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ABSTRACT

Aim To investigate the performance and relative importance of abiotic and

biotic predictors of species richness of three taxa in forest-dominated land-

scapes across an environmentally heterogeneous mountain region.

Location Switzerland (central Europe).

Methods We used a broad set of nationally available environmental predictors

grouped into (1) climate, (2) topography and soil and (3) 3-D vegetation struc-

ture derived from airborne Light Detection and Ranging (LiDAR) data to spa-

tially predict the forest species richness of vascular plants, butterflies and

breeding birds. We used presence data of 212 plant, 157 butterfly and 92 bird

species from multiple transect samples in > 220 1 km2 squares at elevations

between 261 and 2123 m a.s.l. across 41,248 km2. We applied an ensemble mod-

elling approach consisting of five modelling techniques and evaluated their pre-

dictive performance using the cross-validated percentage of explained variance

of each predictor group separately and the combinations thereof. We investi-

gated the relative importance and response of each predictor and partitioned the

variation into independent and shared components per variable group.

Results Climate performed best in predicting forest species richness across

taxa. Vegetation structure particularly improved the predictions of butterfly

and bird species richness, while soil pH was an important predictor for forest

plant species richness. Climate appeared to be mainly indirectly related to but-

terfly species richness, via correlations with habitat type and structure. The

strength and direction of the relationships between the predictors and species

richness were taxon-specific with low cross-taxon congruence.

Main conclusions The growing availability of LiDAR data offers powerful new

tools for describing vegetation structure and associated animal habitat quality across

large areas. This will further our understanding of niche-driven assembly processes

in forest landscapes. Although climate was the dominant factor controlling species

richness across taxa from different trophic levels, the taxon-specific distributional

pattern and response to environmental conditions emphasize the difficulty of

accounting for a range of taxa in prioritising biodiversity conservation measures.

Keywords
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INTRODUCTION

Investigating the relative importance of abiotic and biotic

factors that control the distribution of species diversity is of

central interest in ecology and biogeography. Climate and

environmental heterogeneity are important predictors of

diversity patterns, and there is strong empirical support

for the notion that climate and productivity are crucial for
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determining species richness at large spatial scales (Currie,

1991; Kerr & Packer, 1997; Hawkins et al., 2003; Field et al.,

2009; Stein et al., 2014). However, the relative importance of

the various factors explaining diversity patterns remains con-

troversial at smaller spatial scales (Field et al., 2009). This scale

effect may be due to (1) the relatively small climatic gradients

covered by most studies carried out at small extents, or (2) the

fact that climate is usually filtering species at the large scale,

while other factors filter species at smaller scales. At small spa-

tial scales, the relevance of habitat structure and complexity

for species richness has long been emphasized, especially in

forests (MacArthur & MacArthur, 1961). Their effect on diver-

sity patterns is closely related to the environmental hetero-

geneity hypothesis, which suggests that species richness is

promoted through several processes, e.g. by increasing niche

availability, which allows more species to coexist (Currie,

1991; Tews et al., 2004; Stein et al., 2014). Moreover, abiotic

factors related to topography and edaphic properties such as

soil pH have frequently been shown to explain species distri-

butions and richness patterns at regional and local scales

(Grime, 1979; Kerr & Packer, 1997; Pausas & Austin, 2001;

Rahbek & Graves, 2001). In addition to their scale depen-

dence, the relative importance of environmental correlates of

species richness varies between taxa, because different groups

of species may respond differently to factors controlling spe-

cies diversity (Rosenzweig, 1995). This often leads to low

cross-taxon congruence and different distributional patterns,

which poses difficulties for prioritising locations and actions

for biodiversity conservation (Westgate et al., 2014).

Several studies highlighted the importance of complement-

ing climatic variables with land cover and habitat informa-

tion for improving predictions of species distributions and

richness patterns at regional scales (Pearson et al., 2004;

Thuiller et al., 2004; Ill�an et al., 2010). Habitat has usually

been described by two-dimensional representations of land

cover types, i.e. important aspects of habitat, such as the

three-dimensional structure of forests, are overlooked.

Indeed, there is growing evidence for a strong relationship

between 3-D vegetation and habitat structure and species

richness for various taxa (Vierling et al., 2008; Davies &

Asner, 2014; Simonson et al., 2014). Bird species richness, in

particular, has frequently been shown to respond to the ver-

tical vegetation structure in forests (MacArthur &

MacArthur, 1961; Goetz et al., 2007; Lesak et al., 2011), and

relationships between vegetation structure and other taxo-

nomic groups, such as invertebrates, are also documented

(Vierling et al., 2011; Davies & Asner, 2014). A growing

number of such studies apply Light Detection and Ranging

(LiDAR) remote sensing data, which is becoming increas-

ingly available across large areas and provides detailed and

contiguous information on 3-D vegetation properties and

habitat structure (Davies & Asner, 2014). However, the

importance of remotely sensed 3-D vegetation structure rela-

tive to other environmental predictors of species richness,

such as climate, and whether the relationship between vege-

tation structure and species richness is consistent across

different taxa remains poorly investigated. Comparative stud-

ies across large spatial extents and climatic gradients were

traditionally based on sample plot data of vegetation struc-

ture, such that area-wide, spatially explicit predictions of the

relationship between vegetation structure and species richness

were not feasible. The advent of LiDAR has profoundly

changed this and the question thus arises how such data sets

can be included into country-wide biodiversity assessments

to evaluate large areas in terms of habitat structure and asso-

ciated quality and quantity.

We used LiDAR-derived vegetation structure to investigate

its relative importance compared to climate, topography and

soil pH, for predicting the species richness of plants, butterflies

and birds in forest-dominated landscapes across an environ-

mentally heterogeneous region in Central Europe, that is,

Switzerland. We report on the predictive, as well as the

explanatory, power of the environmental variables, and use

them to spatially predict species richness at a 1-km2 resolution.

The resulting maps are used for evaluating the degree of spatial

covariation between trophically very different taxa and provide

essential information for managing landscapes for conserva-

tion. Considering the large climatic gradient in our study

region, we expect climate to be a strong factor controlling spe-

cies richness across these taxa. Furthermore, we expected a rel-

atively strong influence of vegetation structure for mobile

species such as butterflies and birds, which extensively use the

3-D forest habitat space. We address the following research

questions: (1) What is the relative importance of climate,

topography and soil pH, and vegetation structure for predict-

ing the number of plant, butterfly and bird species associated

with forest landscapes? (2) To what extent can variables related

to vegetation structure, topography and soil pH improve

climate-based predictions of species richness?

MATERIAL AND METHODS

Study area

The study was carried out in Switzerland, covering

41,248 km2 of Central Europe (45°490-47°480 N, 5°570-10°300

E). The country is structured into mountain areas, which

cover about 70% of the area (60% Alps, 10% Jura Moun-

tains) and the lowlands (30%). One-third of the country

consists of forests, with a larger proportion in the mountain

areas. Forty-three per cent of the forests are coniferous, while

33% are mixed and 24% are broadleaved (Br€andli, 2010).

The elevation ranges from 261 to 2123 m a.s.l., with a mean

of 1056 m a.s.l. Within the boundaries of a temperate humid

climate, the mean annual temperature and precipitation

range from 0.7 to 12.1 °C and 636 to 2149 mm, respectively

(Zimmermann & Kienast, 1999).

Species data

We obtained species richness data from surveys conducted

within the Swiss Biodiversity Monitoring Program (BDM,
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Weber et al. (2004)). In 5-year intervals, BDM collects

species occurrence data of vascular plants, butterflies and

breeding birds on 520 1-km2 sample squares, distributed in a

systematic national grid. We used the data from the five-year

survey period 2004–2008 and filtered out non-forest habitats

and taxa later (see below). In each sample square, vascular

plant and butterfly species occurrences were recorded along a

transect of 2500 m length and 5 m width, following detailed

standardized field protocols (BDM Coordination Office

(2008), see Appendix S1 in Supporting Information). Vascu-

lar plants (from now on referred to as ‘plants’) were sampled

twice, in spring and late summer (except in high alpine for-

est sample squares, which were surveyed once in mid-sum-

mer). Butterfly surveys were carried out between four (at

high altitudes) and seven times (in the lowlands), during

April and September. The surveys took place between 10

a.m. and 5 p.m. when specific weather conditions prevailed,

that is, an air temperature of at least 13 °C, wind speed not

exceeding 19 km/h (Beaufort level 1–2) and more than 80%

sunshine. The detectability of butterfly species varied by spe-

cies and averaged 88% per inspection (K�ery et al., 2009).

Breeding birds were sampled by the Swiss Ornithological

Institute following the procedure of the Common Breeding

Bird Survey (MHB, K�ery et al. (2005)). During the breeding

season (15 April–15 July), each sample square was surveyed

three times (sample squares at elevations > 2000 m a.s.l.

were surveyed only twice) annually along a sample square-

specific route using the territory mapping method (Bibby

et al., 1992). Routes aim to cover as large a proportion of a

sample square as possible and have an average length of

5 km. Mean detectability of birds was estimated at 89%

(K�ery & Schmid, 2006). A more detailed description of the

field sampling protocols including further quality measures

for the field methods are provided in Appendix S1.

Given our aim to study the relationship between observed

species richness (i.e., the total number of observed species

per sample squares) and forest/woodland vegetation structure

we restricted the analysis to species with an association with

forests and woodlands, as well as to sample squares with a

forest/woodland cover (from now on referred to as forest

cover) of at least 30%. The percentage of forest cover per

sample square was calculated based on the aggregated land

cover types ‘forest’, ‘open forest’ and ‘shrubland’, as delin-

eated by the Federal Office of Topography (swisstopo, 2014).

Our threshold selection is based on Andr�en (1994), who

found 30% to be the minimum proportion of suitable habi-

tat below which habitat fragmentation starts to negatively

affect species richness and density. Furthermore, a relatively

low threshold increases the sample size and area for the spa-

tial predictions of species richness (see below).

For classifying plant species, we consulted the database of

the national species data centre (www.infoflora.ch, accessed

17 October 2014) and selected only species for which 75% of

all occurrences were reported in forests. For classifying but-

terflies, we used the habitat profiles listed by van Swaay et al.

(2006; cf. Appendix 1), who compiled data for butterfly

species across Europe based on the CORINE land cover clas-

sification. We considered all species that were reported in at

least one forest and woodland habitat type (see

Appendix S2). While we are aware that the degree of associa-

tion with forest and woodland varies considerably among

species, we hypothesized that the vegetation structure of for-

ests and woodlands influences the habitat quality of these

species to some degree, e.g. by determining the availability of

food resources or providing shelter (Dover et al., 1997). Bird

species were selected according to the habitat classification in

the species database of the Swiss Ornithological Institute

(www.vogelwarte.ch, accessed 6 February 2015). We selected

all species whose habitat classification included forest,

hedges, forest edge or shrubland. The altitudinal range of the

samples was 261 to 2123 m a.s.l., and the sample size was

226 species for plants, 224 for butterflies, and 237 for birds.

Groups of predictor variables

We considered six bioclimatic predictor variables that we

assumed to be physiologically relevant to a species’ occur-

rence (Table 1). Monthly mean temperature and precipita-

tion layers were interpolated using DAYMET (Thornton

et al., 1997), based on daily measurements of all available

recording stations (c. 300) during the period 1981 to 2010

(www.meteosuisse.ch), and a digital elevational model with

100 m pixel size (www.swisstopo.ch). Solar radiation was

analysed at a finer resolution (25 m) to account for fine-

scale availability of radiation and associated energy. We used

the standard deviation within the area of each sample square

to represent spatial climatic variability.

Topography and its variation were represented by the

mean and standard deviation of two complementary vari-

ables, topographical position and slope. These variables can

be sampled very accurately, and are correlated well with

observed patterns of species distribution and richness (Gui-

san & Zimmermann, 2000). We further used a previously

published topsoil pH map (Zellweger et al., 2015) describing

edaphic characteristics such as the availability of nutrients

and toxic elements.

We used a nationally available set of discrete, first and last

return airborne LiDAR data to derive four variables describing

different aspects and variation in the 3-D distribution of forest

vegetation elements (Table 1). The Swiss Federal Office of

Topography acquired the raw data with an average return den-

sity of c. 1.5 m�2 in forests during multiple seasons in the

years 2000–2008 (Artuso et al., 2003; Zellweger et al., 2013).

The nominal footprint size was in the range of small-footprint

laser scanning (i.e. several decimetres) and height accuracy var-

ies between �0.5 m (�1 SD) and �1.5 m in open and forested

areas, respectively. The raw point cloud data were pre-pro-

cessed using a suite of LAStools algorithms (Isenburg, 2013) to

derive the normalized vegetation heights above ground. We

considered all vegetation return heights above 1 m to calculate

the variables described below, and used a national vector data

set (swisstopo, 2015) to mask out buildings.
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Canopy height heterogeneity (CHH) was determined as

the standard deviation of the 95th percentile of the vegetation

return heights (Næsset, 2002; Simonson et al., 2012). CHH

is a frequently used attribute of forest habitat structure,

which has been shown to correlate well with species diversity,

particularly bird diversity (Davies & Asner, 2014). Average

vegetation height and vegetation density represent structural

attributes that are related to successional stage and micro-cli-

matic conditions, such as light availability on the forest floor

(M€uller & Brandl, 2009). CHH, average vegetation height

and density rasters were calculated using the lascanopy tool

(Isenburg, 2013). To this end, we applied a pixel size of

20 m to upscale local forest structure to the stand scale.

Inspired by the concept of foliage height diversity proposed

by MacArthur & MacArthur (1961), we calculated a measure

for the diversity of low vegetation heights, and termed it

‘understorey height diversity’ (UHD). UHD was defined as

the Shannon–Wiener information index H0 = �∑pi ln pi,

where pi is the proportion of vegetation returns in the ith

height interval. The height intervals were: 1–3 m, 3–6 m,

6–9 m, 9–12 m and > 12 m (cf. Clawges et al., 2008). The

proportions within each interval were derived from vegeta-

tion density rasters calculated using lascanopy (Isenburg,

2013) with a pixel size of 50 m, thus approximating the ref-

erence areas that are frequently applied to quantify foliage

height diversity (Clawges et al., 2008; Simonson et al., 2012).

To account for a minimal amount of overstorey, UHD was

only considered for pixels with a tree canopy (i.e. vegetation

height > 12 m) whose density exceeded 10%, as calculated

from a density raster taking into account all vegetation points

above a height of 1 m (Isenburg, 2013). Because our aim was

to analyse the relationship between the 3-D habitat structure

and species richness, we did not include any variable directly

describing forest fragmentation and edge effects, despite their

potential effect on species occurrence and richness.

Ensemble modelling and statistical analyses

To predict species richness and evaluate the relative impor-

tance of each predictor variable, we used an ensemble mod-

elling approach consisting of five modelling techniques: three

regression methods [generalized linear model (GLM), gener-

alized additive model (GAM) and multivariate adaptive

regression splines (MARS)], and two machine-learning meth-

ods [gradient boosted model (GBM) and random forest

(RF)] (Ara�ujo & New, 2007). We applied different methods

because the variability between different modelling tech-

niques has been raised as an important source of uncertainty

(Buisson et al., 2010). All parameter settings, including quad-

ratic terms for fitting the GLMs, were adopted from the

default settings as implemented by Thuiller et al. (2009). A

principle advantage of these methods (except for GLM) is

that they account for non-linearities, and, in the case of

GBM and RF, automatically consider interactions between

variables. Predictive model performance was evaluated based

on the percentage of explained variance (R2) obtained from

a threefold cross-validation procedure that we repeated 10

times. Thus, two-thirds of the data were used for model cali-

bration and the remaining third for model evaluation. The

final models used for generating maps of species richness

Table 1 Environmental predictor variables for modelling species richness of plants, butterflies and birds in forest landscapes.

We analysed the mean and the standard deviation (SD) separately.

Variable name Description Resolution [m]

Climate

tmin Mean monthly minimum temperature (°C) in the coldest month (January) 100

ddeg Mean and SD of annual degree-days above a threshold of 3 °C (day*°C) 100

sfro Mean and SD of annual average number of frost days during growing season (Bolliger et al. 2000) 100

swb Mean and SD of site water balance (cm) (Guisan et al. 2006) (for plants only) 100

Pveg Mean monthly precipitation sum (mm) during growing season (April to September) 100

srad Mean and SD of potential global clear sky solar radiation (kJ/m2) in early spring (March) 25

Topography and soil

tpi Mean and SD of topographical position index, which measures the exposure of a site in relation to the

surrounding terrain. Positive values: Ridges and hilltops; negative values: sinks

(Zimmermann and Roberts, 2001)

25

slp Mean and SD of slope (°) 25

pH Mean and SD of topsoil pH (see text for details) 25

Vegetation Structure

CHH Canopy height heterogeneity (m), i.e. SD of canopy height, which was measured by the 95th percentile of

vegetation return heights above 1 m

20

MeanVegH Mean vegetation height above 1 m (m) 20

VegDens Mean and SD of vegetation density (%), measured as the proportion of vegetation returns above 1 m

relative to all returns

20

UHD Mean understorey height diversity, expressed as the Shannon–Wiener information index (H0) for the
proportion (p) of horizontal vegetation in the ith layer (see text for details). UHD = H0 = � Σpi ln pi
(MacArthur & MacArthur, 1961; Clawges et al., 2008)

50
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were re-calibrated based on all data. We used the predictive

performance of the single modelling techniques to build an

R2-weighted average ensemble. The relative importance of

the variables was estimated based on a randomization proce-

dure as described by Thuiller et al. (2009). It is reported as

one minus the correlation between the standard prediction

and the prediction where the considered variable was ran-

domized. We calculated it for each modelling technique sep-

arately and averaged it across all techniques. All analyses

were performed in R (R Development Core Team 2015).

Within this framework, we built an ensemble model sepa-

rately for each predictor variable group, as well as for all com-

binations thereof (i.e. seven ensemble models in total). To

reduce the number of variables per group we built an ensem-

ble model with all variables in each variable group and used

the three most important variables from each group for build-

ing the final ensemble models. In order to have the same num-

ber of variables per group combination, the combined model

from all three variable groups was built using the six most

important variables. This procedure allowed for model com-

parison without potential bias on model accuracy arising from

different numbers of variables. The final sets of variables were

tested for multicollinearity using the variance inflation factor

(VIF) with a threshold of 10; none of the selected variables

had multicollinearity problems. We checked the residuals of

each of the seven final ensemble models for spatial indepen-

dence by calculating correlograms and Morans’ I over various

lag distances, and found no statistically significant spatial

autocorrelation; thus we did not investigate this further.

To analyse the independent versus the shared part of vari-

ance explained by the three groups of predictor variables, we

partitioned the variation into independent and shared com-

ponents. To this end, we used the varpart function (Oksanen

et al., 2015), which computes the adjusted canonical R2,

analogous to the adjusted R2 in multiple regression (Peres-

Neto et al., 2006). Note that this analysis was based on linear

regression and serves explanatory purposes, in contrast to

the predictive approach based on cross-validation.

RESULTS

Our classified species sets included 212 forest plant species,

of which an average number of 48 (range: 10–79) were

observed per sample square. For butterflies and birds, we

identified 157 and 92 species with an association with wood-

land or forest landscapes, respectively, with average numbers

of 33 (range: 8–68) and 33 (range: 13–46) per sample square,

respectively. Below, we refer to plant, butterfly and bird spe-

cies richness associated with woodland and forest landscapes

as PlSR, BuSR and BiSR, respectively. PlSR was moderately

and positively correlated with BiSR (Pearson’s r = 0.44,

P < 0.001), and negatively correlated with BuSR (r = �0.42,

P < 0.001). BiSR and BuSR were weakly correlated

(r = �0.24, P < 0.001).

Ensemble model predictions of species richness

For all species groups, predictive models using variables from

all three variable groups performed best, with R2 ranging

from 67.2% to 44.1% (Table 2). Models based solely on cli-

matic predictors outperformed models solely based on

topography and soil pH, or on vegetation structure in the

case of plants and birds. Differences in model performance

between the single variable group models were less pro-

nounced for butterflies. Adding predictors representing vege-

tation structure to the climate-based models significantly

improved model performance for butterflies and birds.

The spatial predictions showed distinctive richness patterns

for each taxon (Fig. 1). Areas of high PlSR were mainly pre-

dicted along valley bottoms and in the northern part of the

study region. A similar but less distinct pattern was predicted

for BiSR. By contrast, BuSR was predicted to be highest in

the Rhone valley, i.e. the large valley that is east–west ori-

ented in the south-west of the study region, and in the cen-

tral Alps in general. Lowest numbers of butterfly species

were predicted in the lowlands towards the northern edge of

the study region.

Variable importance and relationship with species

richness

Degree-days were the most important predictor for PlSR, fol-

lowed by vegetation height and topsoil pH (Table 3). We

found a positive relationship between degree-days and PlSR,

with a decreasing slope towards increasing degree-days

(Fig. 2). Vegetation height and topsoil pH were also

Table 2 Prediction accuracies (R2 in %) and the standard deviations (SD) as obtained from 10 times repeated three-fold cross-validated
ensemble models predicting species richness in Swiss forested landscapes based on different variable groups and their combinations.

Improvements to the models using climate variables only were evaluated with Kruskal–Wallis rank sum tests, and indicated as follows: not
significant (n.s.), P < 0.05 (*), P < 0.01 (**), P < 0.001 (***).

Variable group No. of variables Plants Butterflies Birds

Climate 3 61.8 (5.6) 44.8 (5.5) 37.9 (6.0)

Topography and soil pH 3 24.6 (8.1) 45.0 (7.0) 20.1 (8.0)

Vegetation structure 3 35.6 (5.9) 38.2 (6.7) 28.2 (5.4)

Climate + Topography and soil pH 6 64.3 (5.5)n.s. 48.1 (6.7)** 40.8 (7.8)n.s.

Climate + Vegetation structure 6 63.4 (6.6)n.s. 51.9 (6.4)*** 41.8 (5.7)*
Topography and soil pH + Vegetation structure 6 44.1 (6.1) 50.1 (5.5) 31.1 (9.2)

Climate + Topography and soil pH + Vegetation structure 6 67.2 (5.1)** 54.2 (6.9)*** 44.1 (5.6)**
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positively related to PlSR, with topsoil pH showing a drop of

the curve at the upper end of the pH gradient. BuSR was

predicted best by UHD and slope. BuSR increased linearly

with increasing UHD but reached an optimum at a slope of

c. 30°. Precipitation during the growing season and the

variability of frost days were the strongest predictors for

BiSR, which decreased with increasing precipitation and

increasing variability in frost days. The response curve for

topographical position on BiSR reached an optimum at val-

ues just above zero. Two predictors representing vegetation

structure were retained among the six most important vari-

ables for BiSR, but their importance was moderate (Table 3).

Variance partitioning

Climate explained the largest independent share of variance

for PlSR (22%) and BiSR (12.1%), but only a minor inde-

pendent share for BuSR (1.6%) (Fig. 3). Among the three

variable groups, only vegetation structure consistently

explained a considerable amount of independent variance

across taxa. The only substantial independent share of

explained variance from topography and soil pH was found

for PlSR (7.1%). The shared part of explained variance was

consistently larger between climate and vegetation structure

than between climate and topography and soil pH.

DISCUSSION

Our analysis shows that the relationship between the envi-

ronment and species richness of plants, butterflies and birds

in forest-dominated landscapes across a climatically heteroge-

neous region is taxon-specific, with evidence for climatic fac-

tors performing best in predicting species richness across

taxa. This supports the assumption that climate plays a key

role in shaping species richness patterns in regions with large

climatic gradients (Field et al., 2009).

Figure 1 Predicted forest species richness in Switzerland from final ensemble models using environmental variables from all three
variable groups. Blank areas represent landscapes with less than 30% forest cover, including lakes and unproductive rocks. The

elevational model includes the sampling square distribution (red squares).

Table 3 Variable importance (mean and standard deviation SD)

based on permutation tests in the final ensemble model
(averaged over five modelling techniques) combining all three

variable groups.

Mean (SD)

Plants (PlSR)

Degree-days (mean) 0.67 (0.12)

Mean vegetation height (mean) 0.10 (0.02)

pH (mean) 0.07 (0.01)

Topographical position (variation) 0.02 (0.01)

Degree-days (variation) 0.02 (0.01)

Slope (mean) 0.01 (0.01)

Butterflies (BuSR)

Understorey height diversity (UHD) 0.25 (0.11)

Slope (mean) 0.22 (0.11)

Degree-days (mean) 0.03 (0.02)

Degree-days (variation) 0.02 (0.02)

pH (mean) 0.02 (0.01)

Solar radiation (mean) 0.01 (0.01)

Birds (BiSR)

Precipitation 0.26 (0.05)

Frost days (variation) 0.17 (0.09)

Topographical position (mean) 0.08 (0.03)

Solar radiation (mean) 0.07 (0.01)

Vegetation density (mean) 0.06 (0.02)

Understorey height diversity (UHD) 0.04 (0.05)
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Yet, the 3-D vegetation structure derived from LiDAR

remote sensing carries additional information, thus it

furthers the understanding and prediction of biodiversity

patterns (Davies & Asner, 2014). Moreover, vegetation struc-

ture and its vertical heterogeneity significantly improved cli-

mate-based predictions of species richness of birds and

butterflies, which suggests that the structure of the 3-D

habitat space in forest-dominated landscapes is particularly

important for flying species. Vegetation structure and its

heterogeneity are directly associated with the diversity and

availability of resources, shelter as well as roosting, breeding

or oviposition sites, all of which may qualify as a driver of

species richness for flying organisms (MacArthur &

MacArthur, 1961; Stein et al., 2014). In fact, vegetation

structure was related to species richness of all three focal

taxa, indicating that such associations exist consistently at

different trophic levels.

Species richness and its relation to environmental

variables

Forest plant species richness appears to be controlled most

strongly by climate, specifically by the degree-day sum, which

is consistent with major syntheses on large-scale climate-rich-

ness relationships along latitudinal gradients based on species

energy-theory (Francis & Currie, 2003; Hawkins et al., 2003).

We confirmed this relationship in our study region as a

result of a strong altitudinal gradient. While it has been sug-

gested that historical factors such as post-glacial dispersal

limitation can also strongly affect plant and particularly tree

diversity patterns in Europe (Svenning & Skov, 2007), we

assume these effects to be of minor importance in our study

area, because it is relatively close to glacial refugia. Moreover,

butterfly and bird diversity patterns may be even less affected

by dispersal limitation, considering their increased dispersive

abilities. Apart from climate, our results indicate that further

site-specific factors related to vegetation structure, topogra-

phy and soil pH are important for predicting species richness

of forest communities, as discussed below.

Species richness of forest plants responded to the average

height of forest vegetation, which is negatively related to the

availability of light on the forest floor. Increasing average

heights of LiDAR return signals indicate denser and taller

canopies, which decrease the availability of light on the forest

floor favouring shade-tolerant forest species. A similar rela-

tionship was detected by Simonson et al. (2012) in a

Mediterranean oak forest. However, this relationship may

break again under very dense canopies leaving too little light

for many species. Average vegetation height may have par-

tially compensated for the missing effect of vegetation den-

sity, which is a more direct proxy for canopy cover and

associated light conditions. The fact that some of the LiDAR

data were recorded during winter may have led to an under-

estimation of vegetation density in deciduous forests because

the LiDAR impulses penetrate deeper into the canopy and

more often reach the ground during leaf-off conditions.

Because the average forest vegetation height is related to suc-

cessional stage, the positive relationship with forest plant
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Figure 2 Partial dependence plots showing

the effect of the three most important

predictor variables on the predicted number
of species for each taxon, following the

approach proposed by Elith et al. (2005).
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species richness may also indicate that processes related to

stand age and temporal habitat continuity are important for

structuring forest plant communities (Jacquemyn & Brys,

2008). Nevertheless, the ability of LiDAR to measure canopy

characteristics and associated light conditions will advance

our understanding of the role of light for controlling species

distributions and richness patterns.

Topsoil pH is closely linked to the concentration of plant-

available nutrients and toxic compounds and the typical

response of plant species richness to pH tend to be unimodal

(Grime, 1979; Pausas & Austin, 2001). We observed an

increasing number of forest plant species with increasing pH

values, with a few observations at the upper end of our sam-

pled pH gradient causing a drop of the response curve. The

limited representation of the upper boundaries of the pH

gradient hampers inference of the exact response along the

entire pH gradient, but our results suggest soil pH to be an

essential predictor of plant species richness.

Understorey height diversity (UHD) was the most impor-

tant predictor for butterfly species richness. UHD represents

structural heterogeneity in the understorey, which increases

in open forests and woodlands as well as along well-struc-

tured forest edges with a shrub component. In such forest

landscapes the light availability on the forest floor is rela-

tively high, which promotes the occurrence of butterfly host

plants and light-demanding shrubs, as well as for the avail-

ability of a richly structured lower vegetation profile. These

characteristics are important for many butterfly species

because they facilitate dispersal along linear habitats, and

provide food resources, shelter in unfavourable weather con-

ditions or refuge from heavy disturbance, such as mowing.

UHD is thus related to habitat quality, and is likely a crucial

factor for species persistence (Thomas et al., 2001). Indeed,

the importance of vegetation structure for critical habitat

components such as shelter or sites for roosting and mate

location has been highlighted earlier (Dover et al., 1997;

Dennis, 2004; Marini et al., 2009a), and it is clearly con-

firmed by our results.

The importance of slope for butterfly species richness may

represent an indirect effect of land use intensity, as shown by

Marini et al. (2009b). Agricultural intensity tends to decrease

with increasing slope, and this affects the occurrence of but-

terflies through factors such as lower disturbance frequency

(e.g. mowing) or increased availability of host plants on less

productive soils due to lower fertilization input (Marini

et al., 2009b). Surprisingly, climatic factors explained only a

minor independent share of variance, and had a large joint

share of explained variance with topography and vegetation

structure. This indicates that factors related to habitat and

land use are important for shaping butterfly species richness

patterns in a region that is increasingly human-dominated

and suffers from habitat homogenisation in the lowlands. It

further implies that climate was mainly indirectly related to

butterfly species richness, via correlations with habitat and

land use, which exemplifies the difficulty of deriving causali-

ties from correlative models.

Bird species richness was best predicted by climatic factors,

with precipitation being negatively correlated with the num-

ber of bird species. Although this contrasts with results from

large-scale studies (e.g. Rahbek & Graves, 2001), it is consis-

tent with findings from another study across a mountain

region with a large climatic gradient (Fitterer et al., 2013).

The negative relationship may be due to the adverse effect of

increasing precipitation on the availability of food resources

such as insects, especially when precipitation tends to

increase with increasing altitude, as in our study region. The

negative effect of the variability in frost days may indicate

that it reduces the availability of areas with a suitable cli-

mate. Particularly, migratory birds that spend the winter in

warmer regions and are mostly insectivorous may be suscep-

tible to spatially highly variable climatic conditions in their

summer habitats, which may partially explain why some of

these species are absent in many parts of our study region,

particularly those with very steep temperature gradients.

Considering this and the relatively large joint share of

explained variance by climate and vegetation structure, we

propose that the effect of climate on bird species richness

may be partly indirect via plants, the associated food

resources and the structural complexity of vegetation

(Kissling et al., 2008; Ferger et al., 2014). Indeed, we found

vegetation structure to be an important predictor for forest-

associated bird species richness, and our results compare well

with other studies from temperate and boreal forests (Goetz

et al., 2007; Zhang et al., 2013).

Implications for ecosystem assessment and

conservation

We showed that associations between LiDAR-derived vegeta-

tion structure and species richness exist across multiple taxa.

We incorporated these associations into spatially explicit

modelling to produce nation-wide maps of species richness

in forest landscapes. Detailed information about vegetation

structure is thus a major asset of national LiDAR campaigns,

besides detailed terrain information, and facilitates the inte-

gration of biodiversity information into the assessment and

monitoring of forest ecosystems. Moreover, repeated data

acquisition will allow for analysing forest dynamics and

changes in habitat structure, quality and availability. Future

challenges include estimating the effects of different times of

data acquisition (e.g. leaf on versus. leaf off), as well as of

the survey configuration and instrumentation on the consis-

tency of key structural variables.

The maps of multi taxa species richness patterns may help

to allocate conservation resources more efficiently because

areas with greatest potential diversity can be identified and

conservation resources can be targeted to structurally poor

areas. Our results suggest that increasing structural hetero-

geneity in the understorey, for example, along forest edges, is

a promising measure to improve the habitat quality for many

butterfly species. At the same time, this study also shows that

the requirements for specific attributes of vegetation
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structure vary considerably between taxa and species, render-

ing it a key challenge to identify compromises in which

undesired effects on other biodiversity attributes are mini-

mized. LiDAR data will thus prove very useful to make con-

servation actions more effective and to further our

knowledge about species-specific habitat requirements.

CONCLUSIONS

We found that species richness of multiple taxa was primar-

ily related to climate and that vegetation structure held

unique and complimentary information to improve the pre-

diction of butterfly and bird species richness. For butterfly

species, the effect of climate appeared to be mainly indirect,

via correlations with habitat type and structure. Low spatial

cross-taxon congruence suggests that forest biodiversity

conservation should pay attention to the different and par-

tially contrasting demands of various taxa. The predictive

performance of vegetation structure derived from LiDAR

data suggests that understanding niche-driven assembly pro-

cesses in forest landscapes will be considerably improved by

the growing availability of detailed information of 3-D vege-

tation structure and associated habitat quality.
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