Florida International University, Department of Civil and Environmental Engineering

CWR 3201 Fluid Mechanics, Fall 2018 Fluid Properties

Arturo S. Leon, Ph.D., P.E., D.WRE

1.1 INTRODUCTION

Understanding fluid mechanics is needed for:

- Biomechanics To understand the flow of blood and cerebral fluid.
- Meteorology and Ocean Engineering To understand the motion of air movements and ocean currents.
- Chemical Engineering To design different kinds of chemical-processing equipment.
- Aeronautical Engineering To maximize lift, minimize drag on aircraft, and to design fan-jet engines.
- Mechanical Engineering To design pumps, turbines, internal combustion engines.
- **Civil Engineering** To design irrigation canals, water distribution systems, flood control systems, etc.

Motivation for Fluid Properties

CFD Simulations of Rigid Bodies Falling Under Gravity

https://www.youtube.com/watch?v=LKdii-Y8NQg

Road Erosion

https://www.youtube.com/watch?v=tacW_yUArPg

1.2 DIMENSIONS, UNITS, AND PHYSICAL QUANTITIES

Fundamental Dimensions - Nine quantities that can express all other quantities.

Quantity	Dimensions	SI un	its	English ı	units
Length ℓ	L	meter	m	foot	ft
Mass m	M	kilogram	kg	slug	slug
Time t	T	second	S	second	sec
Electric current i		ampere	А	ampere	А
Temperature T	Θ	kelvin	Κ	Rankine	°R
Amount of substance	M	kg-mole	kmol	lb-mole	lbmol
Luminous intensity		candela	cd	candela	cd
Plane angle		radian	rad	radian	rad
Solid angle		steradian	sr	steradian	sr

Table 1.1Fundamental Dimensions and Their Units

4

1.2 DIMENSIONS, UNITS, AND PHYSICAL QUANTITIES

In general, for the study of mechanics of fluids, four fundamental dimensions are used:

Length (L), mass (M), time (T) and temperature (Θ) or

Length (L), force (F), time (T) and temperature (Θ)

Example: Dimensions of *Force* in MLT

There are two primary systems of units:

- English units
- 5 Système International units (SI)

Derived Quantities -

Combinations of fundamental quantities to form different parameters.

Table 1.2Derived Units

Quantity	Dimensions	SI units	English units
Area A	L^2	m ²	ft^2
Volume ¥	L^3	m^3	ft^3
		L (liter)	
Velocity V	L/T	m/s	ft/sec
Acceleration a	L/T^2	m/s^2	ft/sec ²
Angular velocity ω	T^{-1}	rad/s	rad/sec
Force F	ML/T^2	$kg \cdot m/s^2$	slug-ft/sec ²
		N (newton)	lb (pound)
Density ρ	M/L^3	kg/m ³	slug/ft ³
Specific weight γ	M/L^2T^2	N/m^3	lb/ft ³
Frequency f	T^{-1}	s^{-1}	sec^{-1}
Pressure <i>p</i>	M/LT^2	N/m^2	lb/ft^2
		Pa (pascal)	(psf)
Stress $ au$	M/LT^2	N/m^2	lb/ft^2
		Pa (pascal)	(psf)
Surface tension σ	M/T^2	N/m	lb/ft
Work W	ML^2/T^2	N•m	ft-lb
		J (joule)	
Energy E	ML^2/T^2	N•m	ft-lb
		J (joule)	
Heat rate \dot{Q}	ML^{2}/T^{3}	J/s	Btu/sec
Torque T	ML^2/T^2	N•m	ft-lb
Power P	ML^2/T^3	J/s	ft-lb/sec
\dot{W}		W (watt)	
Viscosity μ	M/LT	$N \cdot s/m^2$	$lb-sec/ft^2$
Mass flux <i>m</i>	M/T	kg/s	slug/sec
Flow rate Q	L^3/T	m^3/s	ft ³ /sec
Specific heat c	$L^2/T^2\Theta$	J/kg•K	Btu/slug-°R
Conductivity K	$ML/T^3\Theta$	W/m·K	lb/sec-°R

1.2 DIMENSIONS, UNITS, AND PHYSICAL QUANTITIES

Table 1.3SI Prefixes

Multiplication factor	Prefix	Symbo
10^{12}	tera	Т
10^{9}	giga	G
10^{6}	mega	Μ
10^{3}	kilo	k
10^{-2}	centi ^a	с
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	р

^aPermissible if used alone as cm, cm², or cm³.

Example 1.1 (textbook): A mass of 100 kg is acted on by a 400-N force acting vertically upward and a 600-N force acting upward at a 45° angle. Calculate the vertical component of the acceleration. The rollers are frictionless.

1.3 CONTINUUM VIEW OF GASES AND LIQUIDS

- Substances can be both liquids or gases.
 - Liquids matter in which molecules are relatively free to change their positions with respect to each other. The molecules are restricted by cohesive forces so as to maintain a relatively fixed volume.
 - **Gas** matter in which molecules are unrestricted by cohesive forces. Gas has neither definite shape nor volume.

Fig. 1.1 Normal and tangential components of a force.

A force ΔF that acts on an area ΔA can be broken into tangential (F_t) and normal (F_n) components.

Stress - Force divided by the area upon which it acts.

1.3 CONTINUUM VIEW OF GASES AND LIQUIDS

- Stress Vector The force vector divided by the area.
- Normal Stress Normal component of force divided by the area.
- Shear Stress (τ) Tangential force divided by the area.
 (defined as shown below)

1.3 CONTINUUM VIEW OF GASES AND LIQUIDS

- Assume that fluids act as a continuum:
 - A continuous distribution of a liquid or gas throughout a region of interest

- Density is used to find out if the continuum assumption is appropriate.
 - Δm : Incremental mass ΔV : Incremental volume
- Standard Atmospheric Conditions
 - Pressure: 101.3 kPa (14.7 psi, 1.013 bars, 760 mm Hg)
 - Temperature: 15°C (59°F)
 - Density of air: 1.23 kg/m³ (0.00238 slug/ft³)
 - Density of water: 1000 kg/m³ (1.94 slug/ft³)

1.4 PRESSURE AND TEMPERATURE SCALES

• The pressure, p, can be defined as:

 ΔF_n : Incremental normal compressive force ΔA : Incremental area Units: N/m² or Pa

Fig. 1.3 Definition of pressure.

- Absolute Pressure: Zero is reached for an ideal vacuum.
- Gage Pressure: Pressure relative to the local atmospheric pressure.

1.4 PRESSURE AND TEMPERATURE SCALES

• Temperature scales (Celsius and Fahrenheit scales)

Celsius to Kelvin

Fahrenheit to Rankine

	°C	K	°F	°R
Steam point	100°	373	212°	672°
Ice point	0°	273	32°	492°
Special point	-18°	255	0°	460°
Zero absolute temperat	ure			

Fig. 1.5 Temperature scales.

- **Specific Weight**, **γ**: Weight per unit volume
 - Units: N/m³ or lb/ft³

g: Local gravity

- Specific Gravity, S: Ratio of density of a substance to the density of water at 4°C.
 - Units: Dimensionless

TABLE 1.4Density, Specific Weight, and Specific Gravity of Air and Water at
Standard Conditions

	Der	nsity p	Specific	weight γ	
	kg/m ³	slug/ft ³	N/m ³	lb/ft ³	Specific gravity S
Air Water	1.23 1000	0.0024 1.94	12.1 9810	0.077 62.4	0.00123 1

- Viscosity, µ: Measure of the resistance of a fluid to gradual deformations by shear stress.
 - Accounts for energy losses in the transport of fluids in ducts or pipes
 - Plays a role in the generation of turbulence

Fig. 1.6 Relative movement of two fluid particles in the presence of shear stresses.

- Newtonian fluid: A fluid in which the shear stress is directly proportional to the velocity gradient. e.g., Air, water, and oil
- Non-Newtonian fluid: A fluid in which the shear stress is NOT directly proportional to the velocity gradient. e.g., slurries

Fig. 1.8 Newtonian and non-Newtonian fluids.

No-slip Condition: Causes fluid to adhere to the surface (due to viscosity)
 Relative velocity

- kinematic viscosity = dynamic viscosity/density
- Units of kinematic viscosity: m²/s or ft²/s

Example: P.1.45. For two 0.2-m long rotating concentric cylinders, the velocity distribution is given by u(r) = 0.4/r - 1000r m/s, where *r* is in m. If the diameters of the cylinders are 2 cm and 4 cm, respectively, calculate the fluid viscosity if the torque on the inner cylinder is measured to be 0.0026 N-m.

1.5.3 Compressibility

- Can be described using the **Bulk modulus of elasticity**, **B**.
 - This is the ratio of the change in pressure to relative change in density.
 - Same units as pressure.
- For gases:
 - Significant changes in density (~4%) Compressible.
 - Small density changes (under 3%) Incompressible.

• The speed of sound in a liquid can be found using the Bulk modulus of elasticity and density, as shown above.

Example: P.1.54. Two engineers wish to estimate the distance across a lake. One pounds two rocks together under water on one side of the lake and the other submerges his head and hears a small sound 0.62 s later, as indicated by a very accurate stopwatch. What is the distance between the two engineers?

1.5.4 Surface Tension

Video: <u>https://www.khanacademy.org/science/physics/fluids/fluid-dynamics/v/surface-tension-and-adhesion</u>

- Results from the attractive forces between molecules. Hence seen only in liquids at an interface (liquidgas).
- Forces between molecules in a liquid bulk are equal in all directions.
 - No net force is exerted on them.
- At an interface, the molecules exert a force that has a resultant force.
 - Holds a drop of water on a rod and limits its size.

Fig. 1.9 Internal forces in (a) a droplet and (b) a bubble.

1.5.4 Surface Tension

- Unit: Force per unit length, N/m or lb/ft.
- Force results from the length (of fluid in contact with a solid) multiplied by the surface tension.
 - A droplet has one surface.
 - A **bubble** is a thin film of liquid with an **inside** and an outside surface.

Fig. 1.9 Internal forces in (a) a droplet and (b) a bubble.

Pressure in the droplet balances the surface tension around the circumference. Pressure in the bubble is balanced by the surface tension forces on the two circumferences.

1.5.4 Surface Tension

 As seen before, the internal pressure in a bubble is twice as large as that in a droplet of a similar size.

- Liquid rises in a glass capillary tube due to surface tension.
- The liquid makes a contact angle β with a glass tube.
 - For most liquids (and water) this angle β is zero.
 - Mercury has an angle greater than 90°.

25 Fig. 1.10 Rise in a capillary tube.

1.5.4 Surface Tension

Fig. 1.10 Rise in a capillary tube. **26**

- *h*: Capillary rise
- D: Tube diameter
- *σ*: Surface tension

Example: P.1.62. Mercury makes an angle of 130° (β in Fig. 1.10) when in contact with clean glass. What distance will mercury depress in a vertical 0.8-in diameter glass tube? Use $\sigma = 0.032$ lb/ft.

Fig. 1.10 Rise in a capillary tube.

Additional Examples:

P.1.20. Determine the units on c, k and f(t) in

 $m\frac{d^2y}{dt^2} + c\frac{dy}{dt} + ky = f(t)$ if *m* is in Kilograms, *y* is in meters, and *t* is in seconds

P.1.26. A particular body weighs 60 lb on earth. Calculate its weight on the moon, where $g \approx 5.4$ ft/s².

P.1.49. Calculate the torque needed to rotate the cone shown in Figure P1.49 at 2000 rpm if SAE-30 oil at 40°C fills the gap. Assume a linear velocity profile between the cone and the fixed wall.

P.1.66. Find an expression for the maximum vertical force *F* needed to lift a thin wire ring of diameter *D* slowly from a liquid with surface tension σ .

Fig. 1.7 Fluid being sheared between cylinders with a small gap: (a) the two cylinders; (b) rotating inner cylinder; (c) velocity distribution; (d) the inner cylinder. The outer cylinder is fixed and the inner cylinder is rotating.

Example 1.4

Fig. 1.11 Cooking food in boiling water takes a longer amount of time at a high altitude. It would take longer to boil these eggs in Denver than in New York City. (Thomas Firak Photography/FoodPix/ Getty Images)

Fig. 1.12 A photograph of a cavitating propeller inside MIT's water tunnel. (Courtesy of Prof. S. A. Kinnas, Ocean Engineering Group, University of Texas - Austin.)

Example 1.7

Fig. P1.33

Fig. P1.34

Fig. P1.42

Fig. P1.47

Fig. P1.49

Fig. P1.67

Water	\rightarrow

Fig. P1.80

Fig. P1.81

Figure 8.1 © John Wiley & Sons, Inc. All rights reserved.

General Characteristics of pipe flow

Laminar or Turbulent Flow?

(http://www.youtube.com/watch?v=WG-YCpAGgQQ)

Laminar or Turbulent Flow?

Time dependence of fluid velocity at a point

