mode . 33
Exiting Batch Mode . 35
Writing Batch Mode Routines 36

Message Logging in Batch Mode 39
Helpful Tips for Batch Mode 40
Examples of ENVI Batch Mode Routines 42
ENVI Programmer’s Guide 31

32 Chapter 3: Batch Mode
Batch Mode

Performing a linear sequence of ENVI processing tasks in a non-interactive manner is called
batch mode. You can write a batch mode routine (an IDL program) and call it from the ENVI
menu system to perform the tasks, or you can start batch mode from the IDL command line.
Batch mode uses the ENVI_DOIT library routine, which provides the processing portion of a
user function without requiring any user interaction. See “Batch Mode” on page 31 for more
information.

Running ENVI in batch mode is no different than working in an ordinary IDL session, except
that you can use various ENVI library routines. To access these library routines, you must
restore them into the IDL session’s memory.

To run a batch mode routine, start by creating a user function that contains the necessary
ENVI program calls and appropriate parameters. Then run it using one of the following
options:

• From the ENVI menu system, which allows you to link a combination of processes and
start them from a single menu option

• From the IDL command line (assuming you have purchased ENVI + IDL), which
allows you to perform common processing steps on various files outside of interactive
ENVI. This capability can be useful in several cases: if you are primarily working in
IDL but occasionally need to use ENVI routines; if you want to write user functions
that combine your own IDL code with ENVI routines; or if you need to do a large
amount of ENVI processing without any user interaction (for example, go home while
the ENVI processing is performed overnight).

Hybrid Batch Mode

If you have an ENVI + IDL license and you start ENVI, all of the ENVI library routines and
save files are automatically restored. So, you do not have to initiate batch mode in the
concurrent IDL session. This state is often referred to as hybrid batch mode because you can
perform batch mode processing and use ENVI library routines without having to initiate
batch mode. This can be both convenient and problematic.

For example, if an IDL procedure you are running at the command line produces a new image
band, you could directly enter these new data into the Available Bands List for use in the
ENVI session by using the library routine ENVI_ENTER_DATA. However, if the IDL
procedure crashes, then you have also crashed the concurrent ENVI session! When writing
user functions, you may find it convenient to work in hybrid batch mode because it simulates
the environment where the code will eventually be executed. However, when running true
batch processes, it is recommended that you use a separate IDL session where batch mode has
been initiated.

The control for blocking the IDL command line is in the ENVI Configuration File, or you can
change it within ENVI by selecting File → Preferences from the ENVI main menu bar,
clicking Miscellaneous, and setting the Command Line Blocking option to No.
Batch Mode ENVI Programmer’s Guide

Chapter 3: Batch Mode 33
Initiating Batch Mode

Initiating ENVI batch mode requires you to restore several ENVI save files (.sav) and call
the ENVI routine ENVI_BATCH_INIT. The combined process is referred to as initiating
batch mode. The save files are binary format files that contain the ENVI library routines and
internal variables required to run ENVI.

Do not attempt to initialize ENVI in batch mode from an IDL session that is currently running
an interactive ENVI session. Instead, start a new IDL session to initialize ENVI in batch
mode.

1. Start ENVI.

2. From the ENVI main menu bar, select File → Preferences.

3. Click Miscellaneous and ensure that the Exit IDL on Exit from ENVI option is set to
No.

4. Exit ENVI and, if required, exit IDL.

5. Start a new IDL session and enter the following command at the IDL command line:

ENVI, /RESTORE_BASE_SAVE_FILES

If you forget to use the keyword RESTORE_BASE_SAVE_FILES, you will start a
normal ENVI session.

If you have multiple versions of IDL installed on your computer, be sure that the IDL
executable you are using to start a new IDL session is the same one associated with
your ENVI installation (where the main ENVI directory is installed). In a standard
UNIX installation, the ENVI executable file is in the following location:

/usr/local/rsi/idl_x.x/products/envi_x.x/bin/envi.run

The path to the IDL executable in the same installation is in the following location:

/usr/local/rsi/idl_x.x/bin

This IDL installation includes an extra file (envi.sav) in the idl_x.x/lib/hook
directory. If you try initiating batch mode from a separate installation of IDL (if you
are not using ENVI + IDL), you will receive the error “Attempt to call undefined
procedure/function: ENVI.”

6. Next, call the ENVI__BATCH_INIT procedure from the IDL command line:

ENVI_BATCH_INIT

Calling ENVI_BATCH_INIT is nearly identical to starting a new ENVI session,
except there is no GUI. After batch mode has been established, all subsequent calls to
ENVI_BATCH_INIT are ignored.

The following is example code for initiating batch mode:

; ***
; This batch example shows how to initialize ENVI
; in batch mode.
;
; For more information see the ENVI Programmer’s Guide.
; ***
ENVI Programmer’s Guide Initiating Batch Mode

34 Chapter 3: Batch Mode
; Copyright (c) 2000-2001, Research Systems Inc.
; ***
pro bt_init
 envi, /restore_base_save_files
 envi_batch_init, log_file=’batch.log’

 ; Batch processing would go here

 envi_batch_exit
end
Initiating Batch Mode ENVI Programmer’s Guide

Chapter 3: Batch Mode 35
Exiting Batch Mode

If you will continue working in the IDL session after you have finished ENVI batch mode
work, then it is equally important to properly exit the batch mode session. In order to run a
program as complex as ENVI, many different variables, common blocks, structures, pointers,
and objects are created. When you exit ENVI, all of these components are properly deleted
and the memory they consume is released. The routine ENVI_BATCH_EXIT closes the
session that was started with ENVI_BATCH_INIT, and it has the same effect in batch mode
as choosing File → Exit from the ENVI main menu bar. For example, the license used for the
ENVI session will be released. If you set the ENVI preference Exit IDL on Exit from ENVI
to Yes, then the IDL session will also terminate.
ENVI Programmer’s Guide Exiting Batch Mode

36 Chapter 3: Batch Mode
Writing Batch Mode Routines

The primary purpose of ENVI’s batch mode is to allow ENVI processing without user
interaction. Many users also find it convenient to add functionality to their own standalone
IDL programs by using ENVI library routines.

Using ENVI Library Routines in IDL Programs

If ENVI has a function you would like to use, you should use it instead of coding the function
from scratch in IDL. However, to access the ENVI library routines, the IDL session where
your IDL program is running must be in batch mode. Be sure to include commands for
initiating batch mode and to call ENVI_BATCH_EXIT upon completion to clean up ENVI-
specific resources that consume memory.

Example: Simple Batch Mode Routine: VIEW_DEM

This example shows a simple IDL procedure that prompts you to select a DEM file and to
display the DEM and its shaded relief image side-by-side. Instead of coding a shaded-relief
algorithm from scratch, use the TOPO_DOIT library routine.

Note
If a previous IDL session is open, exit and start a new IDL session before running this
example code.

PRO VIEW_DEM

dem_file = ENVI_PICKFILE(TITLE = 'select a DEM')
IF (dem_file EQ "") THEN RETURN
ENVI_OPEN_FILE, dem_file, R_FID = dem_fid

ENVI_FILE_QUERY, dem_fid, NS = ns, NL = nl
proj = ENVI_GET_PROJECTION(FID = dem_fid, PIXEL_SIZE = pixel_size)

dims = [-1L, 0, ns - 1, 0, nl - 1]

ENVI_DOIT, 'TOPO_DOIT', AZIMUTH = 15.0, BPTR = [2], DIMS = dims, $
ELEVATION = 45.0, FID = dem_fid, IN_MEMORY = 1, POS = [0], $
R_FID = shaded_fid, PIXEL_SIZE = pixel_size

dem = ENVI_GET_DATA(FID = dem_fid, DIMS = dims, POS = [0])
shaded = ENVI_GET_DATA(FID = shaded_fid, DIMS = dims, POS = [0])

WINDOW, /FREE, XSIZE = (2*ns), YSIZE = nl
TVSCL, dem, ORDER = 1
TVSCL, shaded, ns, 0, ORDER = 1

ENVI_BATCH_EXIT
END

Note
See the following section to understand why you may have received syntax errors when the
code was compiled.
Writing Batch Mode Routines ENVI Programmer’s Guide

Chapter 3: Batch Mode 37
Example: Using COMPILE_OPT

If you save and compile the code used in the previous example, you should receive several
IDL compilation errors. The lines where errors occurred all contain ENVI library functions.
Because these functions are not built into IDL, the IDL compiler does not recognize them as
functions. Instead, it assumes that they are variables that are being dereferenced. This
problem arises because IDL originally allowed function calls and variable dereferencing to
use the same syntax:

number = my_array(0,0)
result = my_function(0,0)

In modern versions of IDL (release 5.0 and later), the syntax for dereferencing variables
changed to use square brackets instead of parentheses. This newer syntax eliminates the
ambiguity, but to ensure backwards compatibility of IDL code, the compiler still must
recognize both types of syntax. Previously, the only solution for this problem was using the
FORWARD_FUNCTION statement to declare the names of uncompiled functions so that the
compiler would correctly recognize them. In IDL 5.3, a much better solution was introduced.
Using the COMPILE_OPT statement, you can instruct the IDL compiler to strictly enforce
the new square brackets syntax for dereferencing variables, thus allowing the compiler to
correctly identify previously unknown functions.

Edit the file view_dem.pro to insert the following line (shown in bold) immediately after
the procedure definition statement.

pro VIEW_DEM
COMPILE_OPT STRICTARR

The procedure now compiles and runs.

Using ENVI Recording to Write Batch Code

You can use the ENVI Log Manager to save an ASCII file containing information about each
processing function called and its parameters. (Vector and matrix parameters are currently not
logged.) You can use portions of the ASCII file as step-by-step instructions for a batch
routine to perform the same processing.

The log file example below lists information about the following processes completed in one
ENVI session:

• Opening a file

• ISODATA classification

• Class sieve

• Class clump

Each step in the log file is separated by three asterisks and a blank line.

*** Opened File: E:\DATA\canyon.tm [Thu Nov 13 09:19:49 1997]

*** Classification *** [Thu Nov 13 09:22:06 1997]
Method: IsoData
Input File: E:\DATA\canyon.tm
Bands: 1-6
Dims: 1-640,1-400
ENVI Programmer’s Guide Writing Batch Mode Routines

38 Chapter 3: Batch Mode
Output File: To Memory
Output Rule File: NONE
Number of Classes: 7
Change Threshold: 5.00
Iterations: 1

*** Sieve Classes *** [Thu Nov 13 09:25:35 1997]
Input File: {M8} (640x400x1)
Bands: 1
Dims: 1-640,1-400
Selected Classes: 1-7
Group Minimum Threshold: 15
Number of Neighbors : 8
Output File: To Memory

*** Clump Classes *** [Thu Nov 13 09:26:07 1997]
Input File: {M9} (640x400x1)
Bands: 1
Dims: 1-640,1-400
Selected Classes: 1-7
Operator Size Rows: 3 Cols: 3
Output File: To Memory

For this example, each step after opening the file can be accomplished in batch mode using a
call to an ENVI_DOIT routine. The code for the equivalent batch routine uses the following
processing functions:

• Initialize ENVI in batch mode using ENVI_BATCH_INIT.

• Open the input file using ENVI_OPEN_FILE.

• Perform the ISODATA classification using ENVI_DOIT with the CLASS_DOIT
keyword.

• Sieve the classification image using ENVI_DOIT with the CLASS_CS_DOIT
keyword.

• Clump the classification image using ENVI_DOIT with the CLASS_CS_DOIT
keyword.

• Exit ENVI using ENVI_BATCH_EXIT.
Writing Batch Mode Routines ENVI Programmer’s Guide

Chapter 3: Batch Mode 39
Message Logging in Batch Mode

Perhaps the most powerful (and most common) use for ENVI batch mode is to process data
files with no user interaction. For example, if you need to process hundreds of image files
identically using ENVI, you can write an IDL procedure that finds all the files, opens them,
performs all the ENVI processing, and saves the results to disk. All of this processing could
occur while you are away; all you need to do is call your ENVI batch mode program in IDL.

Using the Batch Mode Log File

When using ENVI in batch mode to process files without any user interaction, you should
ensure that the batch mode will not be suspended when an error or informational message is
issued, and that important messages from the system are collected so that you can review
them after the processing has finished. This is accomplished by initiating batch mode in a
slightly different manner than shown so far.

Initiating Batch Mode with a Log File

When initiating batch mode, you can define a log file with the LOG_FILE keyword. This
keyword passes ENVI a filename for a writable file that will receive any error or
informational messages. Type the following at the IDL command line:

ENVI, /RESTORE_BASE_SAVE_FILES
ENVI_BATCH_INIT, LOG_FILE = 'test_batch_log.txt'

When running a real ENVI batch mode library routine, the batch log accumulates any system-
generated messages. You can also write your own messages into the log file using
ENVI_ERROR.
ENVI Programmer’s Guide Message Logging in Batch Mode

40 Chapter 3: Batch Mode
Helpful Tips for Batch Mode

While each user is likely to have unique needs for batch mode, the following suggestions are
often helpful:

• Always run your batch mode routine in IDL, not in hybrid batch mode. When an ENVI
session is running from the same IDL session that is executing a batch mode routine,
some library routines may halt and wait for user input.

• Following a standard filenaming convention can be helpful, especially if the data to be
processed consist of multiple files (image data, leader, trailer, navigation data,
engineering data, etc.), but only certain data types will be processed by your batch
code.

• Use the IDL function FILE_SEARCH to make a list of the files to process. You should
use full path names.

• Using IDL’s string operators such as STRMID, RSTRPOS, and STRSPLIT, you can
usually construct intuitive output filenames from the names of the input files. For
example, if the input filename and path (in the variable IN_FNAME) is:

X:\data\my_image_L0.dat

And you want to name the output file (in the variable OUT_FNAME):

X:\data\my_image_L1.img

You could use the following command:

out_fname = $
STRMID(in_fname, 0,STRPOS(in_fname,"_",/reverse_search))+"_L1.img"

• See “Example: Using COMPILE_OPT” on page 37 for steps on properly
dereferencing variables.

Making a Shortcut for Initiating Batch Mode

If you frequently work in batch mode, you may find it convenient to put the commands that
initiate batch mode into an IDL file so that you can initiate batch mode with a single
command. Here is a simple example:

PRO ENVI_BATCH
ENVI, /RESTORE_BASE_SAVE_FILES
ENVI_BATCH_INIT

END

You could then initiate batch mode by calling your shortcut at the IDL command line:

envi_batch

If you would like to make a shortcut that is a bit more flexible and offers an option to initiate
batch mode with a batch log file, you can do this with a slightly more sophisticated shortcut
procedure. An example of one such routine called START_BATCH is included in the
example code below. To initiate batch mode with a log file, call START_BATCH with the
name of the batch file as its first argument and a variable that will receive the batch log’s
LUN as its second argument:

START_BATCH, "my_batch_log_filename.txt", batch_unit
Helpful Tips for Batch Mode ENVI Programmer’s Guide

Chapter 3: Batch Mode 41
To initiate batch mode without a batch log file, call START_BATCH with no arguments:

START_BATCH

The following is the example code for the START_BATCH.pro procedure.

PRO START_BATCH, batch_log_name, batch_unit
;
; An example shortcut procedure for initiating ENVI batch mode.
;
IF (N_PARAMS() GT 0) THEN BEGIN

; If a batch log file is requested, make sure the filename
; is valid (i.e., a scalar string) and then initiate batch
; mode.
sz = SIZE(batch_log_name)
IF (sz(0) NE 0) OR (sz(1) NE 7) THEN BEGIN

PRINT, 'ERROR: Filename argument must be a scalar string.'
RETURN

ENDIF
ENVI, /RESTORE_BASE_SAVE_FILES
ENVI_BATCH_INIT, LOG_FILE = batch_log_name, $

BATCH_LUN = batch_unit
ENDIF ELSE BEGIN

; If no batch file is requested, just initiate batch mode.
ENVI, /RESTORE_BASE_SAVE_FILES
ENVI_BATCH_INIT

ENDELSE

END
ENVI Programmer’s Guide Helpful Tips for Batch Mode

42 Chapter 3: Batch Mode
Examples of ENVI Batch Mode Routines

The following examples illustrate ENVI batch mode routines. The first example computes
statistics on an input file without linking multiple ENVI library routines. The next example
links together multiple processing steps and uses the output from the previous step as input
into the next step. The ENVI Reference Guide also includes examples for using each
processing function.

Example: File Statistics (Non-Interactive)

The following example uses the non-interactive batch mode to compute the basic statistics of
the specified file. First, restore the ENVI save files (.sav) and start ENVI in batch mode.
Next, open the file using ENVI_OPEN_FILE. The returned FID is passed into the statistics
library routine ENVI_STATS_DOIT. When the processing is complete, terminate the ENVI
session using ENVI_BATCH_EXIT.

The following sample code is also available in the file btstats1.pro in the lib directory
of the ENVI installation.

; ***
; This batch example shows how to calculate statistics
; in ENVI batch mode.
;
; For more information see the ENVI Programmers Guide.
; ***
; Copyright (c) 2000-2001, Research Systems Inc.
; ***

pro bstats1

; Restore the core file and start ENVI in batch
ENVI, /RESTORE_BASE_SAVE_FILES
ENVI_BATCH_INIT, LOG_FILE = 'batch.log'

; Open the input file
ENVI_OPEN_FILE, 'c:\data\test.img', R_FID = fid
IF (fid EQ -1) THEN BEGIN

ENVI_BATCH_EXIT
RETURN

ENDIF

ENVI_FILE_QUERY, fid, NS = ns, NL = nl, NB = nb

; Set the DIMS and POS to process the entire image, all bands
dims = [-1, 0, ns - 1, 0, nl - 1]
pos = LINDGEN(nb)

; Calculate the basic statistics
ENVI_DOIT, 'envi_stats_doit', $

FID = fid, POS = pos, DIMS = dims, $
DMIN = dmin, DMAX = dmax, MEAN = mean, $
STDV = stdv, COMP_FLAG = 1

; make sure each one is defined on the return
PRINT, dmin, dmax, mean, stdv
Examples of ENVI Batch Mode Routines ENVI Programmer’s Guide

Chapter 3: Batch Mode 43
; Exit ENVI
ENVI_BATCH_EXIT
END

Additional statistics are available using ENVI_STATS_DOIT.

The following steps outline this example:

1. Edit the paths and filenames to match those on the current machine; save the file as an
IDL (.pro) file.

2. Start IDL (without ENVI running).

3. Type the following at the IDL command line to compile the routine. The path to the
saved routine is c:\my_path.

.compile c:\my_path\bt_stat

4. Type the following at the ENVI command line to execute the routine:

btstat1

5. The resulting statistics are printed to the IDL log window.

Example: Saturation Stretch (Non-Interactive)

The following example performs a saturation stretch on an RGB image. This example is
intended to run from the command line without any user interaction. The batch routine links a
number of ENVI library routines.

1. Open an RGB image file using ENVI_OPEN_FILE.

2. Perform a 2% stretch on the RGB image using STRETCH_DOIT.

3. Transform the stretched RGB to HSV color space using RGB_TRANS_DOIT.

4. Apply a Gaussian stretch on the saturation band using STRETCH_DOIT.

5. Transform the HSV and stretched saturation band to RGB using
RGB_ITRANS_DOIT.

Non-interactive batch routines must first restore the ENVI save files (.sav). The input,
output, and temporary filenames used by this example must be changed to reflect the
configuration of the current machine. The input file must reference an RGB image that
already exists.

ENVI is initialized in batch mode using ENVI_BATCH_INIT. The routines
STRETCH_DOIT, RGB_TRANS_DOIT, and RGB_ITRANS_DOIT are restored
automatically when called using ENVI_DOIT.

The processing steps in this example use the output from one _DOIT routine as input into the
next. Each library routine creates and opens the output files, allowing the file ID to be
returned using the keyword R_FID. The file ID or an array of file IDs are passed into the next
library routine.

The following sample code is also available in the file btstats1.pro in the lib directory
of the ENVI installation:

; ***
; This batch example is run from the IDL command line without any
; user interactions.
ENVI Programmer’s Guide Examples of ENVI Batch Mode Routines

44 Chapter 3: Batch Mode
;
; This batch routine performs a saturation stretch on an rgb file.
;
; 1.Open an rgbfile.
; 2. Perform a 2% stretch on the rgb, store the result in tmp1_name
; 3. Transform the rgb to hls, store the result in tmp2_name.
; 4. Gaussian stretch the saturation band, store the result tmp3_name.
; 5. Transform the hl and stretched saturation band to rgb, store the
; result in out_name.
;
; For more information see the ENVI Programmers Guide.
; ***

; Copyright (c) 2000-2001, Research Systems Inc.
; ***
PRO satstrch

; Restore the ENVI core files
ENVI, /RESTORE_BASE_SAVE_FILES

; Initialize ENVI and send all errors to an error file.
ENVI_BATCH_INIT, LOG_FILE = 'e:\data\testing\batch.log'

; Define the needed file names (remember to specify the full path).
in_name = 'e:\data\testing\test.img'
out_name = 'e:\data\testing\new_rgb'
tmp1_name = 'e:\data\testing\tmp1'
tmp2_name = 'e:\data\testing\tmp2'
tmp3_name = 'e:\data\testing\tmp3'

; open the file
ENVI_OPEN_FILE, in_name, R_FID = fid
IF (fid EQ -1) THEN BEGIN

ENVI_BATCH_EXIT
RETURN

ENDIF

; Set up to process the entire image, first 3 bands as RGB

ENVI_FILE_QUERY, fid, NS = ns, NL = nl, BNAMES = bnames
dims = [-1, 0, ns - 1, 0, nl - 1]
pos = [0, 1, 2]

; Stretch the input image with a 2% stretch

ENVI_DOIT, 'stretch_doit', $
FID = fid, POS = pos, DIMS = dims, $
OUT_NAME = tmp1_name, METHOD = 1, OUT_DT = 1, $
I_MIN = 2.0, I_MAX = 98.0, RANGE_BY = 0, $
OUT_MIN = 0, OUT_MAX = 255, IN_MEMORY = 0, $
R_FID = st_fid

IF (N_ELEMENTS(st_fid) EQ 0) THEN BEGIN
ENVI_BATCH_EXIT
RETURN

ENDIF

; Convert stretched data to hls, all bands are from the
; samefile so make an arrayof 3 from st_fid
Examples of ENVI Batch Mode Routines ENVI Programmer’s Guide

Chapter 3: Batch Mode 45
ENVI_DOIT, 'rgb_trans_doit', FID = [st_fid, st_fid, st_fid], $
POS = pos, OUT_NAME = tmp2_name, DIMS = dims, R_FID = hls_fid, $
HSV = 0, IN_MEMORY = 0

IF (N_ELEMENTS(hls_fid) EQ 0) THEN BEGIN
ENVI_BATCH_EXIT
RETURN

ENDIF

; Gaussian stretch the saturation band, do a percent
; stretch 0% to 100% (the entire range). Set the output range
; from 0.0 to 1.0. Store the result tmp2_name.

ENVI_DOIT, 'stretch_doit', $
FID = hls_fid, POS = [2], DIMS = dims, $
METHOD = 3, RANGE_BY = 0, I_MIN = 0.0, $
I_MAX = 100.0, STDV = 2.0, OUT_DT = 4, $
OUT_MIN = 0.0, OUT_MAX = 1.0, IN_MEMORY = 0, $
R_FID = gst_fid, OUT_NAME = tmp3_name

IF (N_ELEMENTS(gst_fid) EQ 0) THEN BEGIN
ENVI_BATCH_EXIT
RETURN

ENDIF

; Preform the inverse color transformation of the hl and the
; stretched saturation band back to rgb. Now we incorporate
; the results of two file for the inverse transformation and
; must build the fid and pos arrays.

out_bname = 'satstrch(' + bnames[pos] + ')'
ENVI_DOIT, 'rgb_itrans_doit', $

FID = [hls_fid, hls_fid, gst_fid], POS = [0, 1, 0], $
OUT_NAME = out_name, DIMS = dims, HSV = 0, $
OUT_BNAME = out_bname, IN_MEMORY = 0

; Close the input file and delete the tmp files from disk.
ENVI_FILE_MNG, ID = fid, /REMOVE
ENVI_FILE_MNG, ID = st_fid, /REMOVE, /DELETE
ENVI_FILE_MNG, ID = hls_fid, /REMOVE, /DELETE
ENVI_FILE_MNG, ID = gst_fid, /REMOVE, /DELETE

; Remember to exit envi
ENVI_BATCH_EXIT
END

The following steps outline this example:

1. Edit the paths and filenames to match those on the current machine. Save the file as an
IDL (.pro) file.

2. Start IDL (without ENVI running).

3. Type the following at the IDL command line to compile the routine. The path to the
saved routine is c:\my_path.

.compile c:\my_path\btsat.pro

4. Type the following at the ENVI command line to execute the routine:

satstrch
ENVI Programmer’s Guide Examples of ENVI Batch Mode Routines

46 Chapter 3: Batch Mode
5. Start ENVI and view the RGB file created. See the variable OUT_NAME for the RGB
filename.
Examples of ENVI Batch Mode Routines ENVI Programmer’s Guide

Chapter 4

User Functions
This chapter covers the following topics:
Introduction . 48
User Functions . 49
Modifying the ENVI Menus 50
Adding Widgets to User Functions 55
Compound Widgets . 56

Auto-Managed Widget Events 63
Trapping Errors in User Functions 67
Using Processing Routines and Tiling 69
Adapting User Functions for ENVI 82
ENVI Programmer’s Guide 47

48 Chapter 4: User Functions
Introduction

This chapter covers the development of custom user functions. User functions are IDL
programs you can use to call ENVI library routines. You can access user functions through
the ENVI menu system. When designing user functions, you can choose to use no interface,
use ENVI’s compound widgets to simplify interface design and give your functions the same
look-and-feel as ENVI, or create your own interface using IDL widgets. If you choose to use
ENVI’s compound widgets, you can let ENVI automatically manage input from your
interface to your user function.
Introduction ENVI Programmer’s Guide

Chapter 4: User Functions 49
User Functions

User functions allow you to directly add new functionality to ENVI by adding your own IDL
programs to the ENVI menu system. Each user function gets its own menu item. User
functions are semi-permanent, meaning they will remain there until you choose to remove
them. They are nearly identical to batch mode procedures, except that there is no need to
initiate batch mode (since ENVI is already running).

You define all aspects of the user function, including the level of user interaction (from none
to extensive). You can write user functions in IDL, C, Fortran, or other high-level languages
and save them as.pro or .sav files in the save_add directory of your ENVI installation,
where they are automatically compiled or restored into the ENVI session’s memory when
ENVI starts. Once you have added the user function to ENVI, you can modify its code any
time, recompile it within the current ENVI session, and use it in its modified form without
having to restart ENVI.

User Functions are Widget Event Handlers

You do not need to be versed in IDL widget programming to add user functions to ENVI.
However, because ENVI is itself an IDL widget program, you will benefit from knowing a
few widget basics.

Because user functions are additions to an IDL widget program, they are technically event
handlers, a special class of IDL routines that are executed in response to a widget event. A
widget event occurs when you select the user function from the ENVI menu system. While
ENVI (or any widget program) is running, a special IDL routine called XMANAGER runs in
the background and monitors for widget events; this is what allows widget programs to be
interactive. When an event occurs, information about the event is passed into the event
handler procedure by XMANAGER in the form of a structure variable called the event
structure. Thus, all ENVI user functions must follow one simple rule for event handlers: the
procedure definition statement for a user function must include a positional parameter to
receive the event structure variable:

PRO MyUserFunction, event

Although most user functions never need the information contained in the event structure, the
positional parameter must still be included.
ENVI Programmer’s Guide User Functions

50 Chapter 4: User Functions
Modifying the ENVI Menus

The ENVI menu system is comprised of the ENVI main menu bar that appears when you start
ENVI, and the Display group menu bar, which is accessed only from display group windows.
These are defined by two ASCII files located in the menu directory of the ENVI installation:

Windows:

X:\RSI\IDLxx\products\ENVIxx\menu

UNIX:

/usr/local/rsi/idl_x.x/products/envi_x.x/menu

The envi.men file defines the ENVI main menu bar, and the display.men file defines the
Display group menu bar. Each time a new ENVI session is started, ENVI reads the two menu
files and constructs the menus based on the content of the files.

Each ENVI menu item is defined by a one-line entry in one of the files. The item’s definition
statement includes a number that defines the level of the menu item (how deeply it is nested
within other pull-down menu items), the text that appears on the item, a widget user value for
the item, and the name of the routine that is executed when the item is selected (i.e., the name
of the user function in the save_add directory).

Because both menu files are editable, you can change the entire ENVI menu system. You can
rename, move, duplicate, or completely remove menu items. Similarly, you can add a user
function’s menu item to any location. For example, if the user function is a new filtering
routine, you may choose to add it to the Filter menu.

Working with the Menu Files

Using a text editor, open the envi.men file located in ENVI’s menu directory. The top
portion of the file, where each line is preceded by a semi-colon, contains a brief description of
the file. Following these comment lines, each item in the ENVI main menu bar is defined by a
separate line in this file. Refer to the line near the top of the file where the menu item
definitions begin.

0 {File}
1 {Open Image File}{open envi file}{envi_menu_event}
1 {Open Vector File}{open vector file}{envi_menu_event}
1 {Open External File}

2 {Landsat}
3 {Fast} {open fast tm} {envi_menu_event}
3 {GeoTIFF} {open tiff} {envi_menu_event}
3 {HDF} {open envi file} {envi_menu_event}
3 {NLAPS} {open nlaps} {envi_menu_event}

The number at the beginning of the line defines the hierarchy of the menu item (0 is a main
item that opens a pull-down menu, 1 is the first level of items beneath the main menu, 2 is a
nested menu item beneath a first-level item, etc.) Following are descriptions for the items in
the first line beginning with 1.

• {Open Image File} — The first set of curly brackets defines the text that appears as
the menu item.
Modifying the ENVI Menus ENVI Programmer’s Guide

Chapter 4: User Functions 51
• {open envi file} — The second set of curly brackets defines the user value
assigned to the menu item. This can be used to programmatically determine what type
of event occurred. The user value is typically used only when the same user function
handles events from more than one menu item, in which case the user value identifies
which item was selected.

• {envi_menu_event} — The third set of curly brackets defines the event-handling
procedure (the name of the user function) to execute when the menu item is selected.
You will notice that none of the event handler names include the .pro or .sav
extensions. The name of the user function should be listed here, not the name of the file
that contains the procedure.

Scroll down the envi.men file and compare the menu definitions for the File item with the
menu items you see on the ENVI main menu bar under File.

Menus that contain submenus are created by defining only a hierarchy number and the first
set of curly brackets. Create a separator line by adding an optional fourth set of curly brackets
containing the word separator.

User Values

Most of the event handlers (the third set of curly brackets) for the items under the File menu
say {envi_menu_event}. But the user values (the second set of curly brackets) all have
unique names. For most routines built into ENVI, a single event-handling procedure is used
to manage all possible events. When you select an item from the File menu, the event-
handling procedure first checks the event structure to identify the item’s user value, then skips
to the appropriate section in the event-handling procedure. This is a clean method for routines
built into ENVI because there are literally hundreds of menu items.

When adding only a few user functions to ENVI, most programmers find it convenient to
make a separate user function for each new menu item. In this case, the contents of the second
set of curly brackets are meaningless, since they are never actually referenced in the user
function. However, because each new menu item definition must still have this second set of
curly brackets, you should give the user value a name that you will recognize, such as the
name of the user function itself. Or, many programmers choose to put the text not used or
dummy into the user value definition, so that when they read the menu file, they immediately
see that the user value is not used.

When the New Menu Button Does Not Appear

First, you must restart ENVI for changes to the menu file to take effect. If your user function
still does not appear in the ENVI menu system, the menu file may require a carriage return:

1. Open envi.men.

2. If you have not done so already, add your menu button to the end of envi.men (after
the “Help” entry). This simplifies adding new menu buttons since they have their own
place at the end of envi.men. For example, see {My Added Function} below:

0 {Help}
 1 {Start ENVI Help} {envi help} {envi_menu_event}
 1 {Mouse Button Descriptions} {mouse descriptions}

{envi_menu_event}
 1 {About ENVI} {about envi} {envi_menu_event}
0 {My Added Function} {unused} {my_program_name}
ENVI Programmer’s Guide Modifying the ENVI Menus

52 Chapter 4: User Functions
3. Position your cursor at the end of the last line of the file, and press Enter.

4. Save envi.men and restart ENVI. You should see the new menu button.

Other ASCII definition files (such as map_proj.txt, ellipse.txt, display.men,
datum.txt, and others) may also require a carriage return if they fail to incorporate your
changes.

Example: Writing a Simple User Function

The following example will help you become comfortable with modifying ENVI menus. You
will create a new menu item and a simple user function that is called when you select the
menu item in ENVI.

Note
Another way to create new menu items is to use the routine
ENVI_DEFINE_MENU_BUTTON, instead of following the steps below.

1. Scroll to the bottom of the file envi.men above the line that defines the Help menu
item.

2. Create a new main-level menu item to hold the user functions you will create:

0 {MyFunctions}

3. Add an item called Basic File Info, nested within the MyFunctions menu item.

1 {Basic File Info} {not used} {file_info}

This section of the menu file should now look like this:

0 {MyFunctions}
1 {Basic File Info} {not used} {file_info}

4. Save the modified menu file.

5. If an ENVI session is open, close it and restart ENVI. Check to see that your new items
are now on the menu.

6. Using the IDLDE that is running the ENVI session you just started, open a new Editor
window.

This user function prompts you to select an open file and print some basic information
about the file to the IDL Output Log window. Use the ENVI_FILE_QUERY routine to
get image size information and the IDL routine FSTAT to get file size information. The
FSTAT routine takes as its argument the IDL LUN for the file. Because the FID is not
an LUN, you also need to open the file using IDL file I/O procedures.

7. Enter these lines into the new editor window:

PRO file_info, event
ENVI_SELECT, title='choose a file', fid=in_fid
ENVI_FILE_QUERY, in_fid, ns=ns, nl=nl, nb=nb, fname=fname
OpenR, unit, fname, /Get_LUN
info = FSTAT(unit)
Free_LUN, unit
print, 'you selected ',fname
print, 'number of samples = ',ns
print, 'number of lines = ',nl
Modifying the ENVI Menus ENVI Programmer’s Guide

Chapter 4: User Functions 53
print, 'number of bands = ',nb
print, 'file size in bytes = ',info.size

END

8. Save the file into the save_add directory as file_info.pro.

9. Compile the user function to be sure it contains no syntax errors. Because you are
working in hybrid batch mode, any routine or user function you compile in IDL will
also be compiled and available for use in the concurrent ENVI session.

10. Select Basic File Info from the ENVI main menu bar to run the user function.

11. In the IDL Output Log window, you should see the results of the simple user function
as shown here. Choose any image file that is in an ENVI-supported format.

you selected D:\enviprog\AVIRIS\Cup95_at.int
number of samples = 400
number of lines = 350
number of bands = 50
file size in bytes = 14000000

12. Try running it again, but this time when you are prompted to select a file, click Cancel
in the file selection dialog. What happens?

% OPENR: Filename argument must be a scalar string FNAME.
% Execution halted at: FILE_INFO 7
D:\RSI\ENVI34\save_add\file_info.pro
% WIDGET_PROCESS_EVENTS
% $MAIN$

The user function crashed because you have not yet accounted for the possibility that the user
cancelled the function.

Recovering from a User Function Crash

At this point, the ENVI session is inactive. It has essentially crashed. If you had already done
a lot of processing in memory, you could potentially lose all of your unsaved work. If you
look at the error messages in the ENVI Output Log window, you see three routines listed:
FILE_INFO, WIDGET_PROCESS_EVENTS, and $MAIN$. This list is called the stack
trace, and it tells you exactly where IDL stopped. When more than one routine is listed, the
other routines must have been called within ENVI in chronological order from the bottom up.
The routine $MAIN$ refers to the main-level routine, which in this case, is the ENVI widget
routine (where IDL started). WIDGET_PROCESS_EVENTS is an ENVI library routine that
is involved with executing user functions. The top procedure name in the stack trace is the
user function FILE_INFO.

When a crash occurs, the ENVI cursor moves to the reported line number within the program
level listed at the top of the stack trace.

1. At the ENVI command line, type the following:

help, in_fid, fname

IN_FID INT = -1
FNAME UNDEFINED = <Undefined>

If you look at the user function code, you can follow the chain of events that caused the
crash. Because you cancelled the file selection dialog, the returned FID was not defined
ENVI Programmer’s Guide Modifying the ENVI Menus

54 Chapter 4: User Functions
(–1), so the ENVI_FILE_QUERY routine failed, causing the FNAME variable to be
undefined and the OPENR routine to crash.

In many cases, you can recover from a crash in an ENVI user function by entering
RETALL at the ENVI command line. This command is short for “return all,” and it
instructs IDL to return to the $MAIN$ program level (where ENVI is active).

2. In the ENVI Output Log window, type:

retall

Checking Errors

Now that you have added the user function to the ENVI menu file, you can modify the code,
recompile it, and use the new version in the current ENVI session without having to restart.

1. Return to the IDE Editor window where the basic_file_info.pro file should be
open. Add the line shown in bold below:

PRO file_info, event
ENVI_SELECT, title='choose a file', fid=in_fid
IF (in_fid eq -1L) THEN return
ENVI_FILE_QUERY, in_fid, ns=ns, nl=nl, nb=nb, fname=fname
OpenR, unit, fname, /Get_LUN
info = FSTAT(unit)
Free_LUN, unit
print, 'you selected ',fname
print, 'number of samples = ',ns
print, 'number of lines = ',nl
print, 'number of bands = ',nb
print, 'file size in bytes = ',info.size

END

2. Save the modified user function code as basic_file_info.pro, overwriting the
previous version in the save_add directory.

Note
Remember, if you have already compiled a routine at least once in an IDL session,
modifying and saving the routine will not cause IDL to use the updated version. You have to
recompile the modified version, or IDL continues to use the older version already in
memory.

3. Recompile the modified version of FILE_INFO.

4. Return to the ENVI session and try running your modified user function, once again
clicking Cancel in the Input Selection Dialog by File.

The user function now checks for the user cancelling the routine and returns.

This user function was only a simple example that did not greatly extend ENVI’s
functionality. The example was designed to give you some practice manipulating the ENVI
menu system and adding user function code.
Modifying the ENVI Menus ENVI Programmer’s Guide

Chapter 4: User Functions 55
Adding Widgets to User Functions

User functions can take virtually any form and can be used for nearly any purpose. Although
user functions are selected interactively from the ENVI menu and run from within an ENVI
session, they are not required to have any user interaction. For example, a user function could
be used to execute batch mode. However, user functions are particularly well-suited for more
complicated routines that do require user input. While it is possible to collect user input from
the command line, this approach is not intuitive for the ENVI user, as no other ENVI routine
requires command-line input. Further, because the command line is not accessible in ENVI,
this approach is limiting. Using widgets to interactively collect input is much easier and more
straightforward, and it follows the existing model for ENVI routines.

Using widgets to collect input in your user functions is much easier than adding widgets to an
ordinary IDL program because there is no need to write your own event-handling procedures
to manage the widget events; ENVI auto-manages the widget events for you. In addition,
ENVI’s special compound widgets are included in the library of ENVI routines, making it
easy to create user functions that have the same look-and-feel of ENVI. ENVI’s auto-
managed widgets allow you to create user functions that fit seamlessly into ENVI.

When a widget interface for a user function is auto-managed by ENVI, the GUI is always
modal. That is, the widget interface blocks the rest of ENVI from responding until you select
the OK or Cancel button, either of which destroys the GUI (OK destroys and proceeds, and
Cancel destroys and returns). In this mode, ENVI handles all of the widget events and
conveniently returns the user input in a structure variable. Using ENVI to auto-manage the
GUI in this fashion allows user functions to take a very simple form, where they can execute
linearly from the beginning of the file to the end.

See “Auto-Managed Widget Events” on page 63 for more information.
ENVI Programmer’s Guide Adding Widgets to User Functions

56 Chapter 4: User Functions
Compound Widgets

ENVI provides more than 20 compound widgets that you can incorporate into user functions.
Most of these routines begin with WIDGET_. All compound widgets include OK and Cancel
buttons. Some include buttons, such as Choose, which you frequently see when selecting an
output filename. ENVI widgets that are commonly used as building blocks for creating GUIs
are illustrated here.

See examples of the compound widgets ENVI_PICKFILE and ENVI_SELECT in
“Managing Files” on page 94.

WIDGET_EDIT

This widget is used to edit items from a list.

WIDGET_GEO

This widget prompts the user to select latitude and longitude values.

Figure 4-1: A Widget with Editable Items Displayed in a List

Figure 4-2: A Widget for Entering Latitude and Longitude Values
Compound Widgets ENVI Programmer’s Guide

Chapter 4: User Functions 57
WIDGET_MAP

This widget is used to edit map coordinates and projections.

WIDGET_MENU

This widget is used to make a menu of exclusive or non-exclusive buttons. Exclusive buttons
have round radio buttons, and non-exclusive buttons have square boxes with check marks.

Figure 4-3: A Widget for Editing Map Coordinates and Projections

Figure 4-4: A Widget with Exclusive Radio Buttons
ENVI Programmer’s Guide Compound Widgets

58 Chapter 4: User Functions
WIDGET_MULTI

This widget is used to select multiple items from a list. ENVI uses it to select ROIs to use for
a classification.

WIDGET_OUTF

This widget is used to select an output filename.

Figure 4-5: A Widget for Selecting Items from a List

Figure 4-6: A Widget for Selecting or Choosing an Output Filename
Compound Widgets ENVI Programmer’s Guide

Chapter 4: User Functions 59
WIDGET_OUTFM

This widget is also used to select an output filename, but it provides the option to save the
result to memory. If you select File, you can enter or choose an output filename.

WIDGET_PARAM

This widget is used for entering numeric parameters.

WIDGET_PMENU

This widget provides a drop-down list and is an alternative to using WIDGET_MENU with
exclusive buttons.

Figure 4-7: A Widget for Selecting Output to File or Memory

Figure 4-8: A Widget for Entering Numeric Parameters

Figure 4-9: A Widget with a Drop-down List
ENVI Programmer’s Guide Compound Widgets

60 Chapter 4: User Functions
WIDGET_RGB

This widget is used to modify an RGB color value with the option of using other color space
models.

WIDGET_SLABEL

This widget is used to display a text message with scroll bars.

Figure 4-10: A Widget for Modifying Color Values

Figure 4-11: A Widget for Displaying Text Messages
Compound Widgets ENVI Programmer’s Guide

Chapter 4: User Functions 61
WIDGET_SLIST

This widget is used to create lists. The selected item will be listed in a separate text box.

WIDGET_SSLIDER

This widget is used to set a numeric value using a slider.

WIDGET_STRING

This widget is used to enter strings.

Figure 4-12: A Widget for Selecting Items from a Displayed List

Figure 4-13: A Widget with a Slider for Specifying Numeric Values

Figure 4-14: A Widget for Entering Text
ENVI Programmer’s Guide Compound Widgets

62 Chapter 4: User Functions
WIDGET_SUBSET

This widget contains a Spatial Subset button, which displays ENVI’s Select Spatial Subset
dialog.

WIDGET_TOGGLE

This widget contains a toggle button.

Figure 4-15: A Standard Spatial Subset Widget

Figure 4-16: A Widget with an Arrow Toggle Button
Compound Widgets ENVI Programmer’s Guide

Chapter 4: User Functions 63
Auto-Managed Widget Events

Ordinarily, user functions that include widgets must have separate routines to handle all of the
events that the widgets might generate. These event-handling routines can be cumbersome
and often confusing to code, especially for a relatively new programmer. To facilitate adding
widgets to user functions, ENVI developers provided a mechanism for ENVI to automatically
manage all of the events that originate from ENVI widgets. Two ENVI routines are central to
allowing you to use auto-managed widgets.

WIDGET_AUTO_BASE

In ordinary IDL widget programming, all widget bases, including the top-level base (TLB),
are created using the IDL function WIDGET_BASE. However, in ENVI programming, if you
want to create widget hierarchies whose events are auto-managed by ENVI, you must use the
the WIDGET_AUTO_BASE routine to create the TLB. All other bases used in building the
GUI for the user function should be created with the IDL function WIDGET_BASE.

TLBs created using WIDGET_AUTO_BASE are automatically column-based, centered, and
modal (blocking). Unlike WIDGET_BASE, which can accept dozens of different keywords
controlling the appearance of the base, WIDGET_AUTO_BASE only accepts four keywords:
GROUP, TITLE, XBIG, and YBIG. These keywords allow the GUI to be tied to an existing
widget, to be given a title for the window bar, and to be automatically be offset if unusually
wide or tall.

AUTO_WID_MNG

In an ordinary IDL widget program, once the GUI is defined, the XMANAGER procedure is
called to register the widget and to begin monitoring for events that you would have to
manage with a separate event handler procedure. However, for auto-managed widgets, you
never need to call XMANAGER. Instead, you can call a special ENVI function called
AUTO_WID_MNG, which internally registers the widget, monitors for events, and returns
the user input to you as a structure variable. The AUTO_WID_MNG function also adds OK
and Cancel buttons to the bottom of the widget.

This function is used as follows:

result = AUTO_WID_MNG(TLB)

The argument of the function (TLB) must be a widget base created with
WIDGET_AUTO_BASE. When the user function’s GUI is dismissed (for example, by
clicking OK to proceed with the routine), RESULT is set to a structure variable that contains
a special tag for each widget used in the GUI. The name of each tag in the structure is defined
by the user value (specified by the UVALUE keyword) assigned to each ENVI compound
widget when the GUI was defined.
ENVI Programmer’s Guide Auto-Managed Widget Events

64 Chapter 4: User Functions
This technique gives user functions a very simple form:

PRO MyUserFunction, Event
TLB = WIDGET_AUTO_BASE(...)
1st_parameter = WIDGET_PARAM(TLB, uvalue='param1'...)
result = AUTO_WID_MNG(TLB)
do the processing...

END

In this example, the value of result.param1 contains the information you entered into the
WIDGET_PARAM widget. See the ENVI Reference Guide for descriptions of each
compound widget, including the type of information returned by the widget. In addition to
tags for each ENVI widget used in the GUI, the RESULT structure always contains a tag
called ACCEPT, which is set to 1 if you click OK or 0 if you click Cancel.

If you prefer, you can write your own event-handling routines for your user functions. If you
do this, you can still use the ENVI compound widgets in your code. The ENVI widget
produces an event structure with an extra tag called RESULT that contains the information
entered into the widget. There are some cases when it is preferable to write your own event-
handling procedures, for example, if you need to create a user function whose GUI is not
modal. However, you can write most user functions without this additional detail.

Example: Building a Simple GUI with Auto-Managed Widgets

This example demonstrates how to build a GUI and work with the result structure. This user
function collects two numeric parameters and prompts the user to add or multiply them. Call
this user function TEST_WIDGETS.

1. Open the envi.men file and add an item under the MyFuntions menu:

1 {Test Widgets} {not used} {test_widgets}

2. Save the menu file.

3. Restart ENVI. In the IDLDE window that is running the ENVI session, open a new
editor window.

4. In the new editor window, enter the following user function code:

PRO test_widgets, event
COMPILE_OPT STRICTARR
TLB = WIDGET_AUTO_BASE(title='widget test')
p1 = WIDGET_PARAM(tlb, /auto_manage, dt=4, field=2, $

prompt='enter the first parameter', uvalue='p1')
p2 = WIDGET_PARAM(tlb, /auto_manage, dt=4, field=2, $

prompt='enter the second parameter', uvalue='p2')
operation = WIDGET_TOGGLE(tlb, /auto_manage, default=0, $

list=['add', 'multiply'], prompt='operation', $
uvalue='operation')

result=AUTO_WID_MNG(TLB)
IF (result.accept eq 0) THEN return
IF (result.operation eq 0) THEN $
ENVI_INFO_WID, STRTRIM(result.p1 + result.p2) ELSE $

ENVI_INFO_WID, STRTRIM(result.p1 * result.p2)
END

5. Save the file as test_widgets.pro in the save_add directory.

6. Compile the user function to ensure there are no syntax errors.
Auto-Managed Widget Events ENVI Programmer’s Guide

Chapter 4: User Functions 65
7. After compilation, place your cursor on the line at the bottom of the code that begins
with:

IF (result.operation eq 0) THEN $

8. Then, from the Run menu in the IDLDE, select Set Breakpoint. You should see a
yellow circle appear next to this line in the Editor window. Setting a breakpoint allows
you to execute the user function, but it stops at the line where the breakpoint occurs.
This allows you to examine some of the variables created within TEST_WIDGETS.

9. After the breakpoint is set, try running TEST_WIDGETS. You can execute the
function by using the menu item under MyFunctions, or by using the Run button on
the Editor toolbar.

10. When the widget interface appears, pay particular attention to the layout of the
widgets. For example, examine the widget to see if the toggle button appears on one
line or two, whether the widget GUI looks the same as ENVI’s GUIs, and to see if the
widget interface could be organized better.

It takes some practice to control the layout of any widget interface. It is usually
possible to force widgets to appear on a single line by putting them into their own
widget base that is defined as a row base instead of a column base.

11. After you fill in values and select an operation, click the OK button. The user function
should now halt execution because of the breakpoint.

12. In the IDLDE, use the Variable Watch Window to examine the RESULT variable, or
use the HELP command:

help, result, /struct

** Structure <bed2b8>, 4 tags, length=24, refs=1:
P1 DOUBLE 32.000000
P2 DOUBLE 24.800000
OPERATION INT 1
ACCEPT INT 1

13. The result structure contains four tags, one for each of the two WIDGET_PARAMS
(P1 and P2), one for the WIDGET_TOGGLE (OPERATION), and one to indicate which
of the OK and Cancel buttons was clicked (ACCEPT). Note that the tag names are the
same as the user values for the widgets. The ACCEPT tag is always automatically added
to the result structure.

The values RESULT.P1 and RESULT.P2 are set to the entered parameters,
RESULT.OPERATION is set to the index into the LIST array that corresponds to the
value selected (0 for add and 1 for multiply), and RESULT.ACCEPT is set to 1 to
indicate the user clicked OK. If the ACCEPT tag is set to 0, then the user clicked
Cancel. If this occurs, then the user function returns in the next line.

Also note that the numeric data returned by AUTO_WID_MNG are double-precision
values. This is always the case for numeric data collected by ENVI’s
AUTO_WID_MNG routine, so in some cases, you may need to change the data type to
something more appropriate for your needs.

14. From the IDLDE Run menu, select Step Out to continue executing the user function.

The results of the operation are displayed in an ENVI report widget created with the
function ENVI_INFO_WID. This is a special widget routine that makes a simple
ENVI Programmer’s Guide Auto-Managed Widget Events

66 Chapter 4: User Functions
dialog window in which to display text reports. This widget is not modal — that is, the
widget does not block the rest of ENVI from functioning.

15. With a few minor modifications, you can significantly improve the appearance of the
widget interface. Make the following changes to the TEST_WIDGETS routine
(highlighted by line comments in the following code).

PRO TEST_WIDGETS, event

COMPILE_OPT STRICTARR

TLB = WIDGET_AUTO_BASE(title='widget test')

;+++++++++++++++BEGIN: Code Modification+++++++++++++++
row_base1 = WIDGET_BASE(TLB, /row)
p1 = WIDGET_PARAM(row_base1, /auto_manage, dt=4, $

;++++++++++++++++END: Code Modification++++++++++++++++
field=2, prompt='enter the first parameter', $

uvalue='p1')

;+++++++++++++++BEGIN: Code Modification+++++++++++++++
row_base2 = WIDGET_BASE(TLB, /row)
p2 = WIDGET_PARAM(row_base2, /auto_manage, dt=4, $

;++++++++++++++++END: Code Modification++++++++++++++++
field=2, prompt='enter the second parameter', $

uvalue='p2')

;+++++++++++++++BEGIN: Code Modification+++++++++++++++
row_base3 = WIDGET_BASE(TLB, /row)
operation = WIDGET_TOGGLE(row_base3, /auto_manage, $

;++++++++++++++++END: Code Modification++++++++++++++++
default=0, list=['add', 'multiply'], $

prompt='operation', uvalue='operation')
result=AUTO_WID_MNG(TLB)

IF (result.operation EQ 0) THEN $
ENVI_INFO_WID, STRTRIM(result.p1 + result.p2) ELSE $

ENVI_INFO_WID, STRTRIM(result.p1 * result.p2)

END

16. Save the user function code (overwriting the original version in the save_add
directory), and compile it to ensure there are no syntax errors.

17. Place the cursor on the line containing the breakpoint, then from the Run menu, select
Clean Breakpoint.

18. Now, try running the modified version of the TEST_WIDGETS user function.

Note that the widget layout has changed so that all of the individual widgets now
appear on only one line.
Auto-Managed Widget Events ENVI Programmer’s Guide

Chapter 4: User Functions 67
Trapping Errors in User Functions

Whenever possible, potential errors that could occur when executing a user function should
be trapped internally to prevent ENVI from crashing. While it is impossible (and
unreasonably time-consuming) to account for every possibility, there are several quick and
easy ways of preventing the most common problems. General guidelines include the
following:

• When a widget includes a Cancel button (every ENVI_SELECT, ENVI_PICKFILE,
and AUTO_WID_MNG widget has one), always check to see if it was selected. This
type of error checking is very easy to implement and should always be included in a
user function.

• Wherever possible, hard code default values into widgets or algorithms in case the user
leaves a required value undefined.

• When using the WHERE function, always use the optional COUNT parameter to
ensure a valid result was returned.

Input/Output Error Handling

Although not a requirement, you should properly handle I/O errors in all user functions. Use
the IDL routine ON_IOERROR, which specifies a jump to statement when an I/O error
occurs. If ON_IOERROR is called and an I/O error occurs later in the same procedure
activation, control is transferred to the designated statement with the error code stored in the
system variable !ERROR_STATE. The text of the error message is contained in
!ERROR_STATE.MSG.

The IDL routine CATCH provides a more generalized mechanism for handling exceptions
and errors. The advantage of CATCH is that it traps not only I/O errors but also any
programming errors such as undefined variables, invalid array subscripts, or undefined
functions.

ENVI uses a mix of ON_IOERROR and CATCH for error handling. Library routines
internally use ON_IOERROR with a CATCH mechanism setup prior to the routine call. Any
I/O errors are handled within the routine, but other programming errors are handled
externally. In order to follow this model, the event handler establishes a CATCH mechanism
after getting the processing parameters and prior to calling the library routine.

The ENVI routine ENVI_IO_ERROR reports I/O errors and provides an option to delete the
output file being created. Using this routine keeps the user function I/O error display
consistent with ENVI.

The following example summarizes the use of the error handling routines.

Example: Input/Output Error Handling

This example illustrates the combined use of ON_IOERROR and ENVI_IO_ERROR to trap
and display I/O errors. All user functions should perform these basic steps. The following
steps outline a technique for handling I/O errors.

1. At the start of the routine, clear the system error code !ERROR_STATE using the
MESSAGE routine, and declare the jump location for an I/O error.
ENVI Programmer’s Guide Trapping Errors in User Functions

68 Chapter 4: User Functions
2. When the processing is complete, clear the system error code !ERROR_STATE, using
the MESSAGE routine to remove any non-fatal errors.

3. Determine if there was an I/O error and print the error message.

4. Delete the current output file specified by the file unit number UNIT.

You can use the following model to handle I/O errors. This is just one suggested method;
many other effective techniques are available.

PRO user_function, [parameters and keywords]
 message, /reset
 on_ioerror, trouble
 Initialization and Processing ...
message,/reset
trouble: IF (!error_state.code NE 0) THEN $
 ENVI_IO_ERROR, 'User Function', unit=unit
 IF (!error_state.code EQ 0) THEN $
 Write an ENVI header
END

Using CATCH for Unexpected Non-Input/Output Errors

The IDL routine CATCH allows you to use IDL’s internal error-catching mechanism to make
a generic error handler that prevents a crash when an unexpected error condition occurs. The
IDL system variable !ERROR_STATE contains information about the last error, including the
internal error code (!ERROR_STATE.CODE) and the text of the error message
(!ERROR_STATE.MSG). Each time an IDL error occurs, this system variable is updated.
CATCH’s usage is simple:

CATCH, error

When CATCH is called, the ERROR variable is set to 0. However, when an error condition
occurs, ERROR is set to the internal error code !ERROR_STATE.CODE, and the IDL
procedure (the ENVI user function) jumps immediately to the line of the program where the
CATCH procedure was called and continues executing from there. At this point, you can use
the information in the !ERROR_STATE system variable to display a message about the error
and prompt the user to choose how to proceed.

The following code example works well as a generic error handler when placed at the
beginning of a user function:

CATCH, error
IF (error NE 0) THEN BEGIN
 ok = DIALOG_MESSAGE(!error_state.msg, /cancel)
 IF (STRUPCASE(ok) EQ 'CANCEL') THEN return
ENDIF
Trapping Errors in User Functions ENVI Programmer’s Guide

Chapter 4: User Functions 69
Using Processing Routines and Tiling

Processing routines in ENVI take input image data, process the data, and output a new image,
plot, or report. ENVI commonly refers to these as the “DOIT” portions of a user function.

ENVI processing routines are usually combined with ENVI’s tiling methodology to handle
images of any spatial or spectral size. Tiles can be spatial or spectral with the size of a spatial
tile defined in the configuration file. The size of a spectral tile is always the number of
samples times the number of bands.

All ENVI user functions can use the built-in tiling functions to get data. This ensures that the
processing function operates on any size data file, both spatially and spectrally. ENVI tiles
come in three formats: BSQ (number of samples by number of tile lines), BIL (number of
samples by number of bands), or BIP (number of bands by number of samples). BIL and BIP
tiles differ only by a transpose:

BIL tile = transpose(BIP tile)

ENVI also provides routines that display a processing status dialog, reporting the percentage
of processing completed. See “Processing Status Report” on page 80.

ENVI also allows non-tiled processing. However, this is not a recommended solution because
it does not always work for large images. Nevertheless, non-tiled processing is a quick way to
access data without the overhead of setting up tiling operations, and it can be used as a
prototyping technique (see “Non-Tiled Processing Routines” on page 78).

All processing functions should include both error handling and status reports as common
practice. The next sections break down the processing routine into basic components, and
they discuss the available ENVI routines.

Note
Creating the processing routine as a separate procedure from the menu event handler and
processing parameter input allows the routine to be called directly with all supplied
arguments. See “Batch Mode” on page 32.
ENVI Programmer’s Guide Using Processing Routines and Tiling

70 Chapter 4: User Functions
Tiled Processing Routines

ENVI’s tiling process divides input data into equal-size units, either spatially or spectrally.
This ensures that all images can be processed, regardless of spatial or spectral size. A spatial
tile is a group of lines with all samples on that line, while a spectral tile is one line of all
bands. Spatial and spectral tiles are illustrated in the following figure.

Spatial tiles are equal or near-equal divisions of the input band and are intended for spatial
processing, regardless of the file storage order. When accessing multiple bands from a single
file, each band has an equivalent number of spatial tiles. For example, the first tile from bands
1 and 2 has the same number of lines.

It is not uncommon for a processing routine to use spatial tiles for BSQ files and spectral tiles
for BIL or BIP files. Using tiles with the same storage order as the input files is most efficient.
For example, when applying a gain and offset to all the bands in an image, it is much more
efficient to operate spatially on data stored as BSQ and operate spectrally on data stored as
BIL or BIP.

Spatial tiles can also specify the number of overlap lines when performing neighborhood
operations with tiling, thus eliminating the need to keep information between tiles. The
overlap is only added to the top of each tile and is not used when a single band is returned as
one tile, in the case where the number of tiles equals the number of input bands. For example,
a 3x3 convolution uses a tile overlap to allow the bottom line of the previous tile to be
processed.

Note
The input data format (BSQ, BIL, or BIP) is returned using the INTERLEAVE keyword to
ENVI_FILE_QUERY. The values 0, 1, and 2 correspond to BSQ, BIL, and BIP,
respectively.

The steps for a tiling process are as follows:

1. Initialize the spatial or spectral tile request using ENVI_INIT_TILE.

2. Retrieve a tile of input data using ENVI_GET_TILE.

3. Free the tile request when no more tiles are needed using ENVI_TILE_DONE.

Figure 4-17: Illustration of Spatial and Spectral Tiles
Using Processing Routines and Tiling ENVI Programmer’s Guide

Chapter 4: User Functions 71
The following examples detail the use of the tiling routines and issues related to input file
storage order. In all examples, the returned TILE_ID from ENVI_INIT_TILE is a unique
reference ID associated with the requested tiles that is used by the other tile routines. A FOR
loop is then used to loop over the total number of tiles (NUM_TILES returned from the tile
initialization). Within the FOR loop, the current tile, band index, and tile data information are
printed to the IDL Output Log window. Once all the tiles have been retrieved, the tile request
is freed using ENVI_TILE_DONE.

Example: Spatial Tiling

Tiling routines that process only spatial tiles should not be concerned with the input data
storage order. Tiles are initialized as spatial tiles, and each tile is processed in the same way.
The tile initialization routine needs the file ID, the selected bands, and the spatial dimensions.
ENVI_SELECT returns all of these parameters when you select an input file.

The routine in the following example uses ENVI_SELECT to choose the input file, returning
the FID, POS, and DIMS variables as inputs to ENVI_INIT_TILE. For spatial tiles, the
interleave value is 0 (BSQ), regardless of the data interleave. The following sample code is
also available in the file uftile1.pro in the lib directory of the ENVI installation.

pro spat_tile
 envi_select, title='Input Filename', fid=fid, $
 pos=pos, dims=dims
 if (fid eq -1) then return
 tile_id = envi_init_tile(fid, pos, interleave=0, $
 num_tiles=num_tiles, xs=dims[1], xe=dims[2], $
 ys=dims[3], ye=dims[4])
 for i=0L, num_tiles-1 do begin
 data = envi_get_tile(tile_id, i, band_index=band_index)
 print, i, band_index
 help, data
 endfor
 envi_tile_done, tile_id
end

As you can see, all spatial tiling is performed the same way, regardless of the data storage
order. To execute this example:

1. Save the routine to a file and place it in the save_add directory.

2. Start or restart ENVI.

3. Open the IDL development environment (PC) or the shell window where ENVI was
started (UNIX, Mac OS X).

4. Type the following at the ENVI command line:

spat_tile

5. Choose an input file and look at the messages displayed in the IDL Output Log
window.

Note
The band index returned from ENVI_GET_TILE references the POS array, and the actual
file band number is POS[band_index].
ENVI Programmer’s Guide Using Processing Routines and Tiling

72 Chapter 4: User Functions
Example: Spectral Tiles

Tiling routines that process only spectral tiles should use BIL and BIP tile interleaves for
optimal performance. The dimensions of a BIL slice are always [number of samples, number
of bands]. A BIP slice is the transpose of the BIL slice, so dimensions are [number of bands,
number of samples]. The tile initialization routine needs the file ID, selected bands, and
spatial dimensions. ENVI_SELECT returns all of these parameters when you select an input
file.

Note
If performance is not an issue, then you should always use BIL tiles.

The routine in the following example uses ENVI_SELECT to choose the input file, returning
the selected FID, POS and DIMS variables for inputs to ENVI_INIT_TILE. The spectral tiles
in this example use BIL tiles for data in BSQ or BIL interleave and BIP tiles for data in BIP
interleave. The input data interleave format is returned using the INTERLEAVE keyword to
ENVI_FILE_QUERY. The following sample code is also available in the file uftile2.pro
in the lib directory of the installation.

pro spec_tile
 envi_select, title='Input Filename', fid=fid, $
 pos=pos, dims=dims
 if (fid eq -1) then return
 envi_file_query, fid, interleave=interleave
 tile_id = envi_init_tile(fid, pos, num_tiles=num_tiles, $
 interleave=(interleave > 1), xs=dims[1], xe=dims[2], $
 ys=dims[3], ye=dims[4])
 for i=0L, num_tiles-1 do begin
 data = envi_get_tile(tile_id, i)
 print, i
 help, data
 endfor
 envi_tile_done, tile_id
end

To execute this example:

1. Save the routine to a file and place it in the save_add directory.

2. Start or restart ENVI.

3. Open the IDL development environment (PC) or the shell window where ENVI was
started (UNIX, Mac OS X).

4. Type the following at the ENVI command line:

spec_tile

5. Choose an input file and look at the messages displayed in the IDL Output Log
window.

Note
The greater than operator (>) used in the call to ENVI_INIT_TILE returns the greater of its
two arguments. For details, see ENVI_INIT_TILE.
Using Processing Routines and Tiling ENVI Programmer’s Guide

Chapter 4: User Functions 73
Example: Spatial and Spectral Tiles

Tiling routines that process either spatial or spectral tiles should set the tile interleave equal to
the file interleave. For example, a gain and offset correction applied to every band in an image
could be applied using any of the file interleaves. With a BSQ interleave, the current gain and
offset values are based on the band index of the current tile. BIL and BIP tile interleaves
apply gains and offsets as vectors to every band in the current tile. The tile initialization
routine needs the file ID, selected bands, and spatial dimensions. ENVI_SELECT returns all
of these parameters when used to select the input file and is used in this example. For details,
see ENVI_INIT_TILE. The input image’s interleave is found using the INTERLEAVE
keyword to ENVI_FILE_QUERY.

The following sample code is also available in the file uftile3.pro in the lib directory of
the ENVI installation.

pro ss_tile
 envi_select, title='Input Filename', fid=fid, $
 pos=pos, dims=dims
 if (fid eq -1) then return
 envi_file_query, fid, interleave=interleave
 tile_id = envi_init_tile(fid, pos, num_tiles=num_tiles, $
 interleave=interleave, xs=dims[1], xe=dims[2], $
 ys=dims[3], ye=dims[4])
 for i=0L, num_tiles-1 do begin
 data = envi_get_tile(tile_id, i)
 ; Sample case statement for BSQ, BIL and BIP tiles
 case interleave of
 0:
 1:
 2:
 endcase
 print, i
 help, data
 endfor
 envi_tile_done, tile_id
end

To execute this example.

1. Save the routine to a file and place it in the save_add directory.

2. Start or restart ENVI.

3. Open the IDL development environment (PC) or the shell window where ENVI was
started (UNIX, Mac OS X).

4. Type the following at the ENVI command line:

ss_tile

5. Choose an input file and look at the messages displayed in the IDL Output Log
window.

Saving the Results

This section discusses how to save image results from tiled processing. For information on
outputting results to plots, see “Plotting” on page 87. For information on outputting results to
a report, see “Reports” on page 90. You can write image results to a file or memory; ENVI
ENVI Programmer’s Guide Using Processing Routines and Tiling

74 Chapter 4: User Functions
allows both options whenever possible. When writing results to a file, you should write the
result with the same interleave as the tile processing. Tiles processed using spatial BSQ tiles
generate BSQ results; similarly, BIL tiles generate BIL results. Following this simplification,
the processed tiles are written directly to files without the need to convert interleave formats.

Output files are opened for writing using the IDL routine OPENW. Prior to calling OPENW, a
file unit number is allocated using GET_LUN. The tile data are written to the file using the
IDL routine WRITEU, which writes the specified array of data in binary format. After all data
are written to the file, the file is closed and the file unit number is deallocated using the IDL
routine FREE_LUN.

Once the file is written to disk, the ENVI routine ENVI_SETUP_HEAD is used to write an
ENVI header and optionally open the file. The following file information is required to write
the header: filename, number of samples (ns), number of lines (nl), number of bands (nb),
offset, interleave, and data type. Although optional, you should also supply the x and y
starting pixel, text description, band names, and inheritance. The optional OPEN keyword
opens the file and loads the contents into the Available Bands List. Remember to use the
WRITE keyword to write the header file to disk. Otherwise, it is stored in memory only and
will be lost when the IDL session ends.

Note
Additional information is required for special file types, such as classification and spectral
libraries. See ENVI_SETUP_HEAD for more information.

For memory output, the result is stored in an allocated array in memory. The processed data
from each tile are inserted into the appropriate storage location. The dimensions of a memory
array are always [ns, nl, nb]. The IDL functions BYTARR, INTARR, LONARR, FLTARR,
DBLARR, and MAKE_ARRAY are used to create memory arrays of type byte, integer, long
integer, floating-point, double-precision, and arbitrary, respectively.

When the processing is completed and the memory array contains the processed result, the
array is passed into ENVI using the routine ENVI_ENTER_DATA. At a minimum, only the
memory array is required. Although optional, you should also supply the x and y starting
pixel, text description, band names, and inheritance.

The following examples detail the use of writing header files and entering memory results.

Example: Saving Spatial Tiles to Disk

The “Example: Spatial Tiling” on page 71 is modified in the example below to save the
resulting tiles to disk and to write an ENVI header file. The new modifications are as follows:

1. Accept an output filename as a parameter.

2. Open the output file and write the result.

3. Call ENVI_SETUP_HEAD to write an ENVI header file.

The IDL procedure OPENW is used to open the output filename, and the keyword GET_LUN
allocates an LUN. Within the tile processing loop, each returned data tile is written to disk
using the IDL procedure WRITEU, which uses the LUN and the tile data array as arguments.
The tile data are written in binary format using the data type of the tile data array. Since no
actual processing is performed, the tile data type remains the same as the input data type—the
value returned from ENVI_FILE_QUERY using the DATA_TYPE keyword.
Using Processing Routines and Tiling ENVI Programmer’s Guide

Chapter 4: User Functions 75
Note
Tile processing may change the data type; be sure to check that the output data type is what
you expect.

After writing all data to the output file, close the file and free the allocated file unit number
using the IDL procedure FREE_LUN. The ENVI header file is written using
ENVI_SETUP_HEAD. The below example specifies both the required keywords FNAME,
NS, NL, NB, DATA_TYPE, OFFSET and INTERLEAVE, and the optional keywords
XSTART, YSTART, and DESCRIP.

The following sample code is also available in the file uftile4.pro in the lib directory of
the installation.

pro spat_disk, out_name
 ; Check for an output filename
 if (n_elements(out_name) eq 0) then begin
 print, 'Please specify a valid output filename'
 return
 endif
 envi_select, title='Input Filename', fid=fid, $
 pos=pos, dims=dims
 if (fid eq -1) then return
 envi_file_query, fid, data_type=data_type, xstart=xstart,$
 ystart=ystart
 ns = dims[2] - dims[1] + 1
 nl = dims[4] - dims[3] + 1
 nb = n_elements(pos)
 openw, unit, out_name, /get_lun
 tile_id = envi_init_tile(fid, pos, interleave=0, $
 num_tiles=num_tiles, xs=dims[1], xe=dims[2], $
 ys=dims[3], ye=dims[4])
 for i=0L, num_tiles-1 do begin
 data = envi_get_tile(tile_id, i, band_index=band_index)
 print, i, band_index
 writeu, unit, data
 endfor
 free_lun, unit
 envi_setup_head, fname=out_name, ns=ns, nl=nl, nb=nb, $
 data_type=data_type, offset=0, interleave=0, $
 xstart=xstart+dims[1], ystart=ystart+dims[3], $
 descrip='Test routine output', /write, /open
 envi_tile_done, tile_id
end

To execute this example:

1. Save the procedure to a file and place it in the save_add directory.

2. Start or restart ENVI.

3. Open the IDL development environment (PC) or the shell window where ENVI was
started (UNIX, Mac OS X).

4. Type the following at the ENVI command line to save the tiles to disk, where filename
is a valid output file name:

spat_disk, 'filename'

5. Choose an input file.
ENVI Programmer’s Guide Using Processing Routines and Tiling

76 Chapter 4: User Functions
6. The resulting image is added to the Available Bands List.

Example: Saving Spatial Tiles to Memory

The “Example: Saving Spatial Tiles to Disk” on page 74 is modified in the example below to
save the resulting tiles to memory. Data are then entered into ENVI using
ENVI_ENTER_DATA.

The IDL function MAKE_ARRAY is used to allocate an output memory array for the tiled
data. In this example, the output array is the same data type as the input, so the TYPE
keyword to MAKE_ARRAY is set to the data type returned form ENVI_FILE_QUERY.

Note
The output data type is not always the same as the input data type. It depends upon the
processing routine and the range of the output data.

To save each tile into the output array, the band index and y start value returned from
ENVI_GET_TILE are used to index into the appropriate array location. The y start value is in
file coordinates, and any spatial line subset (specified by DIMS[3]) must be subtracted. After
saving all the tile data into the output memory array, the data are entered into ENVI using
ENVI_ENTER_DATA. The below example uses this routine’s optional keywords, XSTART,
YSTART, and DESCRIP. This sample code is also available in the file uftile5.pro in the
lib directory of the installation.

pro spat_mem
 envi_select, title='Input Filename', fid=fid, $
 pos=pos, dims=dims
 if (fid eq -1) then return
 envi_file_query, fid, data_type=data_type, xstart=xstart,$
 ystart=ystart
 ns = dims[2] - dims[1] + 1
 nl = dims[4] - dims[3] + 1
 nb = n_elements(pos)
 mem_res = make_array(ns, nl, nb, type=data_type, /nozero)
 tile_id = envi_init_tile(fid, pos, interleave=0, $
 num_tiles=num_tiles, xs=dims[1], xe=dims[2], $
 ys=dims[3], ye=dims[4])
 for i=0L, num_tiles-1 do begin
 data = envi_get_tile(tile_id, i, band_index=band_index, $
 ys=ys)
 print, i, band_index
 mem_res[0,ys-dims[3],band_index] = data
 endfor
 envi_enter_data, mem_res, xstart=xstart+dims[1], $
 ystart=ystart+dims[3], descrip='Test routine output'
 envi_tile_done, tile_id
end

To execute this example:

1. Save the procedure to a file and place it in the save_add directory.

2. Start or restart ENVI.

3. Open the IDL development environment (PC) or the shell window where ENVI was
started (UNIX, Mac OS X).
Using Processing Routines and Tiling ENVI Programmer’s Guide

Chapter 4: User Functions 77
4. Type the following at the ENVI command line to save the tiles to memory:

spat_mem

5. Choose an input file.

6. The resulting image is added to the Available Bands List.

Example: Saving Spectral Tiles to Disk

The “Example: Saving Spatial Tiles to Disk” on page 74 is modified in the below example to
save spectral tiles to disk.

The IDL procedure OPENW is used to open the output filename, and the keyword GET_LUN
allocates an LUN. Within the tile processing loop, each returned data tile is written to disk
using the IDL procedure WRITEU, which uses the LUN and the tile data array as arguments.
The tile data are written in binary format using the data type of the tile data array. Since no
actual processing is performed, the tile data type remains the same as the input data type—the
value returned from ENVI_FILE_QUERY using the DATA_TYPE keyword.

Note
Tile processing may change the data type, so be sure to check that the output data type is
what you expected.

Writing each tile in the data tile interleave also preserves the file interleave. Both the input
and output file have the same interleave. The input file interleave is returned from
ENVI_FILE_QUERY using the INTERLEAVE keyword.

After writing all data to the output file, close the file and free the allocated file unit number
using the IDL procedure FREE_LUN. The ENVI header file is written using
ENVI_SETUP_HEAD. The below example specifies both the required keywords FNAME,
NS, NL, NB, DATA_TYPE, OFFSET and INTERLEAVE, and the optional keywords
XSTART, YSTART, and DESCRIP.

The following sample code is also available in the file uftile6.pro in the lib directory of
the installation.

pro spec_disk, out_name
 ; Check for an output filename
 if (n_elements(out_name) eq 0) then begin
 print, 'Please specify a valid output filename'
 return
 endif
 envi_select, title='Input Filename', fid=fid, $
 pos=pos, dims=dims
 if (fid eq -1) then return
 envi_file_query, fid, data_type=data_type, xstart=xstart,$
 ystart=ystart, interleave=interleave
 ns = dims[2] - dims[1] + 1
 nl = dims[4] - dims[3] + 1
 nb = n_elements(pos)
 openw, unit, out_name, /get_lun
 tile_id = envi_init_tile(fid, pos, num_tiles=num_tiles, $
 interleave=(interleave > 1), xs=dims[1], xe=dims[2], $
 ys=dims[3], ye=dims[4])
 for i=0L, num_tiles-1 do begin
 data = envi_get_tile(tile_id, i)
ENVI Programmer’s Guide Using Processing Routines and Tiling

78 Chapter 4: User Functions
 writeu, unit, data
 print, i
 endfor
 free_lun, unit
 envi_setup_head, fname=out_name, ns=ns, nl=nl, nb=nb, $
 data_type=data_type, offset=0, interleave=(interleave > 1),$
 xstart=xstart+dims[1], ystart=ystart+dims[3], $
 descrip='Test routine output', /write, /open
 envi_tile_done, tile_id
end

To execute this example:

1. Save the procedure to a file and place it in the save_add directory.

2. Start or restart ENVI.

3. Open the IDL development environment (PC) or the shell window in which ENVI was
started (UNIX, Mac OS X).

4. Type the following at the ENVI command line to save the tiles to disk where filename
is a valid output file name:

spec_disk, 'filename'

5. Choose an input file.

6. The resulting image is saved to disk and added to the Available Bands List.

Non-Tiled Processing Routines

ENVI also provides a method of performing non-tiled processing. For tiling, the input data
are divided into equal-size units, either spatially or spectrally. Non-tiled processing is able to
access an entire spatial band, or any spatial subset, with a single request. ENVI does not put
any constraints on the size of the requested data.

Spectral non-tiled processing has two options: build the whole image cube into memory using
the single band requests, or request the data one spectral slice at a time. Both techniques are
available without the need to initialize tiling.

Note
If ENVI cannot allocate an array to hold the requested data, no data are returned.

Non-tiled processing routines are useful to prototype algorithms on data that fit into memory.
When a more general solution is desired, the non-tiled processing routines can be converted
to tiled routines.

The two routines used to access non-tiled spatial and spectral data are ENVI_GET_DATA and
ENVI_GET_SLICE, respectively.

The following examples illustrate the use of these routines.

Example: Non-tiled Spatial Processing

This example interactively requests a band of spatial data. The routine ENVI_SELECT is
used to choose the input data.

1. Start ENVI.
Using Processing Routines and Tiling ENVI Programmer’s Guide

Chapter 4: User Functions 79
2. Open an multi-band image file.

3. Open the IDL development environment (PC) or the shell window in which ENVI was
started (UNIX, Mac OS X).

4. Type the following on the ENVI command line to select a file:

ENVI_SELECT, title='Input Filename', fid=fid, pos=pos, $
dims=dims

5. Type the following at the ENVI command line to return the first band of data:

data = ENVI_GET_DATA(fid=fid, dims=dims, pos=pos[0])

6. Verify the return of the data using the help command:

help, data

7. If the number of elements of POS is greater than one, then type the following at the
ENVI command line to return the second band of data:

data = ENVI_GET_DATA(fid=fid, dims=dims, pos=pos[1])

This interactive example is for demonstration purposes only. In practice, these steps are part
of the processing routine.

Example: Non-tiled Spectral Processing

This example interactively requests a spectral data slice, which is a single line of all bands.
Both BIL [ns, nb] and BIP [nb, ns] slices can be requested. The routine ENVI_SELECT is
used to choose the band of data to request.

1. Start ENVI.

2. Open a multi-band image file.

3. Open the IDL development environment (PC) or the shell window in which ENVI was
started (UNIX, Mac OS X).

4. Type the following at the ENVI command line to select a file:

ENVI_SELECT, title='Input Filename', fid=fid, pos=pos, $
dims=dims

5. Type the following at the ENVI command line to get a BIL slice of data for the first
line:

data = ENVI_GET_SLICE(fid=fid, pos=pos, line=dims[3], $
xs=dims[1], xe=dims[2], /bil)

6. Verify the return of the data using the help command:

help, data

7. Type the following at the ENVI command line to get a BIP slice of data for the last
line:

data = ENVI_GET_SLICE(fid=fid, pos=pos, line=dims[4], $
xs=dims[1], xe=dims[2], /bip)

This interactive example is for demonstration purposes only. In practice, these steps are part
of the processing routine.
ENVI Programmer’s Guide Using Processing Routines and Tiling

80 Chapter 4: User Functions
Processing Status Report

The processing status dialog shows the percent completed for the current processing. Using
the ENVI processing status reports, you have control over the increment size and the update
frequency. The optional Cancel button aborts processing on the next increment update. The
processing status is controlled by three routines:

• ENVI_REPORT_INC — Set the report increment

• ENVI_REPORT_INIT — Initialize the report dialog

• ENVI_REPORT_STAT — Update the percent completed and check for cancellation.

Note
Processing is aborted on the next increment update, unless the increment is 100% or the
final increment is processing; then cancellation is ignored.

Each element of the string array argument to ENVI_REPORT_INIT is displayed on a
separate line in the processing status dialog. ENVI typically uses a two-element array
indicating the input and output file. To remain consistent, the array is set as follows, where
filename is the actual input or output filename:

['Input File: filename', 'Output File: filename']

For items that are output to memory, the array is set as follows:

['Input File: filename', 'Output to Memory']

The processing status dialog is usually updated inside the tiling loop, which loops over the
total number of tiles. For these cases, the report increment is set to the total number of tiles.
For example, for five tiles, the report increment is set to 5, which implies 20% increments.

Example: Processing Status Dialog

This example interactively creates a processing status dialog and updates the percent
completed.

1. Start ENVI.

2. Open the IDL development environment (PC, Macintosh) or the shell window in which
ENVI was started (UNIX).

3. Type the following at the ENVI command line to create the Status dialog:

ENVI_REPORT_INIT, ['Input File: filename', $
'Output File: filename'], title='Test Status', base=base

4. The following dialog should now be on the screen:
Using Processing Routines and Tiling ENVI Programmer’s Guide

Chapter 4: User Functions 81
5. Now set the increment to 3 and update the percent completed using
ENVI_REPORT_STAT. Type the following at the ENVI command line to set the
increment:

ENVI_REPORT_INC, base, 3

6. Type the following at the ENVI command line to update the percent completed to 33%,
66%, and 99%:

ENVI_REPORT_STAT, base, 1, 3
ENVI_REPORT_STAT, base, 2, 3
ENVI_REPORT_STAT, base, 3, 3

7. Type the following at the ENVI command line to delete the status dialog:

ENVI_REPORT_INIT, base=base, /finish

This interactive example is for demonstration purposes only. In practice, these steps are part
of the processing routine. When used with a tiled processing routine, the increment is
typically the number of tiles being processed, and the report is updated before the next tile is
requested. For non-tiled processing, the increment and report updates can be related to any
processing loop used.

Figure 4-18: Processing Status Dialog
ENVI Programmer’s Guide Using Processing Routines and Tiling

82 Chapter 4: User Functions
Adapting User Functions for ENVI

You can compile .pro files within ENVI only if you have ENVI + IDL. If you have
standalone ENVI, you must create a (.sav) to add a user function. Before creating a .sav
file, the user function may need some important modifications.

Using FORWARD_FUNCTION or COMPILE_OPT
STRICTARR

See “Example: Using COMPILE_OPT” on page 37 for details on properly dereferencing
variables.

Using RESOLVE_ALL to Find and Compile Dependent
Routines

Many common IDL routines are not actually built into IDL as part of the binary IDL
application, but they are included in the IDL library (or lib) as .pro code. For example,
XMANAGER, CONGRID, and SWAP_ENDIAN are all IDL library routines. When working
in IDL or ENVI, you usually do not notice if a routine is part of the IDL library, because IDL
automatically compiles required routines whenever necessary. However, ENVI cannot
compile any .pro code, so if your user function includes any IDL lib routines, you must
compile them in the IDL session before creating the ENVI save file (.sav). Because this
situation occurs quite often, IDL provides a special routine called RESOLVE_ALL to find
and compile all dependent routines in any compiled procedure.

Using RESOLVE_ALL on ENVI user functions is a bit different than using it on ordinary
IDL procedures. RESOLVE_ALL only finds and compiles dependent routines that are stored
in .pro files, while ENVI library routines are stored in ENVI save files (.sav). Thus, when
RESOLVE_ALL finds a reference to one of the ENVI library routines, the user function will
not compile, causing it to halt and issue an error. Of course, you do not need to include the
ENVI library routines in the user function's save file because they will compile and be
available when ENVI is running.

In order to use RESOLVE_ALL with a user function that includes ENVI library routines, you
must call it with the CONTINUE_ON_ERROR keyword set, which allows it to run through
the entire user function without halting when an error occurs. Each ENVI routine that it was
unable to compile is listed in an error message in the IDL Output Log.

Creating a Save File

Note
If you are currently running an ENVI session, be sure to exit ENVI before saving and
compiling your user function procedure in IDL. Otherwise, your ENVI save file
(.sav) will include all of the compiled ENVI routines.

1. Immediately following the procedure definition statement in the user function code,
add the COMPILE_OPT STRICTARR or FORWARD_FUNCTION statement. If
Adapting User Functions for ENVI ENVI Programmer’s Guide

Chapter 4: User Functions 83
using the FORWARD_FUNCTION statement, name all of the ENVI library functions
used in the code (you do not need to list ENVI procedures, only functions).

2. Remember to save the modified user function code.

3. Start a new IDL session.

4. Compile the modified user function.

5. Call RESOLVE_ALL from the IDL command line to compile all dependent routines in
the code:

Resolve_All, /continue_on_error

Note
If your user function uses any ENVI library routines, expect to see several error
messages printed to the Output Log.

6. Create the ENVI save file (.sav) by calling the SAVE procedure at the IDL command
line, and set the ROUTINES keyword:

SAVE, file='my_user_function.sav', /routines

Note
The name of the save file that is created must have the same root name as the user
function name, it must have a .sav extension, and it must be placed in ENVI’s
save_add directory.
ENVI Programmer’s Guide Adapting User Functions for ENVI

84 Chapter 4: User Functions
Adapting User Functions for ENVI ENVI Programmer’s Guide

Chapter 5

Programming Tools
This chapter covers the following topics:
Introduction . 86
Plotting . 87
Reports . 90
RGB Color Triplets . 91

File Information . 92
Managing Files . 94
Accessing Image Data . 97
Creating ENVI Format Files 98
ENVI Programmer’s Guide 85

86 Chapter 5: Programming Tools
Introduction

This chapter covers programming tools used in custom development, including plotting,
reports, graphics colors, and general file utilities. Plots and reports can display or summarize
processing results, while the other tools are provided as utilities. The following sections
provide detailed descriptions and examples.

Note
The interactive examples that follow are for demonstration purposes only. In practice, these
steps are part of a processing routine.
Introduction ENVI Programmer’s Guide

Chapter 5: Programming Tools 87
Plotting

You can define a set of plots and load them into the ENVI Plot Window with a single call.
ENVI manages the resulting plot, giving you the functionality that comes with the ENVI Plot
Window. The loaded data can be spatial (such as an X Profile), spectral (such as a Z Profile),
or any x,y data.

The routine ENVI_PLOT_DATA is used to plot x,y data. You can specify any number of y
plots, but they all use the same x values. Use optional keywords to set the plot title, color,
name, line style, axis names, and titles, and to provide custom control for the displayed data.

Example: Plotting Data

This example interactively creates an x,y plot using a single y data array. The function
FINDGEN is used to create an x array of incrementing floating-point numbers. The y values
are an array of uniform random numbers calculated with the function RANDOMU.

1. Start ENVI.

2. Open the IDL development environment (PC) or the shell window where ENVI was
started (UNIX, Mac OS X).

3. Type the following at the ENVI command line:

x = findgen(100)
y = randomu(seed, 100)
ENVI_PLOT_DATA, x, y, plot_title=’Numbers’, $
plot_colors=[10], plot_names=’Random’, $
xtitle=’Count’, ytitle=’Value’

The following plot is displayed on the screen. Note that the value of the keyword
PLOT_COLORS references a ENVI graphic colors index (see “RGB Color Triplets” on
page 91).
ENVI Programmer’s Guide Plotting

88 Chapter 5: Programming Tools
Creating Vector Plot Symbols

ENVI provides nine different plot symbols that you can use to display vector point coverages
(see “Changing Vector Layer Display Properties” in ENVI Help). You can create and add
your own plot symbols with just a few simple steps.

In the menu directory of your ENVI installation path, you will find the file usersym.txt.
This file contains all of the user-defined plot symbols. The Flag symbol is provided as an
example, while the other eight symbols are built into ENVI. You draw symbols as vectors and
list the points that define them as (x,y) pairs, separated by commas, and enclosed in curly
brackets:

user_symbol={x1,y1,x2,y2,x3,y3,...xn,yn}

You do not need to normalize vector points to one. Following is an example of a star symbol
that was defined by a freehand drawing of a star over a 5x5 grid:

Figure 5-1: Example ENVI Plot
Plotting ENVI Programmer’s Guide

Chapter 5: Programming Tools 89
star={1.5,0.5,2,2.2,1,3.5,2.2,3,2.5,4.5,2.75,3,4,4,3.25,2.5,3.75,1,2.5,
1.5,1.5,0.5}

The first point is (1.5, 0.5), the second point is (2, 2.2), etc. You can have line breaks at any
point on the line that defines the symbol. For example, the following definition for the star
also works:

star={

1.5,0.5,
2,2.2,
1,3.5,
2.2,3,
2.5,4.5,
2.75,3,
4,4,
3.25,2.5,
3.75,1,
2.5, 1.5,
1.5,0.5
}

After you have edited the file usersym.txt, remember to save it and restart ENVI. Your
new symbols should appear as options when you edit a vector layer.

Figure 5-2:
ENVI Programmer’s Guide Plotting

90 Chapter 5: Programming Tools
Reports

You can programmatically access the ENVI report widget, which is used to display text data.
The report widget generated by the routine ENVI_INFO_WID displays each element of a
user-defined string array on a new line. Once displayed, ENVI automatically manages the
resulting report, providing the functionality common to all report widgets, including output to
a file. The following example details the use of ENVI_INFO_WID.

Example: Creating a Report

This example interactively creates a text report and displays the result. A string array with
four elements, including one NULL string, is created as output to the report widget. The
NULL string element translates into a blank line.

1. Start ENVI.

2. Open the IDL development environment (PC) or the shell window where ENVI was
started (UNIX, Mac OS X).

3. Type the following at the ENVI command line to create the Report dialog:

str = ['Line 1', 'Next line is blank', '', 'Line 4']
ENVI_INFO_WID, str, title='Report'

The following report displays on the screen.

Figure 5-3: Example ENVI Report
Reports ENVI Programmer’s Guide

Chapter 5: Programming Tools 91
RGB Color Triplets

ENVI maintains a set of graphics colors that are used for annotations, vector overlays, plots,
classification images, and other items. Many routines reference colors by the graphics color
index; however, some use the RGB color triplet. The routine ENVI_GET_RGB_TRIPLETS
returns the RGB value for any color index. To avoid indexing past the number of graphics
colors, the modulo operator is automatically applied within ENVI_GET_RGB_TRIPLETS.
For example, to set the lookup table for a classification image, ENVI_GET_RGB_TRIPLETS
is called for each class with the index set equal to the class number. If there are more classes
than color indices, the class colors are repeated as necessary.

Note
You can add custom graphics colors to ENVI by modifying the colors.txt file (see
“Editing System Color Tables” in ENVI Help). Each line of the file contains an RGB triplet
value and a name. Although not required, it is best to leave color 0 as black and 1 as white.

Example: Getting RGB Color Values

This example interactively gets RGB color triplets associated with a graphics color and prints
the result to the IDL log window.

1. Start ENVI.

2. Open the IDL development environment (PC) or the shell window where ENVI was
started (UNIX, Mac OS X).

3. Type the following at the ENVI command line to get the RGB for color index 0:

ENVI_GET_RGB_TRIPLETS, 0, r, g, b
print, r, g, b

4. Type the following at the ENVI command line to get the RGB for color index 1:

ENVI_GET_RGB_TRIPLETS, 1, r, g, b
print, r, g, b
ENVI Programmer’s Guide RGB Color Triplets

92 Chapter 5: Programming Tools
File Information

Extracting file information is an integral part of ENVI programming. The
ENVI_FILE_QUERY routine provides all known basic file information for any open file—
whether in memory or on disk—including the dimensions of the data, map coordinates, or any
other information you request.

Example: Basic Image Information

This example shows how to interactively choose a file, extract basic file information, and
print the result to the IDL log window.

1. Start ENVI.

2. Open any image file.

3. Open the IDL development environment (PC) or the shell window where ENVI was
started (UNIX, Mac OS X).

4. Type the following at the ENVI command line to select an input file:

ENVI_SELECT, title='Input Filename', fid=fid

5. Type the following at the ENVI command line to get basic file information and print
the result:

ENVI_FILE_QUERY, fid, ns=ns, nl=nl, nb=nb,offset=offset,$
data_type=data_type, interleave=interleave

print, ns, nl, nb, offset, data_type, interleave

Example: Map Information

This example shows how to interactively choose a file, extract the map projection
information, and print the results to the IDL log window. You must choose a georeferenced
file using ENVI_SELECT to see associated projection information.
ENVI_GET_MAP_INFO returns map information, and ENVI_GET_PROJECTION returns
projection information.

1. Start ENVI.

2. Open the IDL development environment (PC) or the shell window where ENVI was
started (UNIX, Mac OS X).

3. Open a georeferenced image file. Type the following at the ENVI command line to
select an input file:

ENVI_SELECT, title='Georeferenced Filename', fid= fid

4. Type the following at the ENVI command line to get the map information and print the
result:

map_info = ENVI_GET_MAP_INFO(fid=fid)
print, map_info
File Information ENVI Programmer’s Guide

Chapter 5: Programming Tools 93
5. Type the following at the ENVI command line to get projection information and print
the result:

proj = ENVI_GET_PROJECTION(fid=fid)
print, proj
ENVI Programmer’s Guide File Information

94 Chapter 5: Programming Tools
Managing Files

ENVI provides tools to open, close, and select image files both for interactive and batch mode
programming. Interactive programs select ENVI image files using the routine
ENVI_SELECT, which uses the returned FID as a reference to the file. Image files used for
display and processing must be referenced by their FID. When selecting non-image files, such
as ROI files, use ENVI_PICKFILE to get the filename. This provides the link to extract the
necessary information.

When performing batch mode programming, the routine ENVI_OPEN_FILE opens an ENVI
image file and returns the FID without any user interaction. Both batch and interactive
programming can use ENVI_FILE_MNG to close and optionally delete image files. See
“Examples of ENVI Batch Mode Routines” on page 42.

ENVI_PICKFILE

This routine produces a widget that prompts you to choose a file on disk.
ENVI_PICKFILE produces the same widget as selecting File → Open Image File
from the ENVI main menu bar. This routine does not actually open a file; instead, it
returns the fully qualified file path as a string. It is often used when you know a user
will open a new file from disk, or when you do not intend to use ENVI routines to
process the file (for example, when you just need to get the name of the file). See
“ENVI_PICKFILE” in the ENVI Reference Guide for a full list of keywords and
example usage.

Figure 5-4: ENVI Filename Selection Widget
Managing Files ENVI Programmer’s Guide

Chapter 5: Programming Tools 95
ENVI_SELECT

This routine produces a widget that prompts you to select a file from those that have
already been opened. ENVI_SELECT produces ENVI’s file selection dialog, including
buttons for spatial and spectral subsetting and for choosing a mask band. This routine
also incorporates the functionality of ENVI_PICKFILE because the widget includes a
button to open ENVI-format files from disk. ENVI_SELECT not only returns an FID
for the selected file, but also the DIMS and POS variables that will likely be required
for further processing. See “ENVI_SELECT” in the ENVI Reference Guide for a full
list of keywords and example usage.

ENVI_OPEN_FILE

This routine returns an FID with user interaction. It is the most direct, simple way to
open an ENVI file. The keyword NO_REALIZE prevents the Available Bands List
dialog window from opening when the file is open. If the Available Bands List is
already open, this keyword has no effect. See “ENVI_OPEN_FILE” in the ENVI
Reference Guide for a full list of keywords and example usage.

ENVI can read a wide variety of formats. ENVI_OPEN_FILE only opens files for
which there is an accompanying ENVI header file. The ENVI library contains a special
processing routine called ENVI_OPEN_DATA_FILE that opens and returns an FID for

Figure 5-5: Input Selection by File Widget
ENVI Programmer’s Guide Managing Files

96 Chapter 5: Programming Tools
external format files. This routine has a keyword for each type of external file format
that ENVI can read, and it requires no user interaction.

ENVI_FILE_MNG

This routine allows you to close or delete opened files from disk. No user interaction is
required. See “ENVI_FILE_MNG” in the ENVI Reference Guide for a full list of
keywords.

ENVI_GET_FILE_IDS

This routine returns FIDs for all of the currently opened files. See
“ENVI_GET_FILE_IDS” in the ENVI Reference Guide for a full list of keywords and
example usage.

Example: Choosing Files Interactively

This example demonstrates how to interactively select a file using ENVI_SELECT and close
the file with ENVI_FILE_MNG using the returned FID. Once the file selection dialog
appears (following Step 3 below), select an open file, or select Open Image File if no files are
currently open. Click OK.

If you select Cancel on the file selection dialog, the keyword FID returns a value of 1,
indicating that you did not select a file.

1. Start ENVI.

2. Open the IDL development environment (PC) or the shell window where ENVI was
started (UNIX, Mac OS X).

3. Type the following at the ENVI command line to select an input file:

ENVI_SELECT, title='Input Filename', fid=fid

4. Type the following at the ENVI command line to close the file:

ENVI_FILE_MNG, id=fid, /remove
Managing Files ENVI Programmer’s Guide

Chapter 5: Programming Tools 97
Accessing Image Data

When image files are very large (as is often the case with remotely sensed images), it is not
advisable to read an entire file into memory all at once using IDL’s READU procedure.
Instead, ENVI provides two processing routines that read image data in smaller, more
manageable pieces. The two routines provide data in a logical organization—either one band
at a time, or one spectral slice at a time.

ENVI_GET_DATA

This function is designed to retrieve spatial image data. It returns data from only one
specified band at a time. If spatial data are required from more than one band, the band
must be called multiple times. The returned dimensions are controlled by the DIMS
keyword. See “ENVI_GET_DATA” in the ENVI Reference Guide for a list of
keywords and example usage.

ENVI_GET_SLICE

This function is designed to retrieve spectral image data. It returns data from all of the
image bands for one specified line, for any number of samples in that line. The data can
be returned in either BIP or BIL storage order. See “ENVI_GET_SLICE” in the ENVI
Reference Guide for a list of keywords and example usage.
ENVI Programmer’s Guide Accessing Image Data

98 Chapter 5: Programming Tools
Creating ENVI Format Files

ENVI’s image format is perhaps the simplest format possible. See “ENVI Image Files” in
ENVI Help for more information about ENVI image and header formats.

Saving Image Data to Memory

When a user function results in image data contained in an IDL array, you can readily enter
these data into ENVI as a memory-only item.

ENVI_ENTER_DATA

Use this routine to enter image data from an IDL array into the Available Bands List. This
routine automatically creates an ENVI header file for the image (which is also stored in
memory), and it returns the FID for the in-memory image. Once the image appears in the
Available Bands List, you can use it like any other ENVI image and even save it to disk by
selecting File → Save File As → ENVI Standard from the ENVI main menu bar. See
“ENVI_ENTER_DATA” in the ENVI Reference Guide for a full list of keywords and
example usage.

Saving Image Data to Disk

Because IDL’s WRITEU procedure produces ENVI format files, ENVI does not provide a
separate library routine for writing image data contained in IDL arrays to disk. Instead, just
use WRITEU:

OpenW, unit, 'new_envi_image_file.img', /Get_LUN
WriteU, unit, image_array
Free_LUN, unit

ENVI_SETUP_HEAD

Use this routine to write the ENVI header file for an image that is already saved to disk. The
OPEN keyword to this routine also allows you to open the image file into the Available Bands
List. If you call ENVI_SETUP_HEAD without setting the OPEN or WRITE keywords, the
ENVI header file will be created in memory only (which allows ENVI_FILE_QUERY to read
the file’s header information throughout the rest of the user function). ENVI_SETUP_HEAD
optionally returns an FID for the image file on disk. See “ENVI_SETUP_HEAD” in the
ENVI Reference Guide for a full list of keywords and example usage.

Creating New Files from Existing ENVI Files

A third ENVI routine creates new ENVI-format image and header files, although it can only
be used with files that are already open in ENVI (files for which an FID has already been
obtained).

CF_DOIT

Use this routine to create a new ENVI-format file from existing ENVI files. The images that
are incorporated into the new file can be any combination of open ENVI files on disk or in
memory, and you can save the resulting file to disk or memory. CF_DOIT is equivalent to
Creating ENVI Format Files ENVI Programmer’s Guide

Chapter 5: Programming Tools 99
selecting File → Save File As → ENVI Standard from the ENVI main menu bar. See
“CF_DOIT” in the ENVI Reference Guide for a full list of keywords and example usage.
ENVI Programmer’s Guide Creating ENVI Format Files

100 Chapter 5: Programming Tools
Creating ENVI Format Files ENVI Programmer’s Guide

Chapter 6

Interactive User Routines
This chapter covers the following topics:
Introduction . 102
Plot Functions . 103
Spectral Analyst Functions 105
User-Defined Map Projection Types 108

User-Defined Units . 111
User-Defined RPC Reader 112
User Move Routines . 116
ENVI Programmer’s Guide 101

102 Chapter 6: Interactive User Routines
Introduction

This chapter covers the development of user functions that relate to ENVI’s interactive
analysis. For selected functions, ENVI allows you to develop additional methods or
transforms that are applied automatically to the data. Interactive user functions are triggered
by certain events or user selection. For example, when you select a custom plot function, it
applies a transformation to the plot data and displays the result in place of the original data.
You can also apply custom scoring functions to ENVI’s Spectral Analyst and attach a user
function to the zoom event. Detailed descriptions and examples are provided in the following
sections.
Introduction ENVI Programmer’s Guide

Chapter 6: Interactive User Routines 103
Plot Functions

Plot functions provide a method for applying transforms or routines to data in any ENVI Plot
Window. ENVI provides a standard set of plot functions while also allowing you to define
custom plot functions, which receive the normal plot data as input, apply the processing, and
return the transformed data to the plot. Any new data are also applied through the selected
plot function. Plot functions only operate on the y-axis data; the x-axis remains the same. Plot
functions are typically applied to spectral data from Z Profiles, spectral libraries, ROI means,
or other sources. However, there are no data source requirements to these routines. Refer to
“Using Interactive Plot Functions” in ENVI Help for additional information.

You can add custom plot functions to ENVI by entering the menu name and function into the
useradd.txt file in the menu directory of the installation. Plot functions use the {plot}
tag to differentiate them from other functions. The format for a plot function is:

{plot} {Button Name} {function_name} {type=n}

Where:

• {plot} — Tag that indicates the following definition is a plot function

• {Button Name} — Menu button name for the Plot_Function menu

• {function_name} — Name of the plot function to call

• {type=n} — Type of plot function updates. Set {type=0} to call the plot function
only when new data are available. Set {type=1} to call the plot function when new
data are available or the plot is zoomed.

Following is a sample portion of the useradd.txt file related to plot functions:

{plot} {Normal} {sp_normal} {type=0}
{plot} {Continuum Removed} {sp_continuum_removed} {type=1}
{plot} {Binary Encoding} {sp_binary_encoding} {type=0}

Plot function declarations have a number of arguments, including the x-axis and y-axis data,
bad band information, and left and right zoom indices. Remember, ENVI calls your plot
function and automatically passes the required parameters to it. A sample plot function
declaration is shown below:

FUNCTION my_func, x, y, bbl, bbl_array, l_pos=l_pos, $
r_pos=r_pos, _extra=_extra

Where:

• my_func — The plot function name

• x — Data values for the x-axis

• y — Data values for the y-axis

• bbl — Pointer to each of the bad bands in a Z Profile. If there are no bad bands or the
current plot is not a Z Profile, this value is undefined.

• bbl_array — An array of ones and zeros representing the good and bad points in the
plot, respectively. The number of elements of bbl_array equals the number of
elements of x. This array is defined for all plots, regardless of the type of data.

• l_pos — The left (lower) index of the x array
ENVI Programmer’s Guide Plot Functions

104 Chapter 6: Interactive User Routines
• r_pos — The right (upper) index of the x array

• _extra — You must specify this keyword to collect all extra keywords that ENVI
uses when calling the user-defined function.

The plot function returns the new y-axis data.

You can use the following model for plot functions:

FUNCTION my_plot_func, x, y, bbl, bbl_array, $
l_pos=lpos, r_pos=r_pos, _extra=_extra
statements ...

 RETURN, plot_result
END

Plot functions that operate on Z Profile data may be concerned with the bad bands
information passed to the function. Bad bands are typically ignored while calculating the plot
function, and their output values are not displayed in the plot. To ignore bad bands, define a
pointer to the good bands and use it as an index into the x and y arrays. The following
statement sets the variable PTR to an index of all good points, and the variable COUNT
equals the number of good points.

ptr = where(bbl_array EQ 1, COUNT)

Example: Plot Function

This example creates a plot function to compute the zero-mean value of a plot (in other
words, to center the plot). Calculate the mean value only on the good points in the plot; the
mean does not change when the plot is zoomed. First, find the good data points by examining
BBL_ARRAY and build an index where it is equal to 1. Next, use only the good points to
calculate the mean, which is subtracted from the y-axis data. If no valid data points exist, then
set the result to 0. The resulting y-axis data are returned from the function.

The following sample code is also available in the file irplot.pro in the lib directory of
the ENVI installation.

function pf_zero_mean, x, y, bbl, bbl_array, _extra=_extra
bbl_ptr = where(bbl_array eq 1, count)

 if (count gt 0) then $
 result = y - (total(y[bbl_ptr]) / count) $
 else $
 result = fltarr(n_elements(y))
 return, result
end

The following steps outline the procedure for executing this example:

1. Save the plot function to a file and place it in the save_add directory.

2. Add the following plot function definition to the useradd.txt file in the menu
directory of the installation tree. This allows you to select the function from the
Plot_Function menu.

{plot} {Zero Mean} {pf_zero_mean} {type=0}

3. Start ENVI.

4. Open a file and display an X Profile.

5. Select Zero Mean from the Plot_Function menu in the X Profile plot.
Plot Functions ENVI Programmer’s Guide

Chapter 6: Interactive User Routines 105
Spectral Analyst Functions

Spectral Analyst functions provide a method to match an unknown spectrum to the materials
in a spectral library. ENVI includes common spectral similarity techniques such as Binary
Encoding, Spectral Angle Mapper, and Spectral Feature Fitting. You can add custom
functions to the Spectral Analyst and use them along with ENVI-defined functions.
Individual 0 to 1 scores are accumulated for each of the functions, and the library spectra are
ranked in order of best-to-worst match.

Add custom spectral analyst functions to ENVI by entering the menu name and function into
the useradd.txt file in the menu directory of the installation. Spectral Analyst functions
use the {identify} tag to differentiate them from other functions in this file. The format for
an entry is:

{identify} {Method Name} {Out Name} {func_name} {min, max}

Where:

• {identify} — Tag to indicate the following definition is a Spectral Analyst function

• {Method Name} — Method name for the spectral identification widget

• {Out Name} — Column name for the Spectral Analyst output ranking report window

• {func_name} — Name of the spectral identification function to call. The function
name is also used as the base name for FUNCTION_NAME_SETUP, called once for a
given spectral library.

• {min, max} — The default minimum and maximum outputs for the identification
function. You may edit the default minimum and maximum values when running the
Spectral Analyst function. The current scale factors are passed into the identification
function. The output values are then scaled to a [0, 1] range to allow a cumulative
ranking of all methods.

Spectral Analyst functions have two parts. The first is the setup procedure, which is called
after the spectral library is selected. It conditions the library for the selected identification
function. All library calculations that are not dependent on the input data should be performed
once in the setup procedure. The name of the setup procedure is formed from the function
name with an additional “_SETUP”. For example, the setup procedure for FUNC_NAME is
FUNC_NAME_SETUP.

Note
Unlike the identification function, the setup procedure is a procedure that you must define
even if no setup is necessary.

The setup procedure for the function FUNC_NAME is declared as follows:

PRO func_name_setup, wl, spec_lib, handles, num_spec=num_spec

Where:

• wl — Wavelength values for the spectral library. All spectra in the library have one
sample at each wavelength, allowing a single wavelength vector for each library.
ENVI Programmer’s Guide Spectral Analyst Functions

106 Chapter 6: Interactive User Routines
• spec_lib — A 2D array of all spectral library spectra. The dimensions are
[wavelength_samples, num_spectra].

• handles — An array of two handles for storing user data. Any preprocessing of the
spectral library should be stored in one of these handles. The handle array is also
passed into the identification function.

• num_spec — The number of spectra in the library. This value is equal to the second
dimension of the SPEC_LIB array.

The second part of the Spectral Analyst user function is the identification function, which
calculates the score for the current spectrum against the library spectra. The method for
calculating the score depends on the user function. You must apply the current minimum and
maximum scale factors to the resulting score. The function output is an array of scaled scores
for each of the library spectra. The identification function for FUNC_NAME is declared as
follows:

FUNCTION func_name, wl, ref_spec, spec_lib, handles,$
num_spec=num_spec, scale_vals=scale_vals

Where:

• wl — Wavelength values for the spectral library. All spectra in the library have one
sample at each wavelength, allowing a single wavelength vector for each library.

• ref_spec — Reference spectrum used to score against the library. The reference
spectrum has the same number of wavelength samples as the library spectra.

• spec_lib — A 2D array of all spectral library spectra. The dimensions are
[wavelength_samples, num_spectra].

• handles — An array of two handles for storing user data. Any data stored in the setup
procedure can be extracted using HANDLE_VALUE.

• num_spec — The number of spectra in the library. This value is equal to the second
dimension of the SPEC_LIB array.

• scale_vals — An array containing the current minimum and maximum scale
factors, respectively. The scale factors are applied to the calculated score to bring its
range to 0 to 1.

The resulting score is automatically combined with other spectral analyst functions based on
the current weights. Any spectral analyst function with a weight of 0 is not called since its
output score would not be used.

Example: Spectral Analyst Function

This example creates a Spectral Analyst function that calculates the minimum distance
between each library spectra and the current reference spectrum. The setup procedure is
defined, but it is empty since no setup is necessary in this example. The identification
function computes the distance measure as the square root of the sum of the differences at
each wavelength. A distance score is computed between each library spectrum and the input
reference spectrum. The output scores are scaled by the largest distance error in order to keep
the distance measure between 0 and 1.
Spectral Analyst Functions ENVI Programmer’s Guide

Chapter 6: Interactive User Routines 107
Note
This example is for illustration purposes only. An actual minimum distance Spectral
Analyst function removes the continuum from the library (in the setup procedure) and
reference spectrum prior to calculating the distance score.

The following sample code is also available in the file irsadist.pro in the lib directory
of the installation:

pro irsadist_func_setup, wl, spec_lib, handles, num_spec=num_spec
 ; No initialization is necessary
end

function irsadist_func, wl, ref, spec_lib, handles, num_spec=num_spec,$
 scale_vals=scale_vals
 ; Compute the distance compared to each library member
 result = dblarr(num_spec)
 for i=0L, num_spec-1 do $
 result[i] = sqrt(total((spec_lib[*,i]-ref)^2, /double))

 ; scale the result from zero to one
 dmax = max(result, min=dmin)
 return, (1d - ((result - dmin) / (dmax - dmin))) / scale_vals(1)
end

The following steps outline the procedure for executing this example.

1. Save the function to a file and place it in the save_add directory.

2. Add the Spectral Analyst function definition to the useradd.txt file in the menu
directory of the installation tree so you can select the function from the Spectral
Analyst menu.

{identify} {Minimum Distance} {MDIST} {irsadist_func} {0,1.}

3. Start ENVI.

4. Open a file and display a Z Profile.

5. Select Spectral Analyst from the Spectral Tools menu and open a spectral library for
comparison.

6. Set the Minimum Distance weight to 1.0 and select OK.

7. Rank the current Z Profile by selecting Apply.
ENVI Programmer’s Guide Spectral Analyst Functions

108 Chapter 6: Interactive User Routines
User-Defined Map Projection Types

ENVI supports many different map projections and map projection types. You can create
custom map projections by selecting Map → Customize Map Projections from the ENVI
main menu bar. (See “Building Customized Map Projections” in ENVI Help.) However, you
may want to define your own map projection type. Add these to ENVI by writing an IDL
procedure that calculates the forward and inverse conversions between latitude/longitude and
the new projection coordinates. For information about ENVI’s datums, ellipsoids, and map
projections, see “Map Tools” in ENVI Help.

Add custom map projection types to ENVI by entering the projection name and user routine
name in the useradd.txt file in the menu directory of the installation. Map projection types
use the {projection type} tag to differentiate them from other routines in this file. The
format for an entry is as follows:

{projection type} {projection name} {routine_root_name} {number of extra
parameters}

Where:

• {projection type} — Tag to indicate the following definition is a user-defined
projection type

• {projection name} — Name of the projection in the Projection Type list

• {routine_root_name} — Root name for the user routine

• {number of extra parameters} — Number of parameters this projection
requires in addition to the default parameters: ellipsoid a and b, projection origin
(latitude/longitude), and false easting/northing. This value can be 0 if there are no
additional parameters needed. You can add a maximum of nine additional parameters.

User-defined map projection routines may have two parts: one that allows you to enter extra
parameters, and another that performs the coordinate conversions. If extra parameters are
needed, then use a procedure named routine_root_name_DEFINE to input these
parameters. This procedure contains one parameter that is an array of the number of extra
parameters needed. These are double-precision, floating-point data values, and you can input
up to nine of them. This procedure assigns the values to the extra parameters by either getting
input from a dialog when the Build Customized Map Projection function runs, or by setting
the values in the function. If the number of extra parameters is 0, then
routine_root_name_DEFINE is not needed.

The second required procedure is named routine_root_name_CONVERT. It performs the
forward and inverse conversions between latitude/longitude and new projection coordinates.
This procedure must work for both a scalar value or an array of values, and it has six
parameters, as shown below:

routine_root_name_convert, x, y, lat, lon, to_map=to_map, projection=proj

Where:

• x, y — Map projection coordinates

• lat/lon — Latitude and longitude coordinates

• to_map — If set, the procedure converts latitude/longitude to map x,y coordinates. If
not set, the procedure converts the other way around.
User-Defined Map Projection Types ENVI Programmer’s Guide

Chapter 6: Interactive User Routines 109
• proj — User-defined projection

Add the .pro or .sav file for the user routine to the save_add directory of the ENVI
installation.

To complete the projection definition process:

1. Restart ENVI.

2. From the ENVI main menu bar, select Map → Customize Map Projections.

3. The newly defined projection type will appear in the Projection Type list.

4. Select the projection type and enter the values for the parameters.

The routine saves the new projection to the map_proj.txt file, and you can select it from
among all ENVI projection routines.

Example: User-Defined Map Projection

The following two examples of user-defined map projections (USER_PROJ_TEST1 and
USER_PROJ_TEST2) illustrate how to define a new projection without any additional
parameters and with four additional parameters, respectively. Depending on the type of
projection you add, use one of the two examples as a model.

For the sake of illustration, the first test passes through the map coordinates by setting the
output map coordinates equal to the input coordinates. Since there are no additional
parameters, only the _CONVERT routine is needed.

pro user_proj_test1_convert, x, y, lat, lon, to_map=to_map, projection=p
 if (keyword_set(to_map)) then begin
 x = lon
 y = lat
 endif else begin
 lon = x
 lat = y
 endelse
end

The following steps outline the process for executing this example:

1. Save the routine to a file and place it in the save_add directory.

2. Add the user-defined projection definition to the useradd.txt file in the menu
directory of the installation tree to show the new user-defined projection.

{projection type} {User Projection #1} {user_proj_test1} {0}

3. Start ENVI.

4. Define your new projection. From the ENVI main menu bar, select Map → Customize
Map Projections.

5. Select your new projection type name from the Projection Type list.

6. After successfully entering any parameters, you can save your new projection to
map_proj.txt.
ENVI Programmer’s Guide User-Defined Map Projection Types

110 Chapter 6: Interactive User Routines
The next example requires you to define four additional parameters, which means you must
create both the _DEFINE and _CONVERT routines.

pro user_proj_test2_define, add_params
 if (n_elements(add_params) gt 0) then begin
 default_1 = add_params[0]
 default_2 = add_params[1]
 default_3 = add_params[2]
 default_4 = add_params[3]
 endif

 base = widget_auto_base(title='User Projection #1 Additional
Parameters')

sb = widget_base(base, /column, /frame)
sb1 = widget_base(sb, /row)
wp = widget_param(sb1, prompt='Parameter #1', xsize=12, dt=4,$

field=4, default=default_1, uvalue='param_1', /auto)
sb1 = widget_base(sb, /row)
wp = widget_param(sb1, prompt='Parameter #2', xsize=12, dt=4,$

field=4, default=default_2, uvalue='param_2', /auto)
sb1 = widget_base(sb, /row)
wp = widget_param(sb1, prompt='Parameter #3', xsize=12, dt=4,$

field=4, default=default_3, uvalue='param_3', /auto)
sb1 = widget_base(sb, /row)
wp = widget_param(sb1, prompt='Parameter #4', xsize=12, dt=4,$

field=4, default=default_4, uvalue='param_4', /auto)
result = auto_wid_mng(base)
if (result.accept) then $

add_params = [result.param_1, result.param_2, $
result.param_3, result.param_4]

end

pro user_proj_test2_convert, x, y, lat, lon, to_map=to_map, projection=p
if (keyword_set(to_map)) then begin
 x = lon * 100. + p.params[4]
 y = lat * 100. + p.params[5]
 endif else begin
 lon = (x - p.params[4]) / 100.
 lat = (y - p.params[5]) / 100.
 endelse
end

The following steps outline the procedure for executing this example.

1. Save the routine to a file and place in the save_add directory.

2. Add the user-defined projection definition to the useradd.txt file in the menu
directory of the installation tree to show the new user-defined projection.

{projection type} {User Projection #2} {user_proj_test2} {4}

3. Start ENVI.

4. Define your new projection. From the ENVI main menu bar, select Map → Customize
Map Projections.

5. Select your new projection type name from the Projection Type list.

6. After successfully entering any parameters, you can save your new projection to
map_proj.txt.
User-Defined Map Projection Types ENVI Programmer’s Guide

Chapter 6: Interactive User Routines 111
User-Defined Units

ENVI has different units that you can select when using map projections or ENVI’s
measurement tools. Units include meters, kilometers, feet, yards, miles, nautical miles, acres,
hectares, degrees, minutes, seconds, and radians. ENVI allows you to define units for map
projections or measurement calculations. Define these units by entering a scale factor that
converts between user-defined units and meters, degrees, or meters2.

Add user-defined units to ENVI by entering a scale factor in the useradd.txt file in the
menu directory of the installation. Unit definitions use the {units} tag to differentiate them
from other functions in this file. The format for an entry is:

{units} {Name} {scale factor} {0|1|2}

Where:

• {units} — Tag to indicate the following definition is a user-defined unit

• {Name} — Unit name

• {scale factor} — Multiplication scale factor to convert the new units to meters,
degrees, or meters2

• {0|1|2} — Flag value telling which units the scale factor converts to.

• 0 — Logistic

• 1 — Degrees

• 2 — Meters2

Examples of each type of unit definition are shown below. Add each of these lines to
the useradd.txt file:

{units} {Feet} {0.3048} {0} ; distance with respect to meters

{units} {Minutes} {0.016666667} {1} ; angular distance with respect to
degrees

{units} {Acres} {4046.873} {2} ; area with respect to meters^2

ENVI uses International Feet (and the 0.3048 m/ft conversion factor) instead of U.S. Survey
Feet. A U.S. Survey Foot is defined by the National Geodetic Survey as the unit of length that
is 1/3 of the U.S. yard, which makes its length equal to 30.48006096012192 cm. While there
is no support for U.S. Survey Feet, you can still add it as a custom unit by adding the
following line to useradd.txt:

{units} {Survey Feet} {0.3048006096012192} {0}

In most cases, the difference between U.S. Survey Feet and International Feet is relatively
small. For example, ENVI’s Map Coordinate Converter (UTM Zone 13N, NAD27) converts
the distance of 12345.6789 meters as follows:

• 40504.1962 International Feet

• 40504.1151 U.S. Survey Feet

In this case, the difference between the two is 0.9732 inches. For more information, see
http://www.ngs.noaa.gov/INFO/Policy/st_plane.html.
ENVI Programmer’s Guide User-Defined Units

http://www.ngs.noaa.gov/INFO/Policy/st_plane.html

112 Chapter 6: Interactive User Routines
User-Defined RPC Reader

From the ENVI main menu bar, selecting Map → Orthorectification → Generic RPC and
RSM allows you to access a user function for reading a custom rational polynomial
coefficients (RPC) file format. You cannot create a user-defined RPC reader based on
replacement sensor model (RSM) information.

Place the user function in the save_add directory of the ENVI installation to compile when
an ENVI session starts. It is associated to the Generic RPC and RSM option through the
useradd.txt file in the menu directory of the ENVI installation.

You should implement this RPC reader function to exit gracefully if the input file does not
contain RPCs. It must also never display any user-interface elements, which interfere with
ENVI's ability to read RPC data from other files. Once implemented, you must register the
RPC reader function with ENVI so it is called when ENVI attempts to import RPC data.

This function must also find the coefficients for the specified image or file, copy them to an
ENVI RPC structure, and return this structure to ENVI. If the RPCs cannot be found or
imported, the routine should not produce an error, but return a value of –1, which indicates
your function could not import any RPCs for these data.

The inputs to the RPC reader function can be either a file ID identifying an image or a
filename. Specify the file ID using the FID keyword, and specify the filename with the
FNAME keyword. ENVI can call your RPC reader function with either the FID or FNAME
keyword set, but not both.

If the input from ENVI is an file ID, it indicates the RPC information should come from an
image already opened in ENVI. The file ID is used to identify the open image associated with
the requested RPCs. The RPC information should be imported for this file and then returned
to ENVI in the RPC coefficient structure. If no RPC information can be read for this file, a
value of –1 must be returned to ENVI.

If none of the RPC readers available to ENVI (including any user-defined RPC reader
functions) can import RPC information from the file ID, you are prompted to select the file
containing RPC coefficients. This filename is then passed to each reader in an attempt to
import RPC information from the file. If you select a file containing RPC information, this
file is passed to the RPC reader function with the FNAME keyword. As with the file ID, it is
your responsibility to read the RPC information from this file, and return the data in an RPC
structure or return a value of –1 if no RPC information could be imported.

The RPC data returned to ENVI must be stored in an ENVI_RPC_STRUCT structure, which
is defined by ENVI to contain the coefficients required to perform the RPC transformation.
The tags in this structure are described in Table 6-1.

Tag Name Data Type
and Size Description

OFFSETS Double-
precision
array[5]

Normalization offset coefficients for
computing RPC transformation, in the
following order: line, sample, latitude,
longitude, height

Table 6-1: ENVI_RPC_STRUCT Structure
User-Defined RPC Reader ENVI Programmer’s Guide

Chapter 6: Interactive User Routines 113
After you have written your RPC reader function, save it as a .pro file (or compile to a .sav
file with the same name as your function), and place it in the save_add directory, where it
will be automatically compiled when ENVI starts. Modify the useradd.txt file in the menu
directory to register your RPC reader function. Add the following line to the useradd.txt
file:

{rpc reader} {rpc reader name} {rpc reader function name} {}

The first set of brackets indicates the function will be added as an RPC reader to ENVI. The
second set of brackets indicates the name of this new reader (which is not used by ENVI, but
allows you to distinguish between multiple RPC readers, if present). The third set of brackets
contains the routine name of your RPC reader function. The fourth set of brackets remains

SCALES Double-
precision
array[5]

Normalization scale coefficients for
computing RPC transformation, in the
following order: line, sample, latitude,
longitude, height

LINE_NUM_COEFF Double-
precision
array[20]

20 numerator coefficients for the rational
polynomial row value calculation

LINE_DEN_COEFF Double-
precision
array[20]

20 denominator coefficients for the
rational polynomial row value calculation

SAMP_NUM_COEFF Double-
precision
array[20]

20 numerator coefficients for the rational
polynomial column value calculation

SAMP_DEN_COEFF Double-
precision
array[20]

20 denominator coefficients for the
rational polynomial column value
calculation

P_OFF Double-
precision
scalar

Column offset (in image coordinates) from
the upper-left corner of the RPC source
image to the upper-left corner of this
image subset, if any. This value is almost
always 0, unless the image being read has
been spatially subset from a larger source
image to which the RPCs apply.

L_OFF Double-
precision
scalar

Row offset (in image coordinates) from
the upper-left corner of the RPC source
image to the upper-left corner of this
image subset, if any. This value is almost
always 0, unless the image being read has
been spatially subset from a larger source
image to which the RPCs apply.

Tag Name
Data Type
and Size Description

Table 6-1: ENVI_RPC_STRUCT Structure (Continued)
ENVI Programmer’s Guide User-Defined RPC Reader

114 Chapter 6: Interactive User Routines
empty. After you have modified and saved the useradd.txt file, you can access your
custom RPC reader from the ENVI main menu bar by selecting Map →
Orthorectification → Generic RPC after you restart ENVI.

Example: User-Defined RPC Reader

The following example RPC reader function reads the coefficients from a standard ASCII text
file, with one coefficient per line. In this example, the name of the file containing RPC
coefficients must be the same as the name of the input file with an .rpc extension. The RPC
reader function uses the name and extension to import the RPCs directly from the file ID for
the associated image. The following example code is saved to a file named
envi_user_rpc_reader.pro, which is the same name as the function. This file is then
placed in the save_add directory.

FUNCTION ENVI_USER_RPC_READER, FID = fileID, FNAME = filename,
_EXTRA=extra

COMPILE_OPT STRICTARR

; NOTE: You should include error handling in this function.
; If no RPCs can be read, return -1.
; If read successfully, return a structure full of RPCs.
; Make sure you have the filename to read in the
; coefficients.
IF (N_ELEMENTS(filename) EQ 0) THEN BEGIN

IF (N_ELEMENTS(fileID) EQ 0) THEN RETURN, -1
ENVI_FILE_QUERY, fileID, FNAME = filename
filename = filename + '.rpc'

ENDIF

; Get the RPC structure to fill.
rpcCoeffs = get_rpc_coefficient_structure()

; Find the name of the RPC file, then open it to read.
; For this example, the RPCs are assumed to be stored in a file
; with an .rpc extension appended to the name of the data file.
IF (~FILE_TEST(filename)) THEN RETURN, -1
OPENR, unit, filename, /GET_LUN
value = ''

; Fill up the RPC scale values.
FOR index = 0, 4 DO BEGIN

READF, unit, value
rpcCoeffs.scales[index] = DOUBLE(value)

ENDFOR
; Fill up the RPC offset values.
FOR index = 0, 4 DO BEGIN

READF, unit, value
rpcCoeffs.offsets[index] = DOUBLE(value)

ENDFOR
; Fill up the RPC numerator coefficients for the line terms.
FOR INDEX = 0, 19 DO BEGIN

READF, unit, value
rpcCoeffs.line_num_coeff[index] = DOUBLE(value)

ENDFOR
; Fill up the RPC denominator coefficients for the line terms.
FOR INDEX = 0, 19 DO BEGIN

READF, unit, value
User-Defined RPC Reader ENVI Programmer’s Guide

Chapter 6: Interactive User Routines 115
rpcCoeffs.line_den_coeff[index] = DOUBLE(value)
ENDFOR
; Fill up the RPC numerator coefficients for the sample terms.
FOR INDEX = 0, 19 DO BEGIN

READF, unit, value
rpcCoeffs.samp_num_coeff[index] = DOUBLE(value)

ENDFOR
; Fill up the RPC denominator coefficients for the sample terms.
FOR INDEX = 0, 19 DO BEGIN

READF, unit, value
rpcCoeffs.samp_den_coeff[index] = DOUBLE(value)

ENDFOR

; Close the file.
FREE_LUN, unit

; Return the RPC coefficients.
RETURN, rpcCoeffs

END

After you save the function and place it in the save_add directory, you must register it by
adding the following line to the useradd.txt file in the menu directory:

{rpc reader} {example rpc reader} {envi_user_rpc_reader} {}

After restarting your ENVI session, ENVI automatically calls this function if all of the
standard ENVI RPC readers fail to find RPCs for the input file when you select Map →
Orthorectification → Generic RPC from the ENVI main menu bar.
ENVI Programmer’s Guide User-Defined RPC Reader

116 Chapter 6: Interactive User Routines
User Move Routines

Two types of user move routines provide methods of attaching user functions to motion
events: ENVI calls a user-defined move routine each time the zoom location is moved, and a
user-defined motion routine each time the cursor moves in the display group. For both move
routines, the position information is passed into the routine, allowing the display of position-
dependent information. For example, move routines can display housekeeping data for the
current line of an image.

Most move routines display user data in a text widget, much like the Cursor Location/Value
tool. The move routine first checks if the widget exists, and if not, it creates the widget. Keep
in mind that the widget may have been closed since the last update. Displayed data can come
from the current image or another source, and you can prompt for an input file when you
create a move routine.

Move routines are defined in the ENVI configuration file envi.cfg, or by selecting File →
Preferences from the ENVI main menu bar. Once you define a move routine, ENVI calls it
for every zoom location event, regardless of the image being displayed. User move routines
may also use the file type to further restrict the display of data. When displaying
housekeeping data from a custom format, you should add a new file type to the
filetype.txt file in the menu directory of the installation tree. The move routine can then
use ENVI_FILE_TYPE to check for the proper file type prior to displaying data.

Move routines can also output data directly to the IDL log window using a simple PRINT
statement. Although not elegant, this is a simple way to develop or debug move routines that
will eventually use a widget interface.

User-Defined Move Routines

User-defined move routines are defined as procedures with parameters for the display number
and the x and y locations. The latter are floating-point values, which may be fractional
portions of a pixel.

PRO user_move, dn, xloc, yloc, xstart=xstart, ystart=ystart

Where:

• dn— The display number where the zoom event occurred within

• xloc — The current x location in image coordinates. Subtract the xstart value to
convert to file coordinates.

• yloc — The current y location in image coordinates. Subtract the ystart value to
convert to file coordinates.

• xstart — The x starting location of the first pixel in the file (in image coordinates)

• ystart — The y starting location of the first pixel in the file (in image coordinates)

File coordinates are necessary to use the function ENVI_GET_DATA, but you may not need
them for extracting custom housekeeping data.
User Move Routines ENVI Programmer’s Guide

Chapter 6: Interactive User Routines 117
Note
When you display bands from different files as an RGB image, you should retrieve the x and
y starting location from ENVI_FILE_QUERY instead of using the keyword inputs.

Example: Simple User-Defined Move Routine

This example creates a user-defined move routine that outputs the current zoom position and
pixel value to the IDL log window. Using the DN, the routine ENVI_DISP_QUERY returns
the FID associated with the displayed band. The COLOR keyword to ENVI_DISP_QUERY
is used to determine if a gray scale or RGB is currently displayed. For each displayed band, a
DIMS array is created and used as input into ENVI_GET_DATA to retrieve the value of the
current pixel. The pixel value is printed to the IDL log window.

This sample code is also available in the file irudm1.pro in the lib directory of the
installation.

pro ud_move_1, dn, xloc, yloc, xstart=xstart, ystart=ystart
; Get the file FIDs
 envi_disp_query, dn, fid=fid, pos=pos, color=color
 if (color eq 8) then nb = 3 $
 else nb = 1
; Print the DN and zoom location
 print, dn, xloc + 1, yloc + 1
; Print out the current pixel for each displayed band
 for i=0, nb-1 do begin
 envi_file_query, fid[i], xstart=xstart, ystart=ystart $

dims = long([0, xloc - xstart, xloc - xstart, $
yloc - ystart, yloc - ystart])

print, envi_get_data(fid=fid[i], pos=pos[i], dims=dims)
 endfor
end

The following steps outline the procedure for executing this example.

1. Save the routine to a file and place it in the save_add directory of the ENVI
installation.

2. Start ENVI.

3. Select File → Preferences from the ENVI main menu bar and enter ud_move_1 in
the User Defined Move Routine field. When prompted, save and overwrite the
existing ENVI configuration file.

4. Open a file and display a band.

5. Open the IDL Development Environment (PC) or the shell window where ENVI was
started (UNIX, Mac OS X).

6. When you move the zoom location, the move routine prints the data to the IDL Output
Log window.

Example: Widget User-Defined Move Routine

This example creates a user-defined move routine that outputs the current display number,
zoom position, and starting pixel values to a widget. The routine first checks for the text
ENVI Programmer’s Guide User Move Routines

118 Chapter 6: Interactive User Routines
widget used to display the move routine data and, if not found, creates one. The text string is
then output to the text widget or display group.

The following sample code is also available in the file irudm2.pro in the lib directory of
the installation.

pro ud_move_2, dn, xloc, yloc, xstart=xstart, ystart=ystart
 common ud_move_2_c, ud_wid, data
 ;
 ; Check for a valid widget id. If the widget ID is not valid
 ; then create the widget, otherwise update the text field.
 ;
 if (n_elements(ud_wid) eq 0) then ud_wid = -1L
 if (widget_info(ud_wid, /valid) eq 0) then begin
 ;
 ; Create the widget used to display the data. Give it a title and
 ; use envi_center to center the widget on the screen. A text widget
 ; is created as a place holder for the user text data.
 ;
 title = 'Custom Move Routine'
 envi_center, xoff, yoff
 base = widget_base(title=title, xoff=xoff, yoff=yoff, $
 /row, group=envi_main_base())
 sb = widget_base(base, /column, /frame)
 sb1 = widget_base(sb, /col)
 lab = widget_label(sb1, value='Line Header Data')
 tw = widget_text(sb1, value='Data display area.', xs=40, ys=5)
 widget_control,base,/realize
 ;
 ; Use the data structure for any info the you would like to
 ; keep around.
 ;
 data = {tw:tw}
 ud_wid = base

 endif
 ;
 ; Update the text widget with the current information.
 ; For now just display the dn, xloc, yloc, xstart, ystart.
 ;
 msg = ['Display Number ' + string(dn), 'Loc (x,y): ' + string(xloc+1) $

+ ',' + string(yloc+1), 'Start (x,y): ' + string(xstart+1) + ',' + $
string(ystart+1)]

 widget_control, data.tw, set_value=msg, /no_copy
end

The following steps outline the procedure for executing this example.

1. Save the routine to a file and place it in the save_add directory of the ENVI
installation.

2. Start ENVI.

3. Select File → Preferences from the ENVI main menu bar and enter ud_move_2 in
the User Defined Move Routine field. When prompted, save and overwrite the
existing ENVI configuration file.

4. Open a file and display a band.
User Move Routines ENVI Programmer’s Guide

Chapter 6: Interactive User Routines 119
5. When you move the zoom location, the move routine outputs the data to the Custom
Move Routine widget, shown below.

An enhancement to this example would be a menu bar on the widget to provide additional
controls, such as allowing you to save the displayed data to file, select a housekeeping
filename, or similar operations.

Example: User-Defined Motion Routine

User-defined motion routines are identical to user-defined move routines, with the addition of
an EVENT keyword that contains the event structure of the drawable so that you can use
event.x, event.y, event.press, etc.

The following example records the initial and new center pixel locations of the Zoom box
when you drag it around in the Image window.

pro motion_example, dn, xfloc, yfloc, xstart=xstart, $
ystart=ystart,event=event
;
compile_opt idl2
;
;Record Zoom box center pixel location before drag
if (event.press eq 1) then begin

disp_get_location, dn, xfloc, yfloc
print,'Initial Location', xfloc, yfloc

endif
;
;Record Zoom box center pixel location after drag
if (event.release eq 1) then begin

disp_get_location, dn, xfloc, yfloc
print,'New Location ', xfloc, yfloc
print,'**'

endif
;
return
;

end

The following steps outline the procedure for executing this example.

1. Save the routine to a file and place it in the save_add directory of the ENVI
installation.

Figure 6-1: Text Widget Associated with User-Defined Move Routine
ENVI Programmer’s Guide User Move Routines

120 Chapter 6: Interactive User Routines
2. Start ENVI.

3. Select File → Preferences from the ENVI main menu bar and enter
motion_example in the User Defined Motion Routine field. When prompted, save
and overwrite the existing ENVI configuration file.

4. Open a file and display a band.

5. When you drag the Zoom box around the Image window, the motion routine outputs
the data to the IDL log window.
User Move Routines ENVI Programmer’s Guide

Chapter 7

Custom File Input
This chapter covers topics about creating custom file input. It includes the following:
Types of Image Storage 122
Parsing Image File Headers 123
Custom File Readers 125

Spatial Read Routines 126
Spectral Read Routines 128
ENVI Programmer’s Guide 121

122 Chapter 7: Custom File Input
Types of Image Storage

ENVI provides a very powerful interface for importing files not directly supported. In fact,
you can interactively open many files in ENVI by specifying the number of samples, lines,
bands, data type, header offset, and data storage interleave. The data in these files must be
stored as BSQ, BIL, or BIP. A more automated approach, and the only custom development
needed, is to parse the header for the necessary parameters and use ENVI_SETUP_HEAD to
open the file. Once the file is open, ENVI handles the remainder of the I/O.

When the files do not conform to any of the standard storage formats, you can still integrate
the data without conversion. By creating a spatial and spectral read routine, the data quickly
become integrated into ENVI. As the name implies, the spatial read routine handles all spatial
data requests —from the whole image to a single pixel. The spectral read routine is
responsible for all spectral requests. ENVI breaks down all input data requests into these two
fundamental types, allowing easy integration of custom read routines.

Methods of importing files into ENVI are covered in more detail in the following sections.
Types of Image Storage ENVI Programmer’s Guide

Chapter 7: Custom File Input 123
Parsing Image File Headers

To automatically import files that are currently not supported, you must develop a parsing
routine to extract the basic file information. If the data are not stored as BSQ, BIL, or BIP,
you must also develop a custom read routine (see “Custom File Readers” on page 125). At a
minimum, you must specify the following information in order to open a file in ENVI.

• Number of samples, lines, and bands
• Data type
• Offset to image data
• File storage order: BSQ, BIL, or BIP
• Byte storage order: Host (Intel), Network (IEEE)

You can parse additional file information from the header, including any georeferencing
information. Open the file using ENVI_SETUP_HEAD with the keywords set from the
parsed header information. Set the OPEN keyword to open the file, and optionally, the
WRITE keyword to write an ENVI header file.

The strategy for parsing the header depends on the header format. Some headers are
keyword/value based and work well when read into a string variable. You can use the
STRPOS function to locate the keyword, while the string value that follows is converted to
the appropriate type. Other headers use a fixed location and length for each header parameter.
These headers are easily parsed using file positioning and single reads for each of the
parameters.

Example: Parsing a Keyword/Value Header

This example illustrates how to parse a keyword/value header for the necessary file
parameters. The keywords/values in this example are separated only by a space. Other header
files may use an equal sign instead.

This example assumes a 512-byte header is appended to the front of a BSQ byte image file
with the following keywords.

SAMPLES value
LINES value
BANDS value

The sample code follows.
PRO parse_header, fname
 buf = bytarr(512)

OpenR, unit, fname, /get_lun
ReadU, unit, buf

 free_lun, unit
 hdr = strupcase(string(buf))
 loc = strpos(hdr, 'SAMPLES') + 7
 ns = long(strmid(hdr, loc, strlen(hdr))
 loc = strpos(hdr, 'LINES') + 5
 nl = long(strmid(hdr, loc, strlen(hdr))
 loc = strpos(hdr, 'BANDS') + 5
 nb = long(strmid(hdr, loc, strlen(hdr))
 ENVI_SETUP_HEAD, fname=fname, ns=ns, nl=nl, nb=nb, $
 data_type=1,interleave=0, offset=512, /open
END
ENVI Programmer’s Guide Parsing Image File Headers

124 Chapter 7: Custom File Input
Example: Parsing a Positional Header

This example illustrates how to parse a header file with defined parameter positions. The file
read position is set to the byte location of a particular value. The value is read according to the
format of the header data. Typical formats include byte, integer, long, floating-point, and
double-precision floating-point numbers, as well as formatted ASCII data. This example
reads binary header values for the samples, lines, and bands parameters.

This example assumes a 512-byte header is appended to the front of a BSQ byte image file
with the following values. All values are assumed to be in network (IEEE) storage order.

• Bytes 20-23 — Binary long number of samples

• Bytes 30-33 — Binary long number of lines

• Bytes 40-43 — Binary long number of bands

The sample code follows.

PRO parse_header, fname
 OpenR, unit, fname, /get_lun
 ns = 0L
 nl = 0L
 nb = 0L
 point_lun, unit, 20L
 ReadU, unit, ns
 point_lun, unit, 30L

ReadU, unit, nl
 point_lun, unit, 40L

ReadU, unit, nb
 free_lun, unit
 ; Check to see if we need to swap
 IF (byte(256,0) EQ 0) then begin
 byteorder, ns, /lswap
 byteorder, nl, /lswap
 byteorder, nb, /lswap
 ENDIF
 ENVI_SETUP_HEAD, fname=fname, ns=ns, nl=nl, nb=nb, $
 data_type=1, interleave=0, offset=512, /open
END
Parsing Image File Headers ENVI Programmer’s Guide

Chapter 7: Custom File Input 125
Custom File Readers

Custom file readers provide a powerful mechanism for importing custom formats or files
directly into ENVI, without the need for conversion. When files do not conform to any of the
standard storage formats, you need to create custom file readers. By creating a spatial and
spectral read routine, ENVI automatically integrates the data and makes them available to all
ENVI functions. All spatial or spectral requests for data go through the specified read
routines. In simple cases, read routines perform data format conversions; in more complex
cases, they interface to an image database where data requests are pulled directly from the
database.

A spatial read routine is responsible for all spatial data requests, ranging from a whole band to
a single pixel. A spectral read routine handles all spectral data requests, ranging from a single
spectrum to the spectra for an entire line. All input data requests are broken down into these
two fundamental types. When opening files with custom read routines, use the
READ_PROCEDURE keyword to ENVI_SETUP_HEAD in order to define the spatial and
spectral readers. Then, ENVI uses these procedures in place of its internal readers.

Files with custom readers must also have a defined file type in the filetype.txt file in the
menu directory of the installation tree. Specifying a file type allows files to have an ENVI
header, but it also allows files to be opened by the custom open procedure, which defines the
READ_PROCEDURES. When the file has an ENVI header and is opened as an ENVI file,
the header is read first. The header information is passed to the custom open routine using a
PRE_FS keyword. The custom open routine parses the header in a normal manner and calls
ENVI_SETUP_HEAD with PRE_FS and the usual keywords set. A custom open procedure
called OPEN_MYFILE is defined here:

PRO open_myfile, fname, cancel=cancel, r_fid=r_fid, pre_fs=pre_fs

The parameters for this procedure are described as follows:

• fname — The filename including the path of the file to open

• cancel — Set this keyword to 1 when an error is encountered opening the file.
Otherwise, set the keyword to 0.

• r_fid — Set this keyword to the returned FID from ENVI_SETUP_HEAD.

• pre_fs — The value passed into the open procedure from parsing the ENVI header.
This value must be passed directly to ENVI_SETUP_HEAD. If no ENVI header is
present or the file is not opened as an ENVI file, this value is undefined.

When opening custom files directly from the menu and not as ENVI files, the menu event
handler first calls ENVI_PICKFILE to select the file. The filename is passed to the open
routine as defined above. Supporting both methods of opening the files (directly or as ENVI
files) allows files to remain in their native formats, with ENVI header parameter definitions,
including map projections.

Custom read procedures often need special information not available through
ENVI_FILE_QUERY. This is achieved by setting the INFO keyword to
ENVI_SETUP_HEAD and extracting its handle value in the read routine using the H_INFO
keyword to ENVI_FILE_QUERY. The associated INFO data are retrieved using the
procedure HANDLE_VALUE with the H_INFO handle.

Spatial and spectral read routines are detailed in the following sections.
ENVI Programmer’s Guide Custom File Readers

126 Chapter 7: Custom File Input
Spatial Read Routines

Spatial read routines handle all spatial data requests, ranging from an entire band to a single
pixel. Spatial data are used extensively throughout ENVI, including display data, processing
functions, and interactive routines. Read routines are not concerned with the originating
source of the request; they must satisfy the data request.

Spatial requests specify x and y starting and ending pixels and the desired band number. The
input file unit number for the opened input file is also passed to the routine. Spatial read
routines are defined as follows:

PRO myread_spatial, unit, r_data, fid, band, xs, ys, xe, ye,$
 _extra=_extra

Where:

• unit — The file unit number already open for reading

• r_data — The parameter variable for the returned data. The read procedure must
define this variable before exiting.

• fid — The file ID of the input image file

• band — The band position for the desired data. The band variable is a long-integer
value ranging from 0 to 1 minus the number of bands.

• xs —The x starting pixel for the spatial request (in file coordinates)

• ys — The y starting pixel for the spatial request (in file coordinates)

• xe — The x ending pixel for the spatial request (in file coordinates)

• ye — The y ending pixel for the spatial request (in file coordinates)

• _extra — You must specify this keyword in order to collect keywords not used by
custom read routines. The use of _extra prevents errors when calling a routine with a
keyword that is not listed in its definition.

The read routine reads the appropriate data from the file and stores the results in the R_DATA
parameter. Opening and closing input files is performed externally, and the corresponding file
unit is passed as the UNIT parameter.

The following example illustrates the use of a custom spatial read procedure. This example
only works with unsigned integer data and should not be run on files with other data types.

Example: Unsigned Integer Spatial Reader

This example defines a spatial read routine used to simulate unsigned integer values.

• Data from 0 to 32767 are mapped from 0 to 32767.

• Data from 32768 to 65535 are mapped from –32768 to –1.

This routine takes the data and re-maps them into a continuous range from –38768 to 32767.
Now the data are in the following ranges:

• Data from 0 to 32767 are mapped from –32768 to –1.

• Data from 32768 to 65535 are mapped from 0 to 32767.
Spatial Read Routines ENVI Programmer’s Guide

Chapter 7: Custom File Input 127
 Although the displayed data values are shifted, the images are displayed properly. The
following Band Math expression converts the images to long-integer type and allows display
of the proper values:

long(b1) + 32768L

The spatial read routine uses ENVI_FILE_QUERY to get necessary information about the
image file. The output array is allocated as an integer array, since this read routine works only
with integer data. Often, read routines need to support a variety of data types and must
allocate arrays based on the file data type. Based on the file interleave, the unshifted data are
placed into the output array. After completing the data ingest, the routine checks for byte
swapping and performs the data shift. Using the following formula, the data are shifted to the
simulated unsigned integer range.

(r_data + (r_data lt 0) * 65536l) - 32768L

The following sample code is also available in the file fiunit.pro in the lib directory of
the installation.

pro utest_spatial, unit, r_data, fid, band, xs, ys, xe, ye,$
 _extra=_extra
 ; Get the necessary file information
 envi_file_query, fid, ns=ns, nl=nl, nb=nb, $
 interleave=interleave, offset=offset, $
 byte_swap=byte_swap
 ; Calculate the output size and allocate the array
 o_ns = xe - xs + 1
 o_nl = ye - ys + 1
 r_data = intarr(o_ns, o_nl, /nozero)
 ; Read according to the file interleave
 case interleave of
 0: begin
 a_offset = offset + 2 * (ns*nl*band + ys*ns) $
 a = assoc(unit, intarr(ns, /nozero), a_offset)
 for i=0L,o_nl-1 do r_data[0,i] = a[xs:xe, i]
 end
 1: begin
 aout = assoc(unit, intarr(ns, /nozero), offset)
 for i=ys,ye do r_data [0,i-ys] = $
 reform(aout[xs:xe, band+nb*i],/over)
 end
 2: begin
 aout = assoc(unit, intarr(nb, ns, /nozero), offset)
 for i=ys,ye do r_data[0,i-ys] = $
 reform(aout[band, xs:xe, i],/over)
 end
 endcase
 ; check for byte swap
 if (byte_swap) then byteorder, r_data
 ; Shift an unsigned data value to the top and bottown
 r_data[0,0] = (r_data + (r_data lt 0) * 65536l) - 32768l
end

The spatial read routine composes half of a read routine. See Example: Unsigned Integer
Spectral Reader for a spectral read routine. Both of these routines are available in the
fiuint.pro in the ENVI lib directory. Save the above spatial read routine to a file, and
place it in the save_add directory of the installation tree.
ENVI Programmer’s Guide Spatial Read Routines

128 Chapter 7: Custom File Input
Spectral Read Routines

Spectral read routines handle all spectral data requests, ranging from all spectra for an entire
line to a single spectrum. Unlike spatial data requests, the maximum spectral requests are
limited to a single line. Spectral data are used extensively throughout ENVI for a number of
processing functions and interactive routines.

Spectral requests specify the bands to read, starting and ending pixels, and the line. Spectral
readers are also required to open and close the input files. Input filenames are returned from
ENVI_FILE_QUERY using the supplied FID. Spectral read routines are defined as follows:

PRO myread_spectral, fid, pos, xs=xs, xe=xe, y=y, spectra=spectra,$
 _extra=_extra

Where:

• fid — The parameter variable for the returned data. The read procedure must define
this variable before exiting.

• pos — The band positions for the desired spectra. POS is a long array with values
ranging from 0 to 1 minus the number of bands. If POS is undefined, all the bands for
the requested spectra are returned.

• xs —The x starting pixel for the spectral request (in file coordinates)

• xe — The x ending pixel for the spectral request (in file coordinates)

• y — The y line number for the spectral request (in file coordinates)

• spectra — The name of the variable in which the requested spectra are to be stored

• _extra — You must specify this keyword in order to collect keywords not used by
custom read routines. The use of _EXTRA prevents errors when calling a routine with
a keyword that is not listed in its definition.

The read routine reads the appropriate spectra from the file and stores the results in the
SPECTRA variable. Opening and closing input files is performed within the spectral read
procedure. The following example only works with unsigned integer data and should not be
run on files with other data types.

Example: Unsigned Integer Spectral Reader

This example defines a spectral read routine used to simulate unsigned integer values.

• Data from 0 to 32767 are mapped from 0 to 32767.

• Data from 32768 to 65535 are mapped from -32768 to -1.

This routine takes the data and re-maps them into a continuous range from -38768 to 32767.
Now the data are in the following ranges:

• Data from 0 to 32767 are mapped from -32768 to -1.

• Data from 32768 to 64535 are mapped from 0 to 32767.

Although the displayed data values are shifted, the images display properly. The following
Band Math expression converts the images to long-integer type and allows display of the
proper values.
Spectral Read Routines ENVI Programmer’s Guide

Chapter 7: Custom File Input 129
long(b1) + 32768L

The spectral read routine uses ENVI_FILE_QUERY to get necessary information about the
image file and opens the input file. Based on the file interleave, the spectral data are read and
saved in the output array SPECTRA. After completing the data ingest, the routine checks for
byte swapping and performs the data shift. Using the following formula, the data are shifted
to the simulated unsigned integer range:

(spectra + (spectra lt 0) * 65536L) - 32768L

The following sample code is also available in the file fiunit.pro in the lib directory of
the installation.

pro utest_spectral, fid, pos, xs=xs, xe=xe, y=y, $
spectra=spectra, _extra=extra
 ;
 envi_file_query, fid, fname=fname, ns=ns, nl=nl, nb=nb, $
 offset=offset, interleave=interleave, $
 byte_swap=byte_swap
 o_nb = n_elements(pos)
 openr, unit, fname, /get_lun
 case interleave of
 0: begin
 loc = lindgen(nb) * ns * nl + y * ns + xs
 spectra = intarr(nb, /nozero)
 aout = assoc(unit, intarr(ns, /nozero), offset)
 for i=0L, o_nb-1 do spectra[0,i] = aout[loc[pos[i]]]
 end
 1: begin
 aout = assoc(unit, intarr(ns, nb, /nozero), offset)
 spectra = reform(aout[xs:xe,*,y])
 if (n_elements(pos) gt 0) then spectra = spectra[*,pos]
 end
 2: begin
 loc = y * ns + xs
 aout = assoc(unit, intarr(nb,ns, /nozero), offset)
 spectra = aout[*,xs:xe,y]
 if (n_elements(pos) gt 0) then spectra = spectra[pos,*]
 end
 endcase
 free_lun, unit
 ; Byte swap if necessary
 if (byte_swap) then byteorder, spectra
 ; Convert from signed integer to "unsigned integer"
 spectra[0,0] = (spectra + (spectra lt 0) * 65536l) - 32768l
 if (xs eq xe) then spectra = reform(spectra, /over)
end

The spectral read routine composes half of a read routine. The spatial read routine (described
in “Example: Unsigned Integer Spatial Reader” on page 126) composes the other half. Add
the spectral read routine to the same file where you added your spatial read routine (in the
save_add directory). Add the following line to the data file header to define the read
routines to use for accessing data:

read procedures = {utest_spatial, utest_spectral}

Alternately, when ENVI_SETUP_HEAD is called, you can define the read procedures using
the READ_PROCEDURE keyword as follows:

read_procedure = ['utest_spatial', 'utest_spectral']
ENVI Programmer’s Guide Spectral Read Routines

130 Chapter 7: Custom File Input
Spectral Read Routines ENVI Programmer’s Guide

Chapter 8

Additional Topics in ENVI
Programming
This chapter covers the following topics:
Coordinate Systems in ENVI 132
Regions of Interest . 134
Using Endmember Collection Widgets 142

Working with Display Groups 144
ENVI Installation Components 146
ENVI Programmer’s Guide 131

132 Chapter 8: Additional Topics in ENVI Programming
Coordinate Systems in ENVI

ENVI uses several different types of coordinate systems, some referring to the location of
pixels within a display group, others referring to the location of image data within an array
variable or file. In order to avoid confusion, both in ENVI programming and in common use
of interactive ENVI, you should understand the differences among the various coordinate
systems.

File Coordinates

File coordinates refer to the position of an image pixel within an IDL array and are equivalent
to IDL array subscript positions. Unlike image coordinates, the file coordinates are always
zero-based numbers, because IDL arrays are subscripted from 0 to the number of elements
minus one.

Image (Pixel) Coordinates

Image coordinates refer to the location of an image pixel in a display group in generic
(sample, line) coordinates. Image coordinates are relatively simple because they always
increase (one unit for every pixel) with increasing sample and line number. Samples
coordinates increase as you move from left to right in a display group, but the direction that
line coordinates increase depends on the Display Order setting in the configuration file
(IDL’s !order system variable). For the default display order of 1, line coordinates increase
from top to bottom. For a display order of 0, they increase from bottom to top.

The image coordinates for the first pixel in an image are defined by the XSTART and
YSTART values in the image’s header file. For most images, ENVI sets the default XSTART
and YSTART values to 1, defining the first pixel in an image with a coordinate of (1,1). Thus,
if the image were an IDL 2D array variable, the data contained in subscript position [0, 0]
correspond to image coordinates (1,1). If XSTART or YSTART are set to any other values
(including negative numbers or 0), the image coordinates begin incrementing from these
values.

XSTART and YSTART

Using XSTART and YSTART values to define where the image coordinates begin allows
ENVI images to use a generic coordinate system that references an image other than itself.
For example, if a small image is extracted as a spatial subset of a much larger image, the
smaller, spatially subsetted image can retain its original image coordinates by setting its
XSTART and YSTART to the first sample and line number of the subset. In some instances,
ENVI processing routines automatically set the resulting image’s XSTART and YSTART
values appropriately. For instance, when performing an Image-to-Image Registration, the
registered image’s XSTART and YSTART values are set relative to the base image’s image
coordinates. This allows you to directly compare the two images using a common image
coordinate system (as you can see when doing a dynamic overlay of the registered result and
the base—the link offsets are computed directly from XSTART and YSTART).
Coordinate Systems in ENVI ENVI Programmer’s Guide

Chapter 8: Additional Topics in ENVI Programming 133
Working with the XSTART and YSTART Programmatically

If you were to select File → Edit ENVI Header from the ENVI main menu bar to find an
image’s XSTART and YSTART values, the relationship between file coordinates and image
coordinates is as follows:

(sample) image coordinate = file coordinate + XSTART

(line) image coordinate = file coordinate + YSTART

However, it is important to recognize that the XSTART and YSTART values are reported
differently within ENVI than they are in ENVI batch mode. In batch mode, the XSTART and
YSTART values returned by ENVI_FILE_QUERY are reported as zero-based numbers; they
are always one less than the values reported by the Header Info dialog in ENVI. For example,
if a file has the standard XSTART and YSTART values of 1, then the ENVI main menu bar
option File → Edit ENVI Header reports the values as 1. Working with the same file in
batch mode, ENVI_FILE_QUERY reports the XSTART and YSTART values as 0. Thus, in
batch mode, the relationship between image coordinates and file coordinates becomes:

(sample) image coordinate = file coordinate + XSTART + 1

(line) image coordinate = file coordinate + YSTART + 1

The same relationship holds true when defining a new file’s XSTART and YSTART values in
batch mode using ENVI_SETUP_HEAD or ENVI_ENTER_DATA: the XSTART and
YSTART values are defined as zero-based numbers. To make a file whose first pixel has an
image coordinate of (1,1), set XSTART and YSTART to 0.

When coding a user function that processes and returns image data, if you provide the
capability to spatially subset the input image, you should keep track of the correct XSTART
and YSTART values for the resulting output image (so that the image coordinates will
correctly reference the original). The following code excerpt illustrates one method of
updating the coordinates:

; select an input image and return the DIMS
;
ENVI_SELECT, fid=fid, dims=dims...

; get the image's XSTART and YSTART values
;
ENVI_FILE_QUERY, fid, xstart=xs, ystart=ys...

; if the starting sample and line are not zero
; then it was spatially subsetted so you’ll
; need to update the XSTART and YSTART for the
; output image's header file
;
IF (dims[1] ne 0) THEN xs = xs + dims[1]
IF (dims[3] ne 0) THEN ys = ys + dims[3]

Because the batch mode XSTART and YSTART values are zero-based numbers, you can add
them to the DIMS values, which are in file coordinates. When the header for the processed
file is written, you can set the XSTART and YSTART values using the XS and YS variables.

For additional examples of converting between image coordinates and file coordinates in an
ENVI routine, see “User Move Routines” on page 116.
ENVI Programmer’s Guide Coordinate Systems in ENVI

134 Chapter 8: Additional Topics in ENVI Programming
Regions of Interest

Regions of interest (ROIs) are selected image subsets that are typically drawn by the user.
These regions are often irregularly shaped and are typically used to extract statistics for
classification, masking, and other operations. ENVI allows you to select any combination of
polygons, vectors, or points as a ROI. You can define multiple ROIs for a single image and
subsequently use them with other images.

Processing with ROIs

Graphically, an ROI is a set of polygons, polylines, or points. However, from a processing
standpoint, ROIs are addresses with associated data. Most ROI processing routines do not
need the spatial correlation that they have graphically, but instead need the associated data.
For example, the average spectrum from an ROI is calculated by summing the pixel values
for each band and dividing by the total points in the ROI, regardless of where the points lie
within the ROI. You do not need to know the addresses of each ROI point to calculate the
mean.

ENVI provides a set of functions that allow you to open ROI files, list all open ROIs, get ROI
addresses, retrieve ROI data, convert ROI IDs to DIMS pointers, and create ROIs. When
working with ROIs, there must to be a tie between an ROI and a data file. To ensure this, first
select a file and retrieve the list of ROIs that match the file’s spatial dimensions. The selected
file does not have to be the one used to draw the ROI; it only has to have the same spatial
dimensions. Next, select the desired ROIs from the returned list and use them with the file
information to get the associated data. The entire ROI data are returned in a single array (there
is no tiling associated with ROIs).

Note
ROIs are related to a file by the spatial dimensions, number of samples, and number of lines.
Use Reconcile ROIs to map an ROI to a file with different spatial dimensions.

The following ENVI ROI routines are available:

• ENVI_CREATE_ROI — Create a new ROI

• ENVI_DEFINE_ROI — Add objects to an ROI

• ENVI_DELETE_ROIS — Delete ROIs from ENVI

• ENVI_GET_ROI — Get the address of address of an ROI

• ENVI_GET_ROI_DATA — Get the data associated with and ROI

• ENVI_GET_ROI_DIMS_PTR — Convert the ROI ID to a DIMS pointer value

• ENVI_GET_ROI_IDS — Get a list of ROI IDs

• ENVI_RESTORE_ROIS — Open and load a saved ROI file

• ENVI_SAVE_ROIS — Save ROIs in ENVI
Regions of Interest ENVI Programmer’s Guide

Chapter 8: Additional Topics in ENVI Programming 135
Selecting ROIs

To understand ROI selection, you should remember that an ROI has an associated number of
samples and lines. For a given spatial size, an image may have any number of associated
ROIs, or none. ENVI_GET_ROI_IDS returns all available ROIs associated with a given
spatial dimension. There are three ways to specify the desired spatial dimension to
ENVI_GET_ROI_IDS:

• Use the keywords NS and NL.

• Use the keyword FID to match the spatial dimensions of the file specified by the FID.

• Use the keyword DN to match the spatial dimension of the image in the display
specified by DN.

The compound widget WIDGET_MULTI provides an excellent method for selecting
additional ROIs. Once you select the final ROIs, you can use them to get associated ROI data,
use them as input into a processing function like statistics, or get their addresses.

In addition to drawing ROIs in the current ENVI session, you can restore previously saved
ROI files using the procedure ENVI_RESTORE_ROIS. Although ENVI_RESTORE_ROIS
does not return any ROI IDs, the loaded ROIs are now available using ENVI_GET_ROI_IDS.

The following examples demonstrate ROI selection.

Example: ROI Selection

In this example, basic ROI selection uses ENVI_GET_ROI_IDS with an associated spatial
dimension. Interactively draw ROIs on an image. Select the image file using ENVI_SELECT
and access the spatial dimensions using ENVI_FILE_QUERY. Retrieve the ROI IDs by
specifying NS and NL for the file. For comparison, the ROI IDs are also retrieved by
specifying the FID for the image file. The following steps outline this process:

1. Start ENVI, open a file, and display a gray scale image.

2. Interactively draw three separate polygon ROIs, each having approximately 200
points.

3. Open the IDL development environment (PC) or the shell window where ENVI was
started (UNIX, Mac OS X).

4. Type the following at the ENVI command line to select the displayed file:

roi_multi_sel

5. Select the displayed file (the gray scale image):

ENVI_SELECT, title='Input Filename', fid=fid

6. Type the following at the ENVI command line to get the number of samples and lines:

ENVI_FILE_QUERY, fid, ns=ns, nl=nl

7. Type the following at the ENVI command line to get all the ROIs associated with a
given number of samples and number of lines, and print the result:

roi_ids = ENVI_GET_ROI_IDS(ns=ns, nl=nl)
print, roi_ids
ENVI Programmer’s Guide Regions of Interest

136 Chapter 8: Additional Topics in ENVI Programming
8. Type the following at the ENVI command line to get all the ROIs with the same spatial
dimensions as the file specified by FID, and print the result:

roi_ids = ENVI_GET_ROI_IDS(fid=fid)
print, roi_ids

The two printed ROI_IDS should be the same since they reference the same spatial
dimensions.

Example: ROI Selection and WIDGET_MULTI

This example expands on the “Example: ROI Selection” on page 135 by using
WIDGET_MULTI for additional ROI selection. The interactive steps have been added to a
procedure that allows you to select a group of ROIs.

This example first selects a file to use as the spatial dimension reference for the ROI
selection. ENVI_GET_ROI_IDS returns the list of ROI IDs, and the optional keyword
ROI_NAMES returns the associated ROI names. If no ROIs are found, then a single element
array with the value -1 is returned, and the routine prints an error message and exits. An auto-
managed widget is created for final ROI selection. The selected items from the list are
indicated by the variable PTR, and the ROI names and IDs are printed.

The following sample code is also available in the file ufroi1.pro in the lib directory of
the installation.

pro roi_multi_sel
 envi_select, title='Input Filename', fid=fid
 if (fid eq -1) then return
 roi_ids = envi_get_roi_ids(fid=fid, $
 roi_names=roi_names)
 if (roi_ids[0] eq -1) then begin
 print, 'No regions associated with the selected file'
 return
 endif
 ; Compound widget for ROI selection
 base = widget_auto_base(title='ROI Selection')
 wm = widget_multi(base, list=roi_names, uvalue='list', /auto)
 result = auto_wid_mng(base)
 if (result.accept eq 0) then return
 ptr = where(result.list eq 1)
 print, roi_names[ptr]
 print, roi_ids[ptr]
end

1. Save the procedure to a file and place it in the save_add directory.

2. Start or restart ENVI then open a file and display a gray scale image.

3. Interactively draw three separate polygon ROIs, each having approximately 200
points.

4. Open the IDL development environment (PC) or the shell window where ENVI started
(UNIX, Mac OS X).
Regions of Interest ENVI Programmer’s Guide

Chapter 8: Additional Topics in ENVI Programming 137
5. Type the following at the ENVI command line to run the routine:

roi_multi_sel

The sample code in this example can be used as a model for allowing ROI selection in user
functions.

Example: Restore Saved ROIs

This example interactively restores a saved ROI file. The compound widget
ENVI_PICKFILE is used to select the file, and the returned filename is then passed to
ENVI_RESTORE_ROIS. An informational message is displayed showing the restored ROIs.

1. Start ENVI.

2. Open a file and display a gray scale image.

3. Interactively draw three separate polygon ROIs, each having approximately 200
points.

4. Save the ROIs to a file.

5. Open the IDL development environment (PC) or the shell window where ENVI started
(UNIX, Mac OS X).

6. Type the following at the ENVI command line to select the ROI file you saved above:

name = ENVI_PICKFILE(title='ROI File', filter='*.roi')

7. Type the following at the ENVI command line to restore the saved ROIs:

ENVI_RESTORE_ROIS, name

Now two sets of the same ROIs are loaded into ENVI — the ones created interactively and
the ones loaded from the file. Although these two sets originated from the same source, they
are now considered independent.

Using ROI Data

Once you select an ROI, acquiring and processing the data is quite simple. The ROI data are
returned in an array using ENVI_GET_ROI_DATA. The file from which to extract the data is
defined by the FID variable passed into ENVI_GET_ROI_DATA.

The following examples build on the previous ROI selection examples by adding the data
request.

Example: Using ROI Data

Basic ROI selection uses ENVI_GET_ROI_IDS with an associated spatial dimension. This
example shows how to interactively select all ROIs associated with the spatial dimensions
specified by FID. The ROI data from the first band are accessed using
ENVI_GET_ROI_DATA. The ROI mean for this band is calculated and printed.

1. Start ENVI.

2. Open a file and display a gray scale image.

3. Interactively draw one polygon ROI with approximately 200 points.
ENVI Programmer’s Guide Regions of Interest

138 Chapter 8: Additional Topics in ENVI Programming
4. Open the IDL development environment (PC) or the shell window where ENVI was
started (UNIX, Mac OS X).

5. Type the following at the ENVI command line to select the displayed file. Select the
displayed file (the gray scale image):

ENVI_SELECT, title='Input Filename', fid=fid, pos=pos

6. Type the following at the ENVI command line to get all the ROIs with the same spatial
dimensions as the file specified by FID:

roi_ids = ENVI_GET_ROI_IDS(fid=fid)

7. Type the following at the ENVI command line to get the ROI data for the first band,
and calculate the ROI mean value:

data = ENVI_GET_ROI_DATA(roi_ids[0], fid=fid, pos=pos[0])
print, 'ROI mean = ', total(data) / n_elements(data)

To access any remaining bands in the POS array, ENVI_GET_ROI_DATA is called again
with the POS keyword set to the next element. This process continues in a loop until all bands
have been accessed. Or, the ROI data from all of the bands in the file can be extracted in a
single call to ENVI_GET_ROI_DATA. This interactive example is for demonstration
purposes only. In practice, these steps are part of a user function.

Example: Calculating ROI Means

This example extends the “Example: ROI Selection and WIDGET_MULTI” on page 136 to
request ROI data and calculate the ROI mean.

This example uses ENVI_SELECT to select the file to use as the spatial dimension reference.
Then, ENVI_GET_ROI_IDS returns return the list of ROI IDs, and the keyword
ROI_NAMES returns the associated ROI name. If no ROIs are found, then a single element
array with the value –1 is returned and the routine prints an error message and exits. Next, an
auto-managed widget is created for the final ROI selection. The selected items from the list
are indicated by the variable PTR. The data for each band of a selected ROI is read, and the
mean value is computed. The resulting mean values are printed.

The following sample code is also available in the file ufroi2.pro in the lib directory of
the installation.

pro roi_mean
 envi_select, title='Input Filename', fid=fid, pos=pos
 if (fid eq -1) then return
 roi_ids = envi_get_roi_ids(fid=fid, roi_names=roi_names)
 if (roi_ids[0] eq -1) then begin
 print, ‘No regions associated with the selected file’
 return
 endif
 ; Compound widget for ROI selection
 base = widget_auto_base(title='ROI Selection')
 wm = widget_multi(base, list=roi_names, uvalue='list', /auto)
 result = auto_wid_mng(base)
 if (result.accept eq 0) then return
 ptr = where(result.list eq 1, count)
 result = dblarr(n_elements(pos))
 ; ROI Mean calculation
 for i=0L count-1 do begin
 for j=0L, n_elements(pos)-1 do begin
Regions of Interest ENVI Programmer’s Guide

Chapter 8: Additional Topics in ENVI Programming 139
 data = envi_get_roi_data(roi_ids[ptr[i]], fid=fid, $
 pos=pos[j])
 result[j] = total(data, /double) / n_elements(data)
 endfor
 print, roi_names[ptr[i]]
 print, result
 endfor
end

8. Save the procedure to a file and place it in the save_add directory.

9. Start or restart ENVI.

10. Open a file and display a gray scale image.

11. Interactively draw three separate polygon ROIs, each having approximately 200
points.

12. Open the IDL development environment (PC) or the shell window where ENVI started
(UNIX, Mac OS X).

13. Type the following at the ENVI command line to run the routine:

roi_mean

The sample code in this example is a useful model for adding ROI selection to user functions.
To calculate ROI statistics, you should use ENVI_STATS_DOIT and set the ROI DIMS
pointer.

Using ROI DIMS Pointers

In many ENVI routines, you have the option to spatially subset an image using an ROI
instead of specifying a range of samples and lines. In ENVI programming routines, the DIMS
variable is used to define the spatial subset. The first element of the DIMS variable is called
the ROI pointer, which tells ENVI if the spatial subset should be based on an ROI. When the
ROI pointer is set to a value of -1L, it means an ROI is not being used. Properly set the ROI
pointer using the routine ENVI_GET_ROI_DIMS_PTR.

Note
An ROI DIMS pointer value can change when ROIs are added or deleted. It is best to
convert the ROI IDs when defining the DIMS array.

Example: ROI DIMS Pointer

This example converts the “Example: Calculating ROI Means” on page 138 by using
ENVI_STATS_DOIT to calculate the ROI statistics.

This example shows you how to select the image file used as the spatial reference for the
ROIs. Next, use ENVI_GET_ROI_IDS to return the list of ROI IDs, and use the keyword
ROI_NAMES to return the associated ROI name. If no ROIs are found, then a single element
array with the value -1 is returned, and the routine prints an error message and exits. Create an
auto-managed widget for the final ROI selection. The selected items from the list are
indicated by the variable PTR. Calculate the basic statistics for each selected ROI using
ENVI Programmer’s Guide Regions of Interest

140 Chapter 8: Additional Topics in ENVI Programming
ENVI_STATS_DOIT. Print the resulting minimum, maximum, mean, and standard deviation
vectors.

The sample code is also available in the file ufroi3.pro in the lib directory of the
installation.

pro roi_stat
 envi_select, title='Input Filename', fid=fid, pos=pos
 if (fid eq -1) then return
 roi_ids = envi_get_roi_ids(fid=fid, roi_names=roi_names)
 if (roi_ids[0] eq -1) then begin
 print, 'No regions associated with the selected file'
 return
 endif
 ; Compound widget for ROI selection
 base = widget_auto_base(title='ROI Selection')
 wm = widget_multi(base, list=roi_names, uvalue='list', /auto)
 result = auto_wid_mng(base)
 if (result.accept eq 0) then return
 ptr = where(result.list eq 1, count)
 result = dblarr(n_elements(pos))
 ; ROI Stats calculation
 for i=0L, count-1 do begin
 dims = [envi_get_roi_dims_ptr(roi_ids[ptr[i]]), 0,0,0,0]
 envi_stats_doit, fid=fid, dims=dims, pos=pos, comp_flag=0, $
 report_flag=0, mean=mean, stdv=stdv, dmin=dmin, dmax=dmax
 print, roi_names[ptr[i]]

print, dmin, dmax, mean, stdv
endfor
end

1. Save the procedure to a file and place it in the save_add directory.

2. Start or restart ENVI.

3. Open a file and display a gray scale image.

4. Interactively draw three separate polygon ROIs, each having approximately 200
points.

5. Open the IDL development environment (PC) or the shell window where ENVI started
(UNIX, Mac OS X).

6. Type the following at the ENVI command line to run the routine:

roi_stat

The sample code in this example is a useful model for calculating statistics for ROIs.

Using ROI Addresses

ENVI provides access to the spatial location of any ROI through its addresses. ROI addresses
are single-element addresses referenced from the first pixel in the image, increasing in the
sample direction. The following list shows some sample ROI addresses and their
corresponding pixels for an image with ten samples and eight lines.

• 0 — First pixel in the image
Regions of Interest ENVI Programmer’s Guide

Chapter 8: Additional Topics in ENVI Programming 141
• 12 — Third pixel on the second line

• 30 — First pixel on the third line

• 79 — Last pixel in the image

The routine ENVI_GET_ROI returns the address associated with the specified ROI. If
necessary, the address can be converted to spatial x and y values (see the following example).
ROI addresses are zero-based, where the first pixel in the image has an address of 0.

Example: ROI Addresses

This example computes the x and y values for a ROI address. The ROI selection uses
ENVI_GET_ROI_IDS with an associated spatial dimension using the keyword FID. The FID
is returned using the compound widget ENVI_SELECT. Next, convert the ROI address
returned from ENVI_GET_ROI to x,y locations and print them.

1. Start ENVI.

2. Open a file and display a gray scale image.

3. Interactively draw one polygon ROI with approximately 200 points.

4. Open the IDL development environment (PC) or the shell window where ENVI started
(UNIX, Mac OS X).

5. Type the following at the ENVI command line to select the displayed file (gray scale
image):

ENVI_SELECT, title='Input Filename', fid=fid

6. Type the following at the ENVI command line to get all the ROIs with the same spatial
dimensions as the file specified by FID:

roi_ids = ENVI_GET_ROI_IDS(fid=fid)

7. Type the following at the ENVI command line to get the ROI address:

addr = ENVI_GET_ROI(roi_ids[0])

8. Get the number of samples and lines in the file specified by FID:

ENVI_FILE_QUERY, fid, ns=ns, nl=nl

9. Calculate and print the x,y location for each point in the ROI:

y = addr / ns
x = addr - y * ns
print, x
print, y

This interactive example is for demonstration purposes only. In practice, these steps are part
of a user function.
ENVI Programmer’s Guide Regions of Interest

142 Chapter 8: Additional Topics in ENVI Programming
Using Endmember Collection Widgets

The Endmember Collection dialog is one of ENVI’s most sophisticated compound widgets. It
is used to collect training sets and endmembers for classification and mapping routines, and it
can be incorporated into user functions with the routine ENVI_COLLECT_SPECTRA.
However, this widget functions differently than all of the other ENVI widgets, and it requires
some special instruction. (For users that are familiar with IDL widget programming, using the
Endmember Collection widget is essentially no different than writing a custom event handler
for the widget’s Apply button).

The Endmember Collection Dialog is not modal (see “Adding Widgets to User Functions” on
page 55 for an explanation of modality). After this dialog widow is displayed, all of ENVI’s
menus remain active. The primary reason this widget is not modal is because it serves as a
repository of endmember spectra that can be used for a wide variety of routines. Thus, it
makes sense to allow continued access to the widget after the original processing is finished.
However, while not being modal makes the widget more functional, it also makes it more
complicated to use.

A user function that produces the Endmember Collection widget is broken into two parts. The
first procedure is defined in the menu file and is executed when you select the user function
from the ENVI main menu bar. This procedure ends after it calls
ENVI_COLLECT_SPECTRA.

The second procedure is executed when you click Apply. Instead of the widget returning the
data in a structure variable, ENVI automatically calls this procedure into which the
endmember data are passed. The name of the procedure is defined by the PROCEDURE
keyword to ENVI_COLLECT_SPECTRA. This second procedure uses the information

Figure 8-1: Endmember Collection Widget
Using Endmember Collection Widgets ENVI Programmer’s Guide

Chapter 8: Additional Topics in ENVI Programming 143
collected by the widget to carry out the user function’s processing. Because the Endmember
Collection dialog remains open, you can modify the contents of the dialog window and run
the second part of the user function multiple times by clicking Apply.

In IDL widget programming, this second procedure is referred to as an event handler because
it handles the widget event that occurs when you click Apply. This event-handling procedure
can have any name, but you must define the following keywords in the procedure definition
statement:

PRO MyEventHandler, fid=fid, pos=pos, dims=dims, $
spec=spec, snames=snames, scolors=scolors, _extra=extra

The FID, POS, and DIMS variables are passed into ENVI_COLLECT_SPECTRA when it is
called. SPEC, SNAMES, and SCOLORS are collected by the Endmember Collection widget.
The _EXTRA keyword passes additional information from the first procedure (the one that
called ENVI_COLLECT_SPECTRA) to the event-handling procedure.

The two procedures that comprise the single user function are frequently included in the same
file. With this organization, the first procedure (the one defined in the menu file) must be the
last procedure in the file. Otherwise, IDL will not auto-compile both procedures when it starts
ENVI. The file that contains the user function has the following structure:

PRO MyEventHandler, fid=fid, pos=pos, dims=dims, $
spec=spec, snames=snames, scolors=scolors, _extra=extra
do the user function processing...

END

PRO MyUserFunction, event
ENVI_SELECT, fid=fid, pos=pos, dims=dims
info = {structure variable of useful information}
do any pre-processing if necessary
ENVI_COLLECT_SPECTRA, dims=dims, fid=fid, pos=pos,$

title=title, procedure='MyEventHandler',$
h_info=info

END
ENVI Programmer’s Guide Using Endmember Collection Widgets

144 Chapter 8: Additional Topics in ENVI Programming
Working with Display Groups

While writing user functions, you may want to programmatically retrieve information about a
display group. Each display group is identified by a unique display number (DN). Once a DN
for a particular display is obtained, several different ENVI routines provide useful
information about the displayed image data, along with controls for moving the position of
the Zoom window.

DISP_GET_LOCATION

This routine returns the x,y location of the current pixel. See “DISP_GET_LOCATION” in
the ENVI Reference Guide for a complete description, list of associated keywords, and
example usage.

DISP_GOTO

Use this procedure to move the current pixel of a given display. The Zoom window also
moves so that it is centered around the new current pixel location. If this location is not within
the current display group, the Image and Scroll windows also move so that they include the
new current pixel.

See “DISP_GOTO” in the ENVI Reference Guide for a complete description, list of
associated keywords, and example usage.

ENVI_CLOSE_DISPLAY

Use the ENVI_CLOSE_DISPLAY procedure to close all three windows of a display group.
Use the DN variable to specify the display number for the display group you want to close.
See “ENVI_CLOSE_DISPLAY” in the ENVI Reference Guide for a complete description, list
of associated keywords, and example usage.

ENVI_DISP_QUERY

This routine provides fundamental file information about the displayed image, including the
FID of the image file, its spatial dimensions, its type (RGB, gray scale, or classification), the
band positions that are displayed, and the size (in pixels) of the windows in the display group.

Use the W1 keyword to find the window IDs for the Image, Zoom, and Scroll windows of a
display group. This window ID is not the draw widget ID for the display group windows. It is
the value of !d.window, which you can use with IDL's WSET or WSHOW routines.

Obtain the zoom and resize factors using the ZFACT and REBIN keywords, respectively.

See “ENVI_DISP_QUERY” in the ENVI Reference Guide for a complete description, list of
associated keywords, and example usage.
Working with Display Groups ENVI Programmer’s Guide

Chapter 8: Additional Topics in ENVI Programming 145
ENVI_GET_IMAGE

This routine is equivalent to ENVI_GET_DATA, except that it returns data displayed in the
display group instead of that stored in an image file. Given the band positions, dimensions,
and DN, ENVI_GET_IMAGE returns the bytescale-stretched data. See
“ENVI_GET_IMAGE” in the ENVI Reference Guide for a complete description, list of
associated keywords, and example usage.
ENVI Programmer’s Guide Working with Display Groups

146 Chapter 8: Additional Topics in ENVI Programming
ENVI Installation Components

After installing ENVI, you will find an envixx directory containing several subdirectories.
Some of these subdirectories contain files that are particularly important for ENVI
programming. These are defined in the following tables.

ENVI Subdirectories

ENVI includes the following subdirectories.

Subdirectory Contents

bin envi.run — A special ASCII file used by IDL to auto-start ENVI

data ENVI’s default data directory, which contains example data distributed
with ENVI

filt_func Filter function spectral library files for resampling to known sensors

help ENVI Help files and PDF versions of the documentation

lib Example ENVI code (sample IDL procedures using some of the ENVI
routines)

map_proj Files that store the data related to ENVI map projections

menu A variety of setup and configuration files, including the menu definition
files

save The ENVI save files (.sav)

save_add Recommended storage location for user-written code, such as user
functions

spec_lib ENVI spectral library files

Table 8-1: ENVI Subdirectories
ENVI Installation Components ENVI Programmer’s Guide

Chapter 8: Additional Topics in ENVI Programming 147
The Menu Directory

All files in the menu directory are editable ASCII files related to the ENVI configuration and
working environment.

The Map_Proj Directory

All files in the ENVI map_proj directory are editable ASCII files related to map projections.

File Definition

colors.txt
colors25.txt
colors50.txt

Files that define the ENVI graphics colors

display.men
envi.men

Files that define ENVI menu buttons. The
file display.men defines the display group
menu bar, and the file envi.men defines the
ENVI main menu bar.

endmember_mapping_wizard.txt File that contains the text for the Spectral
Hourglass Wizard

envi.cfg The ENVI configuration file, which is
updated when you set ENVI preferences

e_locate.pro Dummy .pro file used to ensure that the
IDL path includes the menu directory

filetype.txt File that defines the ENVI file types and
their corresponding integer codes

sensor.txt File that defines the ENVI sensor types and
their corresponding integer codes

special_menu_buttons.txt File for foreign language translation

splash.tif TIFF image used as the ENVI splash screen
(displayed on startup)

useradd.txt File that contains the definitions for user-
added items, such as units and plot functions

usersym.txt File that contains user-defined vector
symbols

Table 8-2: Files Found in the ENVI Menu Directory

File Definition

convert.txt Contains example IDL procedures to convert between ASCII
data and EVFs

Table 8-3: Files Found in the map_proj Directory
ENVI Programmer’s Guide ENVI Installation Components

148 Chapter 8: Additional Topics in ENVI Programming
datum.txt File that contains all of ENVI’s data related to supported map
datums

ellipse.txt File that contains all of ENVI’s data related to supported map
ellipsoids

map_proj.txt File that contains all of ENVI’s defined projection data

File Definition

Table 8-3: Files Found in the map_proj Directory
ENVI Installation Components ENVI Programmer’s Guide

Index
A
auto-managed widget events, 63

B
band math

user functions, 21
batch mode, 32

example routines, 42
exiting, 35
helpful tips, 40
hybrid, 32
initializing, 33
message logging, 39
recording, 37
shortcuts, 40
writing routines, 36

C
CATCH, 68
compiling code, 14
copyrights, 2
crashes, 53

D
DIMS pointers, 139
display groups

programming tools, 144

E
endmember collection

widgets, 142
ENVI header file

parsing, 123
ENVI image format

creating, 98
ENVI save files, 16

creating, 82
use in batch mode, 33

error handling (programming), 67
checking, 54
input/output errors, 67
toggle catch, 15
using CATCH, 68

F
file management, 94
ENVI Programmer’s Guide 149

150
custom file readers, 125
spatial read routines, 126
spectral read routines, 128

ENVI and IDL input/output, 16
querying file information, 92
querying map information, 92

H
hybrid batch mode, 32

I
IDL

multiple versions, 33
images

coordinates, 132
retrieving spatial and spectral information, 97

input error handling, 67
input file dialogs, 95
installation directories, 146

L
legalities, 2
library directories, 17
library routines, 16

IDL compilation errors, 37

M
managing files, 94
map projections

querying information, 92
menus

directory, 147
modifying, 50
user values, 51

N
non-tiled processing, 78

O
opening files, 94
output

error handling, 67

P
pixels

coordinates, 132
plots

programming tools, 87
overview and example, 87
plot functions, 103

processing status
reports, 80

programming in ENVI, 16
band math user functions, 21
batch mode, 32
compiling, 14
display groups, 144
examples

band math, 22
basic image information, 92
calculating file statistics, 42
calculating ROI means, 138
choosing files interactively, 96
creating a report, 90
getting RGB color values, 91
input/output error handling, 67
map information, 92
non-tiled spatial processing, 78
non-tiled spectral processing, 79
parsing image headers, 123
parsing positional headers, 124
plot functions, 104
plotting data, 87
processing status dialog, 80
restoring saved ROIs, 137
ROI addresses, 141
ROI DIMS pointer, 139
saturation stretch, 43
saving spatial tiles to disk, 74
saving spatial tiles to memory, 76
saving spectral tiles to disk, 77
selecting ROIs, 135
selecting ROIs using WIDGET_MULTI, 136
simple batch mode routine, 36
simple GUI with widgets, 64
simple user function, 52
spatial and spectral tiling, 73
spatial read routines, 126
spatial tiling, 71
Index ENVI Programmer’s Guide

151
Spectral Analyst functions, 106
spectral math, 26
spectral read routines, 128
spectral tiling, 72
user-defined map projections, 109
user-defined motion routines, 119
user-defined move routines, 117
user-defined RPC readers, 114
using ROI data, 137
widget user-defined move routines, 117

file information, 92
file management, 94
file readers, 125
interactive user routines, 102
parsing headers, 123
plotting, 87
processing status reports, 80
reports, 90
RGB triplets, 91
ROIs, 134
saving processing results, 73
spatial read routines, 126
spectral math user functions, 26
spectral read routines, 128
toggle catch, 15

R
reporting, 90
RESOLVE_ALL, 82
RGB

color triplets, 91
ROIs

programming, 134
addresses, 140
DIMS pointers, 139
obtaining data, 137
selecting, 135

routines
compiling dependent, 82
non-tiled processing, 78
processing, 69

S
saving

processing results, 73
spatial read routines, 126

spectral analyst, 105
spectral math

user functions, 26
spectral read routines, 128
status reports, 80
symbols

user-defined vector symbols, 88

T
tiled processing, 78
tiling, 69

examples
non-tiled spatial processing, 78
non-tiled spectral processing, 79
saving results, 73
saving spatial tiles to disk, 74
saving spatial tiles to memory, 76
saving spectral tiles to disk, 77
spatial, 71
spatial and spectral, 73
spectral, 72

non-tiled routines, 78
processing, 69

toggle catch, 15
trademarks, 2

U
user functions, 48

adapting for ENVI, 82
adding widgets, 55
auto-managed widget events, 63
checking errors, 54
input/output error handling, 67
processing routines and tiling, 69
recovering from crashes, 53
trapping errors, 67
unexpected errors, 68
as widget event handlers, 49

user move routines, 116
user-defined, 102

map projection types, 108
motion routines, 119
move routines, 116
RPC readers, 112
units, 111
ENVI Programmer’s Guide Index

152
V
vectors

user-defined symbols, 88

W
widgets

adding to user functions, 55
auto-managed events, 63
compound, 56
endmember collection, 142

event handlers, 49
examples, 56

X
XSTART, 132

Y
YSTART, 132
Index ENVI Programmer’s Guide

	Overview
	About This Guide
	Extending ENVI
	Band and Spectral Math User Functions
	Batch Mode
	User Functions
	ENVI Menu Files
	Interactive User Routines
	Compiling
	Custom File Input
	Toggle Catch

	Introduction to ENVI Programming
	Library Routines
	ENVI Save Files
	Differences in File I/O Between ENVI and IDL
	The ENVI and IDL Library Directories
	Common Keywords for ENVI Library Routines

	Band and Spectral Math User Functions
	Introduction
	Band Math
	Writing Band Math User Functions
	Compiling Band Math User Functions
	Examples

	Spectral Math
	Writing Spectral Math User Functions
	Compiling Spectral Math User Functions
	Examples

	Batch Mode
	Batch Mode
	Hybrid Batch Mode

	Initiating Batch Mode
	Exiting Batch Mode
	Writing Batch Mode Routines
	Using ENVI Library Routines in IDL Programs
	Using ENVI Recording to Write Batch Code

	Message Logging in Batch Mode
	Using the Batch Mode Log File

	Helpful Tips for Batch Mode
	Making a Shortcut for Initiating Batch Mode

	Examples of ENVI Batch Mode Routines
	Example: File Statistics (Non-Interactive)
	Example: Saturation Stretch (Non-Interactive)

	User Functions
	Introduction
	User Functions
	Modifying the ENVI Menus
	Working with the Menu Files
	Example: Writing a Simple User Function

	Adding Widgets to User Functions
	Compound Widgets
	WIDGET_EDIT
	WIDGET_GEO
	WIDGET_MAP
	WIDGET_MENU
	WIDGET_MULTI
	WIDGET_OUTF
	WIDGET_OUTFM
	WIDGET_PARAM
	WIDGET_PMENU
	WIDGET_RGB
	WIDGET_SLABEL
	WIDGET_SLIST
	WIDGET_SSLIDER
	WIDGET_STRING
	WIDGET_SUBSET
	WIDGET_TOGGLE

	Auto-Managed Widget Events
	WIDGET_AUTO_BASE
	AUTO_WID_MNG

	Trapping Errors in User Functions
	Input/Output Error Handling
	Using CATCH for Unexpected Non-Input/Output Errors

	Using Processing Routines and Tiling
	Tiled Processing Routines
	Non-Tiled Processing Routines
	Processing Status Report

	Adapting User Functions for ENVI
	Using FORWARD_FUNCTION or COMPILE_OPT STRICTARR
	Using RESOLVE_ALL to Find and Compile Dependent Routines
	Creating a Save File

	Programming Tools
	Introduction
	Plotting
	Example: Plotting Data
	Creating Vector Plot Symbols

	Reports
	Example: Creating a Report

	RGB Color Triplets
	Example: Getting RGB Color Values

	File Information
	Example: Basic Image Information
	Example: Map Information

	Managing Files
	ENVI_PICKFILE
	ENVI_SELECT
	ENVI_OPEN_FILE
	ENVI_FILE_MNG
	ENVI_GET_FILE_IDS
	Example: Choosing Files Interactively

	Accessing Image Data
	ENVI_GET_DATA
	ENVI_GET_SLICE

	Creating ENVI Format Files
	Saving Image Data to Memory
	Saving Image Data to Disk
	Creating New Files from Existing ENVI Files

	Interactive User Routines
	Introduction
	Plot Functions
	Example: Plot Function

	Spectral Analyst Functions
	Example: Spectral Analyst Function

	User-Defined Map Projection Types
	Example: User-Defined Map Projection

	User-Defined Units
	User-Defined RPC Reader
	Example: User-Defined RPC Reader

	User Move Routines
	User-Defined Move Routines
	Example: Simple User-Defined Move Routine
	Example: Widget User-Defined Move Routine
	Example: User-Defined Motion Routine

	Custom File Input
	Types of Image Storage
	Parsing Image File Headers
	Example: Parsing a Keyword/Value Header
	Example: Parsing a Positional Header

	Custom File Readers
	Spatial Read Routines
	Example: Unsigned Integer Spatial Reader

	Spectral Read Routines
	Example: Unsigned Integer Spectral Reader

	Additional Topics in ENVI Programming
	Coordinate Systems in ENVI
	File Coordinates
	Image (Pixel) Coordinates
	XSTART and YSTART

	Regions of Interest
	Processing with ROIs
	Selecting ROIs
	Using ROI Data
	Using ROI DIMS Pointers
	Using ROI Addresses

	Using Endmember Collection Widgets
	Working with Display Groups
	DISP_GET_LOCATION
	DISP_GOTO
	ENVI_CLOSE_DISPLAY
	ENVI_DISP_QUERY
	ENVI_GET_IMAGE

	ENVI Installation Components
	ENVI Subdirectories
	The Menu Directory
	The Map_Proj Directory

	Index

