Elementary Mathematics 2014-2015

Kindergarten

ENVISION MATH CURRICULUM MAP
 CANYONS SCHOOL DISTRICT
 2014-2015

Curriculum Mapping Purpose

Canyons School District's curriculum math maps are standards-based maps driven by the Utah Core State Standards and implemented using Pearson enVisionMATH ©2011 with supplemental materials from Pearson enVisionMATH ©2012 to ensure alignment to the core standards. Student achievement is increased when both teachers and students know where they are going, why they are going there, and what is required of them to get there. Additional instructional days were intentionally built into the map to allow teachers to go into more depth on concepts. Supporting resources for these additional days can be found in the General Information section.

Curriculum Maps are a tool for:

- ALIGNMENT: Provides support and coordination between concepts, skills, standards, curriculum, and assessments
- COMMUNICATION: Articulates expectations and learning goals for students
- PLANNING: Focuses instruction and targets critical information
- COLLABORATION: Promotes professionalism and fosters dialogue between colleagues about best practices pertaining to sequencing, unit emphasis and length, integration, and review strategies.
- SCAFFOLDED INSTRUCTION AND GROUPING STRUCTURES: The organization of a scaffolded classroom includes whole group, small group (e.g., teacher-led skill-based, cooperative learning), partner, and independent work where students are provided support towards mastery. As students assume more responsibility for the learning, gradual support is decreased in order to shift the responsibility for learning from the teacher to the students.

TABLE OF CONTENTS

General Instructions for the Map page
CSD Academic Framework to Support Effective Instruction page
Evidence-Based Instructional Priorities Applied to Math page
Systematic Vocabulary Routine for Math page
Hess' Cognitive Rigor Matrix page
Utah SAGE Elementary Mathematics Blueprints page
Utah Core Math Standards at a Glance page
The Utah Core Standards for Mathematical Practice page
Utah Core State Standards for Mathematics page
I-CANyons Report Card page
I-CANyons Report Card Standards page
Year at Glance page
CSD Math Block page
CSD Lesson Plan for Math page
Scope and Sequence (Map) page

General Information

Pacing

This curriculum map provides guidance for intertwining the Utah Core Math Standards and the enVision curriculum. Following the map will allow students to access all core standards by the end of the year. To support students' mastery of the standards, targeted standards have been identified for each domain. Attending to these targeted standards will allow teachers to focus instruction for the given topic and better assess students' understanding of each standard.

This year's map include guidance for using the 2011 enVision materials, which align with the teacher and student materials, as well as 2012 enVision digital lessons that are needed as a supplement to teach the standards not adequately represented in enVision 2011. The enVision 2012 resources can be accessed using teacher CFA accounts. These materials may be used in place of the 2011 materials.

Intentional Planning

For each domain, the map specifies both procedural checks and application tasks. These tasks represent what students should know and be able to do after instruction. Understanding these tasks will assist with designing instruction around targeted standards and critical areas.

- Procedural Check: The purpose of the procedural check is to identify if students have the basic procedural understanding of the mathematical concept being highlighted.
- Application Task: The purpose of the application task is to assess student ability to understand and apply the skill with a heightened level of depth and complexity.

Critical Areas for Conceptual Understanding

In addition to targeted standards, critical areas have been identified and are highlighted in blue within the scope and sequence of the map. Students are expected to demonstrate a conceptual understanding of these critical areas in order to be prepared for future grades. Additional instructional days have been scheduled into the scope and sequence to provide additional time for increasing conceptual understanding of the standards. Conceptual understanding requires a focus of depth and complexity beyond the enVision lessons. The following resources may be useful for extending instruction to address depth of knowledge demands of the standards.

Online:

Illustrative Mathematics: Mathematical tasks aligned to the standards https://www.illustrativemathematics.org
Inside Mathematics: More mathematical tasks aligned to the standards
http://www.insidemathematics.org/index.php/tools-for-teachers
National Library of Virtual Manipulatives NLVM: Virtual manipulatives that support conceptual understanding http://nlvm.usu.edu Illuminations: Lessons, interactives, and web links to support math instruction. http://illuminations.nctm.org

Print Resources:

Elementary and Middle School Mathematics: Teaching Developmentally by John A. Van De Walle
Investigations in Number, Data and Space (2004) (1998)

Common Core Lessons (CC)

Certain topics will require the use of Common Core Lessons. These lessons are available digitally and can be accessed through the enVisionMath 2011 "Teacher Resources" link. Then, click on "Transitioning to Common Core with enVisionMATH." The lessons can also be accessed within enVisionMATH 2012 under the same title.

Assessment

Topic assessments are available digitally in the SuccessNet CFA accounts. The 2012 enVisionMath topic tests directly align to the scope and sequence outlined in the map. Additional assessments are available in both the 2011 and 2012 editions of enVisionMATH. For example, at the end of every topic, there is a skill-based check and performance task that will assess students' procedural and conceptual understanding of the given topic.

Focused Review

It is critical to provide an ongoing review of previously taught concepts and skills. Teacher-directed, interactive reviews daily are ideal to assess student learning and inform instruction. Spiral reviews from enVisionMATH 2012 may be used to provide a cumulative review. The math block allocates 10-15 minutes for a daily, focused review.

Common Formative Assessment (CFA)

The CFA's are an informational assessment for you as a teacher. These assessments were designed to assess all depth of knowledge (DOK) levels and mastery of Utah Core Standards. They are one form of assessment and the data can be used during Instructional Problem Solving Team discussions to problem solve and inform instruction. CFAs are mandatory and should be completed within the given frame of time outlined in the curriculum map with the exception of the final CFA.

Homework

The struggle to develop new concepts should occur while the teacher is available to support and scaffold the learning and correct students' errors in thinking. Work that is sent home for students to complete should consist of concepts that have already been taught in class, been practiced, and the student can already do independently. Math homework should be used to build automaticity of skills already acquired and not for development of new skills without instruction. Practicing concepts incorrectly at home can reinforce errors in thinking and cause frustration for students and families. Practicing the skill to automaticity with homework assignments is appropriate after students have acquired the skill. Reflex Math is available for students in grades 2-5 and can be accessed at home as well as at school. Reflex Math helps students develop fluency with their basic facts in addition, subtraction multiplication and division and could be assigned as homework to support students' automaticity.

Online Supports for Unpacking the Core

For additional information about teaching math standards, please visit the following websites:
USOE Curriculum Guides http://csdmathematics.weebly.com/usoe-elementary-curriculum-guides.html
North Carolina http://www.ncpublicschools.org/acre/standards/common-core-tools/\#unpacking
Howard County Public Schools https://grade4commoncoremath.wikispaces.hcpss.org (Change grade number to match yoursgrade_commoncoremath.wikispaces.hcpss.org)

Canyons School District elementary math maps are created by CSD elementary teachers and published by the CSD Office of Evidence-Based Learning.

Delware—Under assessment examples http://www.doe.k12.de.us/aab/Mathematics/assessment_tools.shtml EngageNY—Mathematics Modules--http://www.engageny.org/mathematics

Canyons School District Academic Framework to Support Effective Instruction
Response to Intervention (RtI): Multi-Tiered System of Supports (MTSS) for Academics and Behavior

Response to Intervention (Rt): Multi-Tiered System of Supports (MTSS) for Academics and Behavior			
Response to Intervention Muti-Tiered System of Support	(1) providing high quality core instruction (and intervention) matched to students' needs	(2) using data over time (i.e. rate of learning, level of performance, fidelity of implementation)	(3) to make important educational decisions.
CSD Student Achievement Principles	- ALL CSD students and educators are part of ONE proactive educational system. - Evidence-based instruction and interventions are aligned with rigorous content standards.	- Data are used to guide instructional decisions, align curriculum horizontally and vertically, and allocate resources. - CSD educators use instructionally relevant assessments that are reliable and valid.	CSD educators problem solve collaboratively to meet student needs.
- Quality professional development supports effective instruction for ALL students. - Leadership at all levels is vital.			

Core Expectations for ALL teachers in the Classrooms and Common Areas					
Standards for Instruction: Standards clarify what we want students to be able to learn and do.	Evidence-Based Instructional Priorities: Evidence-based techniques increase student achievement and engagement.	Time Allocation for Instruction: Maintain a school culture in which instructional time is a highly valued resource.	Teacher Learning Data: Teacher learning and professional growth are continuously fostered through public practice and feedback.	Student Performance Data: Student academic and behavioral performance is assessed using a variety of reliable and valid methods.	Collaborative Problem Solving for Instructional Improvement: Consistent use of Canyons' Problem-Solving Protocol: identify, analyze, plan, and evaluate.
Instructional content aligned with the Utah Core Standards Standards-based instruction and reporting Curriculum maps with common pacing guides Scientifically research-based programs National Educational Technology Standards (NETS) World-Class Instructional Design and Assessment (WIDA) Schoolwide Positive Behavioral Interventions and Supports (PBIS)	Classroom Positive Behavioral Interventions and Supports (PBIS) Explicit Instruction (I, We, Ya'll, You) Systematic vocabulary development Acquisition, Automaticity, Application (AAA) Scaffolded Instruction \& Grouping (SIG) structures Maximizing Opportunities to Respond (OTR) Feedback cycle	Master schedule allocates adequate time for student learning and growth Classroom instructional time is maximized and aligned with the standards every day of the school year, including appropriate pacing to ensure rigor and student understanding Ensure scheduling for intervention and skill-based instruction, including English Language Development (ELD) and Special Education services	Learning walkthroughs Coaching cycles with achievement coach, new teacher coach and/or peer coaches Instructional Problem Solving Teams (IPSTs) Lesson study Video analysis Annual goal setting and documentation of progress toward goals Formalized protocols and checklists to monitor and evaluate implementation	Formative assessment practices, including: -Universal benchmarking and screening -Progress monitoring -Common Formative Assessments (CFAs) -Rubrics and objective trackers Summative assessment practices, including: - Student Learning Objectives (SLOs) - Student Assessment of Growth and Excellence (SAGE) -College- and careerreadiness assessments (e.g. ACT)	Early warning system for identification of risk (academic, behavior, and attendance) Timely and consistent review of relevant data by teams (e.g. BLT, IPST): -Evaluate effectiveness of instruction for all groups of students using valid and reliable data and additional assessment if needed -Determine needs for supplemental and intensive instruction
On-going, targeted professional development with coaching supports					

June 2014 - V. 6.0

Evidence-Based Instructional Priorities

Applied to Math Instruction

Explicit Instruction I Do - We Do - Y'all Do - You Do Model - Guide Practice - Partner - Independent						
				struggle may require 10-30 more opportunities than their peers. equent exposure to content/skill sense and problem solving iodically		sroom Positive Behavioral Interventions and ports (PBIS) dback Cycle folded Instruction \& Grouping Structures quisition, Automaticity, Application (AAA) imizing Opportunities to Respond (OTR) te various contexts for problem solving that ents can relate to ng
Increasing Opportunities to Respond Saying, Writing, Doing				Sy	Rou	
- Choral Responses: give think time, use a signal for response, repeat if all students don't respond Partner Sharing: Look-Lean-Whisper; Think-Pair-Share; Study-Tell-Help-Check Individual Responses: give wait time, individual shares after partner discussion, Cold Call, random calling pattern - Math Journals: Quick Writes, vocabulary practice, draw visuals of math concepts Individual White Boards: use a signal for displaying, establish a routine, provide feedback - Manipulatives: establish a routine, explain expectations, all students interact with materials, provide visual bridge to concept - Response Cards: red/green, yes/no; odd/even; $+/-; \ll\rangle /=$; etc. - Action Responses: thumbs up/down; modeling operations, angles, or other math concepts, act it out, hand signals				- Introduce the word - Teacher says the w - All students repeat - Teacher gives a ch - All students repeat - Repeat above steps] Demonstrate - Provide an exampl - Provide a non-exan - Repeat above steps - Apply - Students turn to a - Teacher shares a se Vocabulary Cards: Grad utilized during instruction	d and post e word -friendly e definitio necessar le necessary rtner and ence using evel vocab d posted on	he word inition with teacher guidance) the word in a sentence he word ry cards available on the CSD math website; ord Wall
```Feedback Cycle - Corrective and Affirmative - Timely and Frequent - Specific and Reinforcing```		Scaffold	nstruction and Grouping	Acquisition - Automaticity -	pplication	Classroom PBIS
		l Whol $\begin{aligned} & \text { a Fluid } \\ & \text { a Skill- } \\ & \text { ident }\end{aligned}$	oup, Small groups, Partners flexible   Small Group Instruction fo skill gaps or extension	$\begin{array}{ll} \text { Learn (acquire) the skill } \\ \text { a } & \text { Build the skill to automatic } \\ \text { a } & \text { Attend to fluency standard } \\ \text { Apply the skill } \end{array}$	in the core	- Forming clear behavior expectations   - Explicitly teaching expectations to students   - Reinforcing expectations with students   - Correcting of problem behaviors in a systematic manner




$\begin{aligned} & \text { 槀 } \\ & : \frac{0}{E} \\ & \frac{0}{4} \\ & \hline \end{aligned}$	Introduction Phase   1. Teacher writes/says the word.   2. Students repeat the word.   3. Multisyllabic breakdown	T
		T : The word is polygon. What word?
		S: polygon
		T: Let's clap/tap "polygon" into syllables.
		T \& S: "pol" "y" "gon".
		T: How many syllables?
		S : 3 syllables
	4. Teacher gives a student friendly definition, incorporating synonyms	T : A closed plane figure with three or more sides that is made up of line segments that do not cross.
	5. Students restate definition with teacher guidance.	T\& S: A closed plane figure with three or more sides that is made up of line segments that do not cross is called a $\qquad$ _.
	6. Teacher identifies any prefixes, suffixes, base/root words, origin, etc.	T: The prefix "poly" means much or many. So a polygon has not just one side, but many sides.

Hess' Cognitive Rigor Matrix \& Curricular Examples: Applying Webb’s Depth-of-Knowledge Levels to Bloom's Cognitive Process Dimensions - Math/Science

Revised Bloom's Taxonomy	Webb's DOK Level 1 Recall \& Reproduction	Webb's DOK Level 2 Skills \& Concepts	Webb's DOK Level 3 Strategic Thinking/ Reasoning	Webb's DOK Level 4 Extended Thinking
Remember   Retrieve knowledge from long-term memory, recognize, recall, locate, identify	- Recall, observe, \& recognize facts, principles, properties Recall/ identify conversions among representations or numbers (e.g., customary and metric measures)			
Understand   Construct meaning, clarify, paraphrase, represent, translate, illustrate, give examples, classify, categorize, summarize, generalize, infer a logical conclusion (such as from examples given), predict, compare/contrast, match like ideas, explain, construct models	Evaluate an expression Locate points on a grid or number on number line Solve a one-step problem Represent math relationships in words, pictures, or symbols Read, write, compare decimals in scientific notation	- Specify and explain relationships (e.g., non-examples/examples; cause-effect)   - Make and record observations   - Explain steps followed   - Summarize results or concepts   - Make basic inferences or logical predictions from data/observations Use models /diagrams to represent or explain mathematical concepts Make and explain estimates	- Use concepts to solve non-routine problems   - Explain, generalize, or connect ideas using supporting evidence   - Make and justify conjectures   - Explain thinking when more than one response is possible   - Explain phenomena in terms of concepts	- Relate mathematical or scientific concepts to other content areas, other domains, or other concepts   Develop generalizations of the results obtained and the strategies used (from investigation or readings) and apply them to new problem situations
Apply   Carry out or use a procedure in a given situation; carry out (apply to a familiar task), or use (apply) to an unfamiliar task		- Select a procedure according to criteria and perform it Solve routine problem applying multiple concepts or decision points Retrieve information from a table, graph, or figure and use it solve a problem requiring multiple steps Translate between tables, graphs, words, and symbolic notations (e.g., graph data from a table) Construct models given criteria	- Design investigation for a specific purpose or research question   - Conduct a designed investigation   - Use concepts to solve non-routine problems   - Use \& show reasoning, planning, and evidence   - Translate between problem \& symbolic notation when not a direct translation	- Select or devise approach among many alternatives to solve a problem   - Conduct a project that specifies a problem, identifies solution paths, solves the problem, and reports results
Analyze   Break into constituent parts, determine how parts relate, differentiate between relevant-irrelevant, distinguish, focus, select, organize, outline, find coherence, deconstruct	- Retrieve information from a table or graph to answer a question Identify whether specific information is contained in graphic representations (e.g., table, graph, T-chart, diagram) Identify a pattern/trend	- Categorize, classify materials, data, figures based on characteristics Organize or order data Compare/ contrast figures or data Select appropriate graph and organize \& display data Interpret data from a simple graph Extend a pattern	- Compare information within or across data sets or texts   - Analyze and draw conclusions from data, citing evidence Generalize a pattern Interpret data from complex graph   - Analyze similarities/differences between procedures or solutions	- Analyze multiple sources of evidence   - analyze complex/abstract themes   - Gather, analyze, and evaluate information
Evaluate   Make judgments based on criteria, check, detect inconsistencies or fallacies, judge, critique			- Cite evidence and develop a logical argument for concepts or solutions   - Describe, compare, and contrast solution methods   - Verify reasonableness of results	- Gather, analyze, \& evaluate information to draw conclusions   - Apply understanding in a novel way, provide argument or justification for the application
Create   Reorganize elements into new patterns/structures, generate, hypothesize, design, plan, construct, produce	- Brainstorm ideas, concepts, or perspectives related to a topic	- Generate conjectures or hypotheses based on observations or prior knowledge and experience	- Synthesize information within one data set, source, or text   - Formulate an original problem given a situation   - Develop a scientific/mathematical model for a complex situation	- Synthesize information across multiple sources or texts   - Design a mathematical model to inform and solve a practical or abstract situation

© 2009 Karin Hess permission to reproduce is given when authorship is fully cited khess@nciea.org

## Utah SAGE Elementary Mathematics Blueprints

Grade 3		
45 Operational Items		
Reporting Category	Min.	Max.
Operations and Algebraic   Thinking (OA)	$29 \%$	$38 \%$
Number and Operations in   Base Ten (NBT)	$18 \%$	$22 \%$
Number and Operations-   Fractions (NF)	$27 \%$	$31 \%$
Measurement and Data and   Geometry (MD/G)	$18 \%$	$22 \%$
DOK 1	$18 \%$	$31 \%$
DOK 2	$38 \%$	$58 \%$
DOK 3	$9 \%$	$20 \%$


Grade 5		
50 Operational Items		
Reporting Category	Min.	Max.
Operations and Algebraic   Thinking (OA)	$16 \%$	$20 \%$
Number and Operations in   Base Ten (NBT)	$30 \%$	$36 \%$
Number and Operations-   Fractions (NF)	$28 \%$	$34 \%$
Measurement and Data and   Geometry (MD/G)	$18 \%$	$22 \%$
DOK 1	$16 \%$	$28 \%$
DOK 2	$50 \%$	$64 \%$
DOK 3	$10 \%$	$24 \%$


Grade 4		
50 Operational Items		
Reporting Category	Min.	Max.
Operations and Algebraic   Thinking (OA)	$18 \%$	$22 \%$
Number and Operations in   Base Ten (NBT)	$28 \%$	$32 \%$
Number and Operations-   Fractions (NF)	$28 \%$	$32 \%$
Measurement and Data and   Geometry (MD/G)	$16 \%$	$22 \%$
DOK 1	$22 \%$	$44 \%$
DOK 2	$44 \%$	$58 \%$
DOK 3	$12 \%$	$22 \%$


Grade 6		
50 Operational Items		
Reporting Category	Min.	Max.
Ratios and Proportional   Relationships (RP)	$28 \%$	$32 \%$
The Number System (NS)	$18 \%$	$22 \%$
Expressions and Equations   (EE)	$28 \%$	$34 \%$
Geometry/Statistics and   Probability (G/SP)	$16 \%$	$20 \%$
DOK 1	$18 \%$	$32 \%$
DOK 2	$46 \%$	$62 \%$
DOK 3	$8 \%$	$20 \%$

Note: The percentages shown represent target aggregate values; individual student experiences will vary based on the adaptive algorithm.

Disclosure: Depth of Knowledge (DOK) and Elements of Rigor are essential components of the Utah Mathematics Core Standards. As such, DOK and Elements of Rigor are integrated into the Student Assessment of Growth and Excellence (SAGE) assessment items. All students will see a variety of DOK and Elements of Rigor on the SAGE summative assessment. For more information about DOK and Elements of Rigor please see: http://www.schools.utah.gov/assessment/Criterion-Referenced-Tests/Math.aspx

## The Utah Core Standards for Mathematical Practice

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important processes and proficiencies with longstanding importance in mathematics education.

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

## Connecting the Standards for Mathematical Practice to the Standards for Mathematical Content

"The Standards for Mathematical Content are a balanced combination of procedure and understanding. Expectations that begin with the word "understand" are often especially good opportunities to connect the practices to the content. Students who lack understanding of a topic may rely on procedures too heavily. Without a flexible base from which to work, they may be less likely to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back for an overview, or deviate from a known procedure to find a shortcut. In short, a lack of understanding effectively prevents a student from engaging in the mathematical practices" (CCSS, 2010).

## Kindergarten Utah State Core Math Standards At-a-Glance

## Kindergarten Overview

## Counting and Cardinality (K.CC)

- Know number names and the count sequence.
- Count to tell the number of objects.
- Compare numbers.


## Operations and Algebraic Thinking (K.OA)

- Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.


## Number and Operations in Base Ten (K.NBT)

- Work with numbers $11-19$ to gain foundations for place value.


## Measurement and Data (K.MD)

- Describe and compare measurable attributes.
- Classify objects and count the number of objects in categories.


## Geometry

(K.G)

- Identify and describe shapes.
- Analyze, compare, create, and compose shapes.


## Two Critical Areas

In Kindergarten, instructional time should focus on two critical areas:

- representing, relating, and operating on whole numbers*, initially with sets of objects;
- describing shapes and space.
- More learning time in Kindergarten should be devoted to number than to other topics.


## Common Core Practice Standards

Overarching habits of mind of a productive mathematical thinker

1. Make sense of problems and persevere in solving them
2. Attend to precision

Reasoning and explaining
2. Reason abstractly and quantitatively
3. Construct viable arguments and critique the reasoning of others
Modeling and using tools
4. Model with mathematics
5. Use appropriate tools strategically

Seeing structure and generalizing
7. Look for and make use of structure
8. Look for and express regularity in repeated reasoning
Grade K Overview
Counting and Cardinality
－Know number names and the count sequence．
－Count to tell the number of objects．
－Compare numbers．
Operations and Algebraic Thinking
－Understand addition as putting together and
adding to，and understand subtraction as taking
apart and taking from．
Number and Operations in Base Ten
－Work with numbers $11-19$ to gain foundations for
place value．
Measurement and Data
－Describe and compare measurable attributes．
－Classify objects and count the number of objects
in categories．
Geometry
－Identify and describe shapes．
－Analyze，compare，create，and compose shapes．
Q

MATHEMATICAL PRACTICES	
1．	Make sense of problems and persevere in
solving them．	
2．	Reason abstractly and quantitatively．
3．	Construct viable arguments and critique
the reasoning of others．	
4．	Model with mathematics．
5．	Use appropriate tools strategically．
6．	Attend to precision．
7．	Look for and make use of structure．
8．	Look for and express regularity in repeated
	reasoning．

${ }^{1}$ Include groups with up to ten objects．
${ }^{2}$ Drawings need not show details，but should show the mathematics in the problem．（This applies
wherever drawings are mentioned in the Standards．） 5．Fluently add and subtract within 5 ． with a drawing or equation．
 For any number from 1 to 9 ，find the number that makes 10 when added to $\cdot(\tau+t=$ s pue $\varepsilon+\tau=$ s＇8•ə）uоب̣еnbə ло вu！мелр Decompose numbers less than or equal to 10 into pairs in more than one
way，e．g．，by using objects or drawings，and record each decomposition by a 10，e．g．，by using objects or drawings to represent the problem． Solve addition and subtraction word problems，and add and subtract within ＇suoب̣enbə 10 ＇suo！ssə1d


 Operations and Algebraic Thinking K．OA
7．Compare two numbers between 1 and 10 presented as written numerals．

6．Identify whether the number of objects in one group is greater than，less
than，or equal to the number of objects in another group，e．g．，by using Compare numbers． ranged in a line，a rectangular array，or a circle，or as many as 10 things in
a scattered configuration；given a number from 1－20，count out that man
objects．
5．Count to answer＂how many？＂questions about as many as 20 things ar－ is one larger．
 －рәұипоэ әдәм Кәчұ чગ！чм и！ләрло әчұ ло ұиәш

 ber name with one and only one object．
When counting objects，say the number names in the standard order，
pairing each object with one and only one number name and each num counting to cardinality．
4．Understand the relationship between numbers and quantities；connect
 numeral 0－20（with 0 representing a count of no objects）．
 （instead of having to begin at 1）． e moıf su！uu！səq paemıof 子unos Know number names and the count sequence．
1．Count to 100 by ones and by tens．
Counting and Cardinality
 ．Compose simple shapes to form larger shapes．For example，＂Can you join Model shapes in the world by building shapes from components（e．g．，sticks
and clay balls）and drawing shapes．


 Analyze，compare，create，and compose shapes． 3．Identify shapes as two－dimensional（lying in a plane，＂flat＂）or three－dimen－
sional（＂solid＂）． 2．Correctly name shapes regardless of their orientations or overall size．
 1．Describe objects in the environmen using Identify and describe shapes（squares，circles，triangles，rectangles，
hexagons，cubes，cones，cylinders，and spheres）．

## Geometry

Classify objects and count the number of objects in each category．
3．Classify objects into given categories；count the numbers of objects in each
category and sort the categories by count．${ }^{3}$ one child as taller／shorter． ence．For example，directly compare the heights of two children and describe Directly compare two objects with a measurable attribute in common，to see
which object has＂more of＂／＂less of＂the attribute，and describe the differ－ 2．Deveral measurable attributes of a single object．
Describe measurable attributes of objects，such as length or weight．Describe
Describe and compare measurable attributes．
еұед pue ұиәшәィnseәт

> six, seven, eight, or nine ones.
that these numbers are composed of ten ones and one，two，three，four，fi or decomposition by a drawing or equation（e．g．， $18=10+8$ ）；understand further ones，e．g．，by using objects or drawings，and record each composition Work with numbers 11－19 to gain foundations for place value．


## I-CANyons Report Card Standards

## Kindergarten

Year-at-a-Glance 2014-2015

Month	Math Topics	$\begin{aligned} & \text { TOPICS } \\ & \text { from } \\ & \text { enVision } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { TOPICS } \\ & \text { from } \\ & \text { enVision } \\ & 2012 \end{aligned}$	CFA   Assessment Dates
August 25-   October 31   (44 days)	- One to Five	Topic 4	Topic 1	Due by October $31^{\text {st }}$
	- Comparing and Ordering Numbers 0 to 5	Topic 4	Topic 2	
	- Six to Ten	Topic 5	Topic 3	
	- Comparing and Ordering Numbers 0 to 10	Topic 12	Topic 4	
	- Numbers to 20	Topic 12	Topic 5	
November 3-   January 16 (41 days)	- Numbers to 100	Topic 12	Topic 6	Due by January $16^{\text {th }}$
	- Understanding Addition	Topic 10	Topic 7	
	- Understanding Subtraction	Topic 11	Topic 8	
January 20-   April 3   (50 days)	- Composing and Decomposing Numbers to 10	Topic 4	Topic 9	Due by April $3^{\text {rd }}$
	- Composing Numbers 11 to 19	Topic 5	Topic 10	
	- Decomposing Numbers 11 to 19	Topic 5	Topic 11	
	- Measurement	Topic 9	Topic 12	
	- Sorting, Classifying, Counting and Categorizing Data	Topic 1	Topic 13	
$\begin{gathered} \hline \text { April 13- } \\ \text { June 5 } \\ \text { (38 days) } \end{gathered}$	- Identifying and Describing Shapes	Topic 7	Topic 14	Due by June$5^{\text {th }}$
	- Position and Location of Shapes	Topic 2	Topic 15	
	- Analyzing, Comparing and Composing Shapes	Topic 7	Topic 16	

## CSD Kindergarten ½ Day Math Block 45 Minutes Daily


(Bolded items should be part of a daily math lesson.)

## CSD Kindergarten Full Day Math Block 70 Minutes Daily

Standards for Mathematical Practice				
$\checkmark$ Make sense of problems and persevere in solving them   $\checkmark$ Reason and abstract quantitatively   $\checkmark$ Construct viable arguments and critique the reasoning of others   $\checkmark$ Model with mathematics			$\checkmark$ Use appropriate tools strategically   $\checkmark$ Attend to precision   $\checkmark$ Look for and make use of structure   $\checkmark$ Look for and express regularity in repeated reasoning	
Numeracy Component	Range of Time	Focus of Instruction		Instructional Materials
Whole Group Time Review or Preteach	$\begin{gathered} 5-10 \\ \text { minutes } \end{gathered}$	- Review   - Pre-teach upcoming concepts		- Problem of the Day   - Daily Spiral Review
Whole Group Time Vocabulary and Fluency Practice	$10-15$ minutes	- Teach Appropriate Vocabulary   - Build Fluency with math facts and computation		- Vocabulary Word Cards   - Computation Fluency Masters
Lesson Objectives	1-3 minutes	- Content Objectives- What are students going to learn?   - Language Objectives- how will students demonstrate understanding?		- Quick and Easy Lesson Overview States Objective
Table Time Concept/Skill Development and Application	$\begin{aligned} & 20-30 \\ & \text { minutes } \end{aligned}$	Develop the Concept:   Concrete: Hands-on during   Representational: Visual   Abstract: Symbolic		- Interactive Learning   - Visual Learning Bridge   - Guided Practice
Small Group Time Independent Practice and/or Small Group: Reteach or Extend	$\begin{aligned} & 15-20 \\ & \text { minutes } \end{aligned}$	- Reteach with small groups of students who need extra support/scaffolding   - Students practice concept independently as appropriate   - Provide extension opportunities based on that concept/skill for students who have shown mastery of the concept/skill		- Problems from Independent Practice and Problem Solving   - Practice, Reteach, and Enrichment pages   - Differentiated Center materials   - Math Diagnosis and Intervention System
Additional Independent Practice and/or Small Group Time: Reteach or Extend				
Oral Language Block Independent Practice and/or Extend	65 minutes	- Vocabulary is experienced through adult/child interactions and engagement with materials   - Students choose to practice independently thro authentic engagement with materials in Work		- Manipulatives in Math Area   - Math Area: engagement with materials for independent practice   - Problem solving, practice, differentiation
Flex Time   Independent Practice and/or Small Group: Reteach or Extend	30 minutes	- Reteach with small groups of students who need support/scaffolding   - Students practice concept independently as ap   - Provide extension opportunities based on that concept/skill for students who have shown ma concept/skill	extra   ropriate   ry of the	- Problems from Independent Practice and Problem Solving   - Practice, Reteach, and Enrichment pages   - Differentiated Center materials   - Math Diagnosis and Intervention System

(Bolded items should be part of a daily math lesson.)

## Domain: Counting and Cardinality <br> One to Five

## Report Card Learning Targets

I can....

- Represent and write numbers from 0-20
- Count to tell the number of objects

Assessment Tasks		
	Skill-Based Check	Performance Task
K.CC. 3	Students will count sets of objects, identify the quantity, and   associate a numeral card with the set.   Students will begin at one and write the numbers 1-5 in   sequential order.   (DOK 1)	Students are given several sets of random quantities from 1-5.   Students are asked to identify the quantity of each set and match a   numeral card to show the value of each set.   Students are given a 5-grid to write the numerals 1-5 in sequential   order.   (DOK 1)
K.CC.4	Place a set of objects in front of the student. Ask them to   count and tell you how many.   Have the student make a group of 2. Then add one more and   tell you how many. Repeat with sets of 3 - 5.   (DOK 1)	I have this many erasers in my pocket. Please count and tell me how   many erasers I have. (Teacher places 8 erasers before the students.)   Sara needs to borrow 5 erasers. Count out 5 erasers for me to give to   her.   (DOK 1)
K.CC.5	Teacher provides students with concrete and/or pictorial   objects to find "how many" in a given set from 1-5.   Teacher provides students with concrete and/or pictorial   objects arranged in a line, rectangular array or circle from 1-   5 in a given set.	Student uses counting strategies to find "how many" concrete objects   in a given set from 1-5.   Students are given pictorial representation of objects from 1-5   arranged in a line, rectangular array. Student's use practiced   counting strategies to find "how many" in a given set.
(DOK 1)	(DOK 1)	



- Topic 1 Test- One to Five (enVision 2012) from your CFA account will match the concepts you have taught.
- Performance Assessment- One to Five
(enVision 2012) Found at the end of each topic in the Common Core edition and would be administered paper-pencil.


## Domain: Counting and Cardinality <br> Comparing and Ordering 0 to 5

## Report Card Learning Targets

## I can....

- Represent and write numbers from 0-20
- Count to tell the number of objects
- Compare numbers between 1 and 10


## Assessment Tasks

	Skill-Based Check	Performance Task
K.CC. $\mathbf{l}$	Students will count sets of objects, identify the quantity, and   associate a numeral card with the set.   Students will begin at one and write the numbers 0-5 in   sequential order.   (DOK 2)	Give the student a set of 4 objects in a scattered arrangement. Say:   How many do you think there are?   Now count to see how many there are.   How many are there? Write the number on this piece of paper.   Repeat with 0-5 objects in a scattered arrangement.   (DOK 2)
K.CC.4	Place a set of objects in front of the student. Ask them to   count and tell you how many.   Have the student make a group of 4. Then add one more   and tell you how many. Repeat with set of 5.   (DOK 1)	Give student a set of 3 cubes to count. Say: Count to see how many   you have. Add 1 more cube to the set. Ask: How many do I have   now?   Add I more. Ask: How many now?   (DOK 1)
K.CC.5	Teacher provides students with concrete and/or pictorial   objects to find "how many" in a given set from 0-5.   Teacher provides students with concrete and/or pictorial   objects arranged in a line, rectangular array or circle from 0-   5 in a given set.(DOK 1)	Use the same collection of 5 objects and scatter them on the table in   front of the student. Say: How many do you think there are?   Count to see how many. How many are there?
K.CC.6	There are some green cubes in this set and some yellow   cubes in this set. Find how many green cubes there are?   Find out how many yellow cubes there are?   (DOK 1)	Give the student a set of 4 green cubes and a set of 3 yellow cubes.   Ask:   There are some green cubes in this set and some yellow cubes in this   set. How many green cubes are there? How many yellow cubes are   there?   Which set has fewer or is there same amount of cubes in each set?   How do you know?(DOK 3)


	Domain - Counting and Cardinality	Curriculum Supports	Vocabulary
K.CC. 3	Know number names and the count sequence.   3. Write numbers from 0 to 20 . Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects).	$\text { enVision } 2011$   Topic 4 Comparing and Ordering 0 to   4-7 More, Fewer, and Same As   4-8 1 and 2 More   4-9 1 and 2 Fewer	Ket, $\quad$ K.CC. 3 numeral, number, number names
K.CC. 4	Count to tell the number of objects.   4. Understand the relationship between numbers and quantities; connect counting to cardinality.   a. When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object.   b. Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted.	***2012 Envision Topic 2   Comparing and Ordering 0 to 5   2-4 The Number 0   2-5 Reading and Writing the Number 0   2-6 As Many, More, and Fewer   2-7 Ordering Numbers 0 to 5   2-8 Ordinal Numbers Through Fifth   2-9 Problem Solving: Use Objects   enVision 2012 - Topic 2   Comparing and Ordering 0 to 5	zero to twenty, quantity, order   K.CC. 4   numeral, number, number names, "how many," count, "one more," quantity, set, objects
K.CC. 5	5. Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out that many objects.   Compare numbers.		K.CC. 5   count,   set, objects, array, number line, scattered, how many, order
K.CC. 6	6. Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. ${ }^{1}$		K.CC. 6   more, less, fewer, same, equal, greater than, less than, most, least


	Additional Assessment Options	- Topic 2 Test- Comparing and Ordering 0 to 5 (enVision 2012) from your CFA account will match the concepts you have taught.   - Performance Assessment Comparing and Ordering 0 to 5 (enVision 2012) Found at the end of each topic in the Common Core edition and would be administered paperpencil.

## Report Card Learning Targets

## I can....

- Represent and write numbers from 0-20
- Count to tell the number of objects

Assessment Tasks		
	Skill-Based Check	Performance Task
K.CC. 3	Students will count sets of objects, identify the quantity, and associate a numeral card with the set.   Students will begin at one and write the numbers 6-10 in sequential order.   (DOK 2)	Give the student a set of 6 objects in a scattered arrangement. Say: How many do you think there are?   Now count to see how many there are.   How many are there? Write the number on this piece of paper.   Repeat with 7-10 objects in a scattered arrangement.   (DOK 3)
K.CC. 4	Place a set of objects in front of the student. Ask them to count and tell you how many.   Have the student make a group of 6 . Then add one more and tell you how many. Repeat with sets of 6-10.   (DOK 2)	Give student a set of 6 cubes to count. Say: Count to see how many you have. Add 1 more cube to the set. Ask: How many do I have now?   Add I more. Ask: How many now?   Continue until there are 10 cubes.   (DOK 2)
K.CC. 5	Teacher provides students with concrete and/or pictorial objects to find "how many" in a given set from 6-10. Teacher provides students with concrete and/or pictorial objects arranged in a line, rectangular array or circle from 610 in a given set. ( DOK 2)	Use the same collection of 6 objects and scatter them on the table in front of the student. Say: How many do you think there are?   Count to see how many. How many are there?   Repeat with a set of up to 10 objects scattered on the table. Say: How many do you think there are? Count to see how many. How many are there?   (DOK 2)


	Domain - Counting and Cardinality	Curriculum Supports	Vocabulary
K.CC. 3	Know number names and the count sequence.   3. Write numbers from 0 to 20 . Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects).   Count to tell the number of objects.	```enVision 2011 Topic 5 Six to Ten 5-1 Counting 6 & 7 5-3 Reading and Writing 6 & 7 CC-5-4A Writing Number Sentences for 6 &  7```	set, $\quad$ K.CC. 3 numeral, number, number names zero to twenty,
K.CC. 4	4. Understand the relationship between numbers and quantities; connect counting to cardinality.   a. When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object.   b. Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted.   c. Understand that each successive number name refers to a quantity that is one larger.	5-4 Counting 8 \& 9   5-6 Reading and Writing 8 \& 9   CC-5-7-A Writing Number Sentences for $8 \&$ 9   5-7 Counting to 10   5-9 Reading and Writing 10   enVision 2012 Topic 3 Six to Ten   3-7 Problem Solving: Look for a Pattern   enVision 2012 - Topic 3: Six to Ten	quantity, order   K.CC. 4   numeral, number, number names, "how many," count, "one more," quantity, set, objects
K.CC. 5	5. Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out that many objects.		K.CC. 5   count, set, objects, array, number line, scattered, how many, order

$\square$

- Topic 3: Six to Ten (enVision 2012) from your CFA account will match the
concepts you have taught.
- Performance Assessment- Topic 3 Six to Ten (enVision 2012) Found at the end of each topic in the Common Core edition and would be administered paper-pencil.


## Domain: Counting and Cardinality Comparing Numbers 0 to 10

Report Card Learning Targets I can....   Count to 100 by ones and tens Count to tell the number of objects		
Assessment Tasks		
	Skill-Based Check	Performance Task
K.CC. 2	Have the student orally count from a given number (e.g., "Start at six and count until I tell you to stop"). Have the student stop at 10.   Have the student orally count from a given number (e.g., "Start at 3 and count until I tell you to stop").   (DOK 2)	Lisa has 4 shirts. She bought 6 more. Count on to see how many shirts she has now. Draw a picture and show me how many she has now.
$\begin{aligned} & \hline \text { K.CC. } 4 \\ & \text { c } \end{aligned}$	Place a set of objects in front of the student. Ask them to count and tell you how many.   Have the student make a group of 10 . Then add one more and tell you how many.   (DOK 1)	I have this many pennies in my pocket. Please count and tell me how many pennies I have. (Teacher places 10 pennies before the students.)   Mr. Lincoln needs to borrow 10 erasers. Count out 10 erasers for me to give to him.   (DOK 1)
K.CC. 6	Show the students two groups of cubes and have them identify which group has more and which group has less.   Show students a pictograph and have them identify which group has greater, which group has fewer, and which groups are the same. (DOK 2)	Jim has 3 dogs. Marci has 2 dogs. Who has the most dogs? Use a picture or number sentence to show how you came up with the answer.   Hyrum has 7 gumballs. Lucy has 6. Mario has 7. Which students have the same number of gumballs? Justify your answer with a picture, with objects, or in writing.   Janice ate 4 cookies. Sasha ate 9 cookies. Which child ate fewer cookies? Show how you came up with your answer using objects, a picture, or writing. (DOK 2)

\begin{tabular}{|c|c|c|c|}
\hline K.CC. 7 \& \begin{tabular}{l}
Students will be provided with a teacher-generated numeral comparison grid. \\
(DOK 1)
\end{tabular} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Students will identify the specified numeral. Students will touch or draw a circle around the numeral determined by teacher direction (e.g., circle the greater numeral, touch the lesser numeral). Student will say, " 5 is greater than 2 ". \\
(DOK 1).
\end{tabular}} \\
\hline OA. 1 \& \begin{tabular}{l}
Use the linking cubes and show me the following story: Sam has 5 apples. Molly gave Sam 3 more apples. How many apples does Sam have now? \\
(DOK 1)
\end{tabular} \& \begin{tabular}{l}
Provide materials to the student. Read the Sam has 5 apples. Molly gave Sam 2 more apples does Sam have now? Show your think words, pictures or numbers. \\
(DOK 2)
\end{tabular} \& \begin{tabular}{l}
em to the student: \\
s. How many with objects,
\end{tabular} \\
\hline \& Domain - Counting and Cardinality \& Curriculum Supports \& Vocabulary \\
\hline K.CC. 2
K.CC. 4

K.CC. 6 \& \begin{tabular}{l}
Know number names and the count sequence. <br>
Count forward beginning from a given number within the known sequence (instead of having to begin at one). <br>
Count to tell the number of objects. <br>
4. Understand the relationship between numbers and quantities; connect counting to cardinality. <br>
c. Understand that each successive number name refers to a quantity that is one larger. <br>
Compare numbers. <br>
Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. Include groups with up to ten objects. <br>
Compare two numbers between 1 and 10 presented as

 \& 

enVision 2011 <br>
Topic 6 Comparing Numbers <br>
6-1 Comparing Numbers through 10 <br>
6-2 Comparing Numbers to 5 <br>
6-3 Comparing Numbers to 10 <br>
*** enVision 2012 Topic 4 <br>
Comparing Numbers Through Ten <br>
4-4 1 More <br>
4-5 1 Fewer <br>
4-6 2 More <br>
4-7 2 Fewer <br>
4-8 Ordering Numbers Through 10 <br>
4-9 Ordering Numbers on a Number Line <br>
4-10 Problem Solving: Use Objects

 \& 

K.CC. 2 <br>
count, number names from 1-100, counting on, order, ones, before, after, in all, how many <br>
K.CC. 4 <br>
numeral, number, number names, "how many," count, "one more," quantity, set, objects <br>
K.CC. 6 <br>
numeral, identify, visually, symbol, more,
\end{tabular} <br>

\hline
\end{tabular}



## Kindergarten

CFA 1: August 25-October 31
Flexible Pacing: 44 days

## Domain: Counting and Cardinality \& Numbers and Operations Base Ten

 Numbers to 20
## I Can...

- Count to 100 by ones and tens
- Represent and write numbers from 0-20
- Count to tell the number of objects
- Make or break apart numbers from 11-19 into tens and ones

Assessment Tasks		
	Skill-Based Check	Performance Task
K.CC.2	Have the student orally count from a given number (e.g.,   "Start at six and count until I tell you to stop"). Count up to   20. (DOK 1)	Kwan had 11 marbles. On his birthday his brother gave him 5 more.   Count on to determine how many marbles Kwan has all together.   Draw me a picture of how many marbles Kwan has in all.   (DOK 2)
K.CC.3	Students will count sets of objects, identify the quantity, and   associate a numeral card with the set. Students will begin at   zero and write the numbers 0-20 in sequential order.   (DOK 1)	Students are given several sets of random quantities from 0- 20.   Students are asked to identify the quantity of each set and match a   numeral card to show the value of each set.   Students are given a 21-grid to write the numerals 0-20 in sequential   order. (DOK 2)
K.CC.4b	Place a set of objects in front of the student. Ask them to   count and tell you how many.   Have the student make a group of 20. Then add one more   and tell you how many.   (DOK 1)	Give student a set of 11 cubes to count. Say: Count to see how many   you have. Add 1 more cube to the set. Ask: How many do I have   now?   Add I more. Ask: How many now?   Continue until there are 20 cubes.   (DOK 1)



by a drawing or equation (e.g., $18=10+8$ ); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.	enVision 2012 Topic 5 Numbers to 20	number names, "how many," count, "one more," quantity, set, object   K.NBT. 1   place value, tens, ones, digits, number, decompose, compose, equation, equal, plus, number words 1-19, grouping
Additional Assessment Options	- Topic 5: Numbers to 20 (enVision 2012) from your CFA account will match the concepts you have taught.   - Performance Assessment- Topic 5 Numbers to 20 (enVision 2012) Found at the end of each topic in the Common Core edition and would be administered paper-pencil.	

## Domain: Counting and Cardinality <br> Numbers to 100

## Report Card Learning Targets

I can....

- Count to 100 by ones and tens
- Count to tell the number of objects

Assessment Tasks		
	Skill-Based Check	Performance Task
K.CC.	Count by ones in sequential order from 1 to 100. Count by   tens in order to 100. (DOK 1)	Beginning with one, count as far as you can count. Count to 100 by   tens.   (DOK 1)
K.CC.2	Have the student orally count from a given number (e.g.,   "Start at 10 and count until I tell you to stop"). Count up to   45.   (DOK 1)	Susan has 11 books. On her birthday she got 5 more. Count on to   determine how many books Susan has all together. Draw a picture   or represent with an equation how many Susan has in all.   ( DOK 2)
K.CC.4b	Place a set of objects in front of the student. Ask them to   count and tell you how many.   Have the student make a group of 30. Then add one more   and tell you how many.   (DOK 1)	Give student a set of 11 cubes to count. Say: Count to see how many   you have. Add 1 more cube to the set. Ask: How many do I have   now?   Add I more. Ask: How many now?   Continue until there are 30 cubes.   (DOK 1)
K.CC.4c	Place a set of 10 (Total of 30) objects in front of the student.   Ask them to count and tell you how many.   Have the student make a group of 10. Then add one more   set of 10, ask the student to count them and tell you how   many? Add one more set of 10, have the student count them   and ask how many? Now count each group by tens. Ten,   twenty, thirty).   groups of 10 you can make? Ask: Count by tens to find out how   (DOK 2)	many cubes in all? How many groups of 10 did you make?
(DOK 2)		


K.CC. 5	Teacher provides students with concrete and/or pictorial objects arranged in a line, rectangular array or circle from $11-20$ in a given set. Student will count "how many". (DOK 2)	Show the student the student a number 11-20. Say: Look at the number and count out (or draw or use stickers or stamps) to show the number you see.   (DOK 1)	
	Domain: Counting and Cardinality	Curriculum Supports	Vocabulary
K.CC. 1	Know number names and the count sequence.	enVision 2011   Topic 12 Larger Numbers   12-6 Counting to 100   12-7 Counting Groups of 10   12-8 Patterns on a Hundred Chart	count, ones, tens, order, number names from
	1. Count to 100 by ones and by tens.		
	Know number names and the count sequence.		
K.CC. 2	2. Count forward from a given number within the known sequence instead of having to begin at 1 .	****enVision 2012	one to 100 K.CC. 2
	Count to tell the number of objects.	6-1 Counting to 30   6-2 About How Many?	count, number names from
K.CC. 4	4. Understand the relationship between numbers and quantities; connect counting to cardinality.	6-6 Problem Solving: Looking for Patterns   enVision 2012-   Topic 6 Numbers to 100	1-100, counting on,
			order, ones, before,
	b. Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted.		after, in all, how many   K.CC4
	the order in which they were counted.	${ }^{6-4}$ Counting Groups of Ten .....................................115A   6-5 Patterns on a Hundred Chart ................................117A	numeral,
	c. Understand that each successive number name refers to a quantity that is one larger.	6-6 Problem Solving Look for a Pattern ........................119A	number, number names, "how many,"
	Count to tell the number of objects.		count,
K.CC. 5	5. Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a		"one more," quantity, set, object


	circle, or as many as 10 things in a scattered configuration;   given a number from 1-20, count out that many objects.		K.CC. 5   count, set,   objects, array,   number line,   scattered,   how many, order
	Additional Assessment Options	• Topic 6 Test- Numbers to 100 enVision   2012) from your CFA account will match   the concepts you have taught.	Performance Assessment- Topic 6   Numbers to 100 (enVision 2012) Found   at the end of each topic in the Common   Core edition and would be administered   paper-pencil.

## Domain: Operations and Algebraic Thinking <br> Understanding Addition

## Report Card Learning Targets

I can....

- Understand addition with objects, drawings, and equations
- Solve addition and subtraction word problems using objects and drawings
- Fluently add within 5

Assessment Tasks			
	Skill-Based Check	Performance Task	
K.OA. 1	Teacher distributes linking cubes to students. Teacher reads an addition story problem and has students act out the problem using the linking cubes. (DOK 1)	Students create their own addition or subtraction story problem using objects, fingers, mental images, drawings, sounds, acting out situations, or verbal explanations.   (DOK 2)	
K.OA. 2	Teacher dictates an addition story problem. For example: Olivia has 3 lollipops and her friend Sophie 2 lollipops. How many lollipops do they have all together? Students draw a picture to solve the problem.   (DOK 2)	Teacher creates number cards $1-5$. Students will draw two number cards from the pile. Students will create an addition/subtraction problem and solve using illustrations and equation.   (DOK 2)	
K.OA. 5	Ask the students to solve addition and subtraction problems within ten mentally. Then have them tell you the strategy they used. This can be done on an individual basis or as a whole group.   (DOK 2)	Give the student a problem in context, such as the problem below, and ask him/her to solve it using mental strategies. Then have him/her tell you the strategies he/she used.   Peter has 4 puppies and Marina has 2 puppies. How many puppies do they have together?   (DOK 2)	
	Domain - Operations and Algebraic Thinking	Curriculum Supports	Vocabulary
	Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.	enVision 2011   Topic 10 Addition   10-1 Stories About Joining	  join,   add,


$\square$

- Topic 7: Understanding Addition (enVision 2012) from your CFA account will match the concepts you have taught.
- Performance Assessment- Topic 7

Understanding Addition (enVision
2012) Found at the end of each topic in the Common Core edition and would be administered paper-pencil.

## Domain: Operations and Algebraic Thinking Understanding Subtraction

## Report Card Learning Targets <br> I can....

- Understand addition with objects, drawings, and equations
- Understand subtraction with objects, drawings, and equations
- Solve addition and subtraction word problems using objects and drawings
- Fluently add within 5
- Fluently subtract within 5

Assessment Tasks		
	Skill-Based Check	Performance Task
K.OA. 1	Provide materials to the student. Read the problem to the student: There were 5 children playing at the beach. 3 of them were boys. How many children are girls? Show your thinking with objects, words, pictures or numbers.   (DOK 2)	Provide materials to the student. Read the problem to the student: Destiny had 8 balloons. 3 balloons floated away. How many balloons does Destiny have now? Show your thinking with objects, words, pictures or numbers. (DOK 2)
K.OA. 2	6 motorcycles are in the parking lot. Three are black and the rest are red. How many motorcycles are red? Show your thinking with the red and black cubes. (DOK 2)	Teacher creates number cards $1-5$. Students will draw two number cards from the pile. Students will create an addition/subtraction problem and solve using illustrations. (DOK 2)
K.OA. 5	Ask the students to solve subtraction problems within ten mentally. Then have them tell you the strategy they used. This can be done on an individual basis or as a whole group. (DOK 2)	Say: I'm going to tell you some problems. See if you can solve each one as quickly as you can. Ready?   1. There are 4 marbles in the jar. I took out 2 marbles. How many marbles are in the jar?   2. There are 4 jellybeans in the jar. I ate 3 jellybeans. How many jellybeans are in the jar?   3. There are 3 shells in the basket and I took 1 shell out of the basket. How many shells are in the basket?   4. There are 5 cookies. I ate 4 cookies. How many cookies are there?


	Show your thinking with objects, words, pictures or numbers. (DOK 2)		
	Domain - Operations and Algebraic Thinking	Curriculum Supports	Vocabulary
K.OA. 1	Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.   1. Represent addition and subtraction with objects, fingers, mental images, drawings*, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.	$$	K.OA. 1   join,   add, addend, addition, equal to, equation, expression, subtract, sum, difference, plus, minus, separate, combine,
K.OA. 2	2. Solve addition and subtraction word problems, and add and subtract within 10 (e.g., by using objects or drawings to represent the problem).	***2012 enVision Topic 8 Understanding A Subtraction   8-4 Problem Solving: Act it Out   8-8 Problem Solving: Use Objects	put together, total, take away, compare, take apart   K.OA. 2
K.OA. 5	5. Fluently add and subtract within 5.	enVision 2012 Topic 8 Understanding Subtraction	join, add,   addend,   addition,   equal to,   equation,   expression,   subtract,   sum,   difference,   plus,   minus,   separate,   combine,   put together,   total,   take away,


			compare,   take apart   K.OA. 5   add, subtract, equation, sum, difference, equal sign, plus, minus
	Additional Optional Assessments	- Topic 8: Understanding Subtraction (enVision 2012) from your CFA account will match the concepts you have taught.   - Performance Assessment- Topic 8 Understanding Subtraction (enVision 2012) Found at the end of each topic in the Common Core edition and would be administered paper-pencil.	

## Report Card Learning Targets

## I can....

- Understand addition with objects, drawings, and equations
- Understand subtraction with objects, drawings, and equations
- Combine two numbers to make 10
- Classify, count, and sort objects into categories


## Assessment Tasks

	Skill-Based Check	Performance Task
K.OA. 3	Students will be given a story such as the following: John has 3 cookies. Mary gives John 2 more cookies. How many cookies in all does John have? Students will record their thinking with drawings or equation.	Students will be given seven two-sided counters and will be asked to show a minimum of three combinations of seven. Students will record their results with a drawing or equation. (DOK 2)
K.OA. 4	Students have ten beans, with the sides of the beans colored different colors. Students will shake and spill the color and record their answers on using a worksheet with have of another color and then record their answers on rksheet.   Examples for assessment:   1. Students draw the number of colored circles they ***十 未t $+\boldsymbol{1}$   2. Students write the equation using numerals. $5+5=10$ (DOK 2)	Students choose a number from 0-9 and then, using a ten frame, draw circles or write how many more they need to get to 10 . Repeat the activity for a total of four work samples. (DOK 2)
K.MD. 3	Given objects, students will sort them by an attribute and name the attribute.	Divide students to small groups, and have them remove their shoes. Have each group pick a common attribute and sort the shoes

\begin{tabular}{|c|c|c|c|}
\hline \& Given groups or objects sorted by an attribute, students can count each group and identify the group with the most/least of the attribute.
(DOK 2) \& \multicolumn{2}{|l|}{\begin{tabular}{l}
accordingly (laces/no laces, color, type, etc.). Have students explain their attributes and identify how many shoes are in each group. Students should identify the groups with the most and least shoes. \\
(DOK 3)
\end{tabular}} \\
\hline \& Domain - Operations and Algebraic Thinking \& Curriculum Supports \& Vocabulary \\
\hline K.OA. 3
K.OA. 4

K.MD. 3 \& \begin{tabular}{l}
Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from. <br>
3. Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., 5 $=2+3$ and $5=4+1$ ). <br>
4. For any number from 1 to 9 , find the number that makes 10 when added to the given number (e.g., by using objects or drawings), and record the answer with a drawing or equation. <br>
Classify objects and count the number of objects in each category. <br>
3. Classify objects into given categories; count the numbers of objects in each category and sort the categories by number.

 \& 

enVision 2011 <br>
Topic 4 Zero to Five <br>
4-5 Making 4 \& 5 <br>
CC-4-7A Writing Number Sentences for $4 \&$ 5 <br>
Topic 5 Six to Ten <br>
5-2 Making 6 \& 7 <br>
CC-5-4A Writing Number Sentences for 6 \& 7 <br>
5-4 Making 8 \& 9 <br>
CC-5-7A Writing Number Sentences for $8 \&$ 9 <br>
5-8 Making 10 <br>
CC-5-10A Writing Number Sentences for 10 <br>
enVision 2012 <br>
Topic 9 Composing and Decomposing <br>
Numbers to 10 <br>
9-9 Problem Solving: Make a Graph

 \& 

K.OA. 3 <br>
join, <br>
add, <br>
addend, addition, equal to, equation, expression, subtract, sum, difference, plus, minus, separate, combine, put together, total, take away, compare, take apart <br>
K.OA. 4 <br>
in, add, addend, addition, equal to,
\end{tabular} <br>

\hline
\end{tabular}

		enVision 2012 Topic 9: Composing and Decomposing Numbers to 10	equation, expression, subtract, sum, difference, plus, minus, separate, combine, put together, total, take away, compare, take apart   K.MD. 3   classify, sort, attribute, groups, categories, count
	Additional Assessment Options	- Topic 9: Composing and Decomposing Numbers to 10 (enVision 2012) from your CFA account will match the concepts you have taught.   - Performance Assessment- Topic 9 Composing and Decomposing Numbers to 10 (enVision 2012) Found at the end of each topic in the Common Core edition and would be administered paper-pencil.	

# Domain: Numbers and Operations in Base Ten Composing Numbers 11 to 19 

## Report Card Learning Targets

I can....

- Make or break apart numbers from 11-19 into tens and ones


## Assessment Tasks

	Skill-Based Check	Performance Task
K.NBT.1	Students will count $11-19$.	Present student with 14 counters and the ten frame. Say: I have   some counters. How many do you think there might be? Do you   think they will fit on the ten frame? Use the ten frame to find out   Student draws a number card. For example student draws   the number 14. Student first represents fourteen with cubes.   10 cubes of one color snapped together and 4 cubes of   another color snapped together. Then the student will write   an equation.   $14=10+4$   $10+4=14$   $($ DOK 2)
After the student has finished, ask:   What did you find out? How do you know? Prompt, if needed: Did   you have enough to fill the ten frame? How many did not fit on the   ten frame? How many counters are there in all? Then, ask the   student to write the total amount.   Repeat with 16 counters. (DOK 3)		


	Domain: Numbers \& Operations in Base Ten	Curriculum Supports	Vocabulary
K.NBT. 1	Work with numbers 11-19 to gain foundations for place value.   1. Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., $18=10+8$ ); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.	enVision 2011   Topic 12 Larger Numbers   CC-12-3A Making 11,12 and 13   CC-12-4A Making 14, 15, and 16   CC 12-5A Making 17, 18, 19   ***2012 enVision   Topic 10 Composing Numbers 11 to 19   10-4 Problem Solving: Looking for a Pattern   2012 enVision Topic 10 Composing Numbers 11 to 19 $\qquad$   Lessons   10-1 Making 11,12 , and 13 . $\qquad$ 193A   10-2 Making 14,15 , and 16. $\qquad$ 195A   10-3 Making 17,18 , and 19. $\qquad$ 197A   10-4 Problem Solving Look for a Pattern. $\qquad$ 199A	K.NBT. 1   place value, tens, ones, digits, number, decompose, compose, equation, equal, plus, number words 1-19, grouping
	Additional Optional Assessments	- Topic 10: Composing Numbers 11 to 19(e 2012) from your CFA account will match $t$ concepts you have taught.   - Performance Assessment- Topic 10 Composing Numbers 11 to 19 (enVision 2012) Found at the end of each topic in the Common Core edition and would be administered paper-pencil.	

## Domain: Numbers and Operations in Base Ten <br> Decomposing Numbers 11 to 19

Report Card Learning Targets   I can....   - Make or break apart numbers from 11-19 into tens and ones			
Assessment Tasks			
	Skill-Based Check	Performance Task	
K.NBT. 1	Students will correctly model the numbers 11-19 using objects and pictorial representations.   Students will write an equation for a given number from 11-19.   (DOK 2)	Present student with 15 counters and the ten frame. Say: I have some counters. How many do you think there might be? Do you think they will fit on the ten frame? Use the ten frame to find out how many counters there are.   After the student has finished, ask:   What did you find out? How do you know? Prompt, if needed: Did you have enough to fill the ten frame? How many did not fit on the ten frame? How many counters are there in all? Then, ask the student to write the total amount.   Repeat with 17 counters.   (DOK 3)	
	Domain: Numbers \& Operations in Base Ten	Curriculum Supports	Vocabulary
K.NBT. 1	Work with numbers 11-19 to gain foundations for place value.   1. Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., $18=10+8$ ); understand that these numbers are composed of ten ones and one,	enVision 2011   Topic 12 Larger Numbers   CC-12-5B Creating Sets to 19   CC-12-5C Parts of 11,12 , and 13   CC-12-5D Parts of 14,15 , and 16   CC-12-5E Parts of 17, 18, 19   ***2012 enVision Topic 11 Decomposing	K.NBT. 1   place value, tens, ones, digits, number, decompose, compose, equation,


two, three, four, five, six, seven, eight, or nine ones.	Numbers 11 to 19   11-5 Problem Solving: Look for a Pattern   2012 enVision   Topic 11   Decomposing Numbers 11 to 19	equal, plus, number words 1-19, grouping
Additional Optional Assessments	- Topic 11: Decomposing Numbers 11 to 19 (enVision 2012) from your CFA account will match the concepts you have taught.   - Performance Assessment- Topic 11 Decomposing Numbers 11 to 19 (enVision 2012) Found at the end of each topic in the Common Core edition and would be administered paperpencil.	

## Domain: Measurement and Data

Measurement

| Report Card Learning Targets <br> I can.... <br> - <br> Describe and compare characteristics of objects |  |  |
| :--- | :--- | :--- | :--- |
|  | Skill Based Check | Assessment Tasks |
| K.MD.1 | When given an object, the student cans show/tell the <br> teacher at least two ways of measuring the object. (DOK 2) | Students can pick an object in the classroom and describe the <br> measurable attributes of the object. (DOK 2) |
|  | K.MD.2 <br> Shown 2 objects, students will be able to identify the <br> tallest/shortest. <br> Shown 2 groups of objects, students will be able to <br> identify which group has more and which group has fewer <br> objects. <br> Students can build an object that is either taller/shorter or | Show the student the Teddy Bear (or a stuffed animal). Invite the <br> student to hold it and carefully examine it. Then, say: Describe this <br> Teddy Bear as many different ways as you can. Prompt if needed: <br> How would you describe the Teddy Bear's weight? The Teddy <br> Bear's length? The distance around the Teddy Bear's belly? The <br> more/less than a given object/model. (DOK 2) |
| Keddy Bear's foot length? |  |  |
| (DOK 2) |  |  |


	Revise   12-5 Comparing Objects by Height 12-6 More Comparing Objects by Height   enVision 2012 Topic 12: Measurement	less of, taller/shorter, heavier/lighter, compare, attributes, measuring, height
Additional Optional Assessments	- Topic 12: Measurement (enVision 2012) from your CFA account will match the concepts you have taught.   - Performance Assessment- Topic 12 Measurement(enVision 2012) Found at the end of each topic in the Common Core edition and would be administered paper-pencil.	

## Domain: Measurement and Data \& Geometry <br> Sorting, Classifying, Counting, and Categorizing Data

## Report Card Learning Targets

## I can....

- Classify, count, and sort objects into categories
- Name shapes and identify its position

Assessment Tasks			
	Skill-Based Check	Performance Task	
K.MD. 3	Given objects, students will sort them by an attribute and name the attribute.   Given groups or objects sorted by an attribute, students can count each group and identify the group with the most/least of the attribute. (DOK 2)	Show the student the collection of cubes. Say: I have a set of cubes. Sort these cubes by color.   After the student has sorted the cubes by color, say: Count the number of cubes in each group. How many cubes do you have in each group? Do you have any groups that have the same amount?" Prompt if needed: "Which groups have the same amount?" (DOK 2)	
K.G. 1	Teacher gives a student a box and a puppet. Student demonstrates a positional word using the box and puppet. Teacher gives a student an object, and students identify the shape of the object.   (DOK 1)	Students are given a sheet of paper with a table drawn on it. Teacher gives directions to draw balls in different colors using positional words (for example, "Draw a yellow ball under the table"; "Draw a blue ball next to the table").   (DOK 2)	
	Domains: Measurement \& Data \& Geometry	Curriculum Supports	Vocabulary
K.MD. 3	Classify objects and count the number of objects in each category.   3. Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.   Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres).	enVision 2011    Topic 1 Sorting \& Classifying    $1-1$ Same and Different   $1-2$ Sorting by one Attribute   $1-3$ Sorting the Same Set in Different Ways   1-4 Sorting by More than One Attribute   enVision 2011 Topic 16 Graphing    $16-3$ Real Graphs	K.MD. $\mathbf{l}$   classify,   sort,   attribute,   groups,   categories,   count   K.G. 1


K.G. 1	1. Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.	16-4 Picture Graphs   ***2012 Envision   Topic 13 Sorting, Classifying, Counting, and Categorizing Data   13-5 Problem Solving: Use Logical Reasoning   2012 Envision   Topic 13 Sorting, Classifying, Counting, and Categorizing Data	above, below, under, on top, around, near, beside, in front of, behind, between, next to, square, circle, triangle, rectangle, hexagon, cube, cone, cylinder, sphere
	Additional Optional Assessments	- Topic 13 Test: Sorting, Classifying, Counting, and Categorizing Data(enVision 2012) from your CFA account will match the concepts you have taught.   - Performance Assessment- Topic 13 Sorting Classifying, Counting, and Categorizing Data (enVision 2012) Found at the end of each in the Common Core edition and would be administered paper-pencil.	

## Domain: Geometry

Identifying and Describing Shapes

## Report Card Learning Targets

## I can....

- Name shapes and identify its position
- Identify and compare 2D and 3D shapes

Assessment Tasks			
	Skill Based Check	Performance Task	
K.G. 2	Show the students a set of shapes with different sizes and orientations. Ask them to name them. Ask the students to describe the attributes of specified two- or three-dimensional shape. "Describe a cone. Tell me the attributes of a triangle."   (DOK 2)	Joey has a shape with 4 corners and 4 equal sides. What shape does he have? Explain your answer with a picture, with objects or in writing. Esperanza wants to wrap her teddy bear. Which shapes of wrapping paper could she use? Explain what shape you chose and why. (DOK 3)	
K.G. 3	Given a shape, students can identify the shape as either flat or solid.   (DOK 1)	Given a group of shapes, students can identify the flat and solid shapes. (DOK 2)	
	Domain - Geometry	Curriculum Supports	Vocabulary
K.G. 2 K.G. 3	Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres).   2. Correctly name shapes regardless of their orientations or overall size.   3. Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid").	enVision 2011   Topic 7 - Geometry   7-1 Squares and Other Rectangles   7-2 Circles and Triangles   7-6 Solid Figures   7-8 Flat Surfaces of Solid Figures   ***enVision 2012 Topic 14   Identifying and Describing Shapes   14-1 Squares   14-2 Rectangles   14-3 Circles	K.G. 2   flip,   rotate, turn, triangle, square, circle, rectangle, hexagon, cone, cylinder, cube,


		14-4 Triangles   14-5 Hexagons   14-8 Problem Solving: Using Figures	sphere, attribute, large, small, medium, describe, facet (the flat side of a threedimensional shape), vertices_(where facets join)   K.G. 3   flat, solid, two-dimensional, three-dimensional, squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, spheres
	Additional Assessment Options	- Topic 14: Identifying and Describing Shapes (enVision 2012) from your CFA account will match the concepts you have taught.   - Performance Assessment- Topic 14 Identifying and Describing Shapes (enVision 2012) Found at the end of each topic in the Common Core edition and would be administered paper-pencil.	

## Report Card Learning Targets

## I can....

- Name shapes and identify its position


## Assessment Tasks

	Skill Based Task	Performance Task	
K.G. 1	Students will place a sticker BELOW the cylinder, ABOVE the sphere, and BESIDE the cube.   (DOK 1)	1. Show each shape one at a time to the student to name the shape. (circle, sq hexagon, cone, sphere)   2. Spread the shapes out on a table. Place table. Say, I have a bag and some shap you some directions about where to pla around the bag.   a. Put the cone above the bag.   b. Put the square beside the bag.   c. Put the circle inside the bag.   d. Put the rectangle behind the bag.   e. Put the hexagon in front of the bag   f. Put the sphere below the bag.	student. Ask the are, rectangle,   the empty bag on the es. I am going to give lace the different shapes
	Domain: Geometry	Curriculum Supports	Vocabulary
K.G. 1	Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres).   1.Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.	enVision 2011   Topic 2: Position and Location   2-1 Inside and Outside   2-2 Above, Below, and On   ***2012 Envision   Topic 15: Position and Location of Shapes   15-3 In Front of and Behind   15-4 Left and Right   15-5 Problem Solving: Act It Out	K.G. 1 above, below, under, on top, around, near, beside, in front of, behind,


		2012 Envision   Topic 15: Position and Location of Shapes	between, next to, square, circle, triangle, rectangle, hexagon, cube, cone, cylinder, sphere
	Additional Assessment Options	- Topic 15 Test- Position and Location of Shapes (enVision 2012) from your CFA account will match the concepts you have taught   - Performance Assessment- Position and Location of Shapes (enVision 2012) Found at the end of each topic in the Common Core edition and would be administered paper-pencil.	

## Report Card Learning Targets

## I can....

- Name shapes and identify its position
- Identify and compare 2D and 3D shapes
- Build and draw shapes

	Assessment Tasks	
	Skill-Based Check	Performance Task
K.G. 2	Show the students a set of shapes with different sizes and orientations. Ask them to name them.   Ask the students to describe the attributes of specified twoor three-dimensional shape. "Describe a cone. Tell me the attributes of a triangle."   (DOK 2)	Joey has a shape with 4 corners and 4 equal sides. What shape does he have? Explain your answer with a picture, with objects or in writing.   Esperanza wants to wrap her teddy bear. Which shapes of wrapping paper could she use? Explain what shape you chose and why.   (DOK 3)
K.G. 3	1. Show a collection of two-dimensional and threedimensional shapes. These can be models from your math manipulative kits or actual items from around the classroom.   2. Ask students to sort the objects into the categories "Two-Dimensional" or "Three-Dimensional."   (DOK 2)	Show the student a collection of two-dimensional and threedimensional shapes (square, circle, triangle, rectangle, hexagon, cube, cone, and cylinder). Say: Put all of the flat, two-dimensional shapes together in a pile and all of the three-dimensional shapes together in a different pile.   Pull out the student a triangle and a rectangle. Remove the other shapes. Ask: How are these shapes alike? How are they different? Repeat with a circle and a cylinder; cube and a square.   (DOK 2)
K.G. 4	When presented with a variety of shapes, students can find common/different attributes, including dimensions.   When given two shapes, students can identify the	Given a piece of paper with different shapes drawn on it, students can circle or color all examples of the same shape, regardless of size or orientation.


	similarities and differences of the two shapes. Students can count the number of corners, sides, etc., on a shape.   (DOK 2)	When given a list of attributes describing a shape, students can point to the correct shape, and name the shape.   (DOK 2)	
K.G. 5	Teacher dictates a specific shape, and students draw the shape and its attributes correctly (students only need to draw two-dimensional shapes).   (DOK 1)	1. Show the student a triangle. Ask: What is the name of this shape? How do you know that this is a triangle? Then, ask the student to draw the shape. Repeat with a rectangle and a square.   2. Show the student the cube. Ask: What is the name of this shape? How do you know that this is a cube? Then, ask the student to build a cube using materials provided. Repeat with a sphere and cylinder. (DOK 3)	
K.G. 6	Students will show how to compose simple shapes to form different and or larger shapes.   Can you show me a rectangle using square pattern blocks? Using square pattern blocks (4), show me how to make a larger square.   Show me how to combine these two triangles to make a rectangle. (DOK 2)	Students are given a variety of materials (e.g., attribute blocks, pipe cleaners, Popsicle sticks, shape cutouts) to use in composing the following shapes: square, rectangle, and triangle.   (DOK 2)	
	Domain: Geometry	Curriculum Supports	Vocabulary
K.G	Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres).   2. Correctly name shapes regardless of their orientations or overall size.   3. Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid").   4. Analyze and compare two- and three-dimensional	$\text { enVision } 2011$   Topic 7 Geometry   7-4 Same Size, Same Shape   7-3 Making Shapes from Other Shapes   7-7 Comparing Solid Figures   CC7-7A Building with Solid Figures	K.G. 2   flip, rotate, turn, triangle, square, circle, rectangle, hexagon, cone, cylinder, cube, sphere, attribute, large, small, medium, describe, facet (the flat side of a

shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length).
5. Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.
6. Compose simple shapes to form larger shapes. (For example, "Can you join these two triangles with full sides touching to make a rectangle?")

## ***2012 enVision Topic 16 Analyzing, Comparing, and Composing Shapes

	Lessons
16-1	Same Size, Same Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303A
16-2	Making Shapes from Other Shapes. . . . . . . . . . . . . . . . . . . . . . . 305A
16-3	Comparing Solid Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307A
16-4	Building with Solid Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309A
16-5	Problem Solving Use Logical Reasoning ....................311A

three-dimensional shape), vertices (where facets join)

## K.G. 3

classify, sort, attribute, groups, categories, count

## K.G. 4

 compare, similarities, differences, size, orientation, attribute, part, side, point/corner/vertex, straight, round, curved, shape, square, circle, triangle, rectangle, hexagon, cube, cone, cylinder, sphere
## K.G. 5

square, circle, triangle, rectangle, hexagon, cube, cone, cylinder, sphere,
two-dimensional, three-dimensional

			flat,   solid   sides,   same, alike,   different   K.G. 6   create, compose, explore, combine, different, larger, simple shape
	Additional Optional Assessments	Topic 16 Test- Analyzing,   - Comparing, and Composing Shapes (enVision 2012) from your CFA account will match the concepts you have taught.   - Performance Assessment- Adding and Subtracting Fractions and Mixed Numbers with Like Denominators enVision 2012) from your CFA account will match the concepts you have taught	

