Epidemiology: Study Design and Data Analysis

Thomas R. Vetter, M.D., M.P.H.
Maurice S. Albin Professor of Anesthesiology
Vice Chair and Director, Division of Pain Medicine
Department of Anesthesiology
University of Alabama School of Medicine
Birmingham, Alabama

Two Introductory Observations

"A little knowledge is a dangerous thing, but a little want of knowledge is also a dangerous thing."

Samuel Butler (1835-1902)
"For some, epidemiology is too simple to warrant serious consideration, and for others it is too convoluted to understand. I hope to demonstrate to the reader that neither view is correct."

Kenneth J. Rothman
Epidemiology: An Introduction, 2002

My Presentation Objectives

(1) Practical basics of biostatistics, including sample size, power analysis, and confidence intervals
(2) Practical basics of clinical epidemiology

3 Sources of bias in study design
(4) Concept of confounding in study design
© Methods to identify and to control for bias and confounding, including regression modeling and propensity scores
© Readily available, user-friendly biostatistics and epidemiology software options for the clinical researcher

Excellent Introductory Resources

Primer of Biostatistics
$7^{\text {th }}$ Edition, 2011
Glantz

Biostatistics

Epidemiology and Biostatistics
$1^{\text {st }}$ Edition, 2009
Kestenbaum

Medical Statistics
$4^{\text {th }}$ Edition, 2007
Campbell, Machin \&
Walters

More Excellent Introductory Resources

Epidemiology:
An Introduction
$1^{\text {st }}$ Edition, 2002
Rothman

kennetw J. rothman

Designing Clinical Research
$3^{\text {rd }}$ Edition, 2006
Hulley, Cummings, Browner, Grady
\& Newman

Epidemiology Kept Simple
$2^{\text {nd }}$ Edition, 2003
Gerstman

U Penn Center for Clinical Epidemiology and Biostatistics (CCEB): Volume 1 www.cceb.upenn.edu/pages/localio/EPI521

Excellent Intermediate Resources

Epidemiology:
Study Design and Data Analysis
$2^{\text {nd }}$ Edition, 2004
Woodward

Practical Statistics for Medical Research 1991, Altman

U Penn Center for Clinical Epidemiology and Biostatistics (CCEB): Volume 2 www.cceb.upenn.edu/pages/localio/EPI521

StatSoft: www.statsoft.com/textbook

"StatSoft has freely provided the Electronic Statistics Textbook as a public service for more than 12 years now."

StatPages: http://statpages.org/

"The web pages listed below comprise a powerful, conveniently-accessible, multi-platform statistical software package. There are also links to online statistics books, tutorials, downloadable software, and related resources. All of these resources are freely accessible, once you can get onto the Internet."

GraphPad: http://graphpad.com

OpenEpi 2.3.1: www.openepi.com

"A Collaborative, Open-Source Project in Epidemiologic Computing"

Fundamentals of Inferential Statistics

- Central Limit Theorem
- The distribution of means (averages) of many trials is always normal, even if the distribution of each trial is not normal.
- Law of Large Numbers
- Provided the sample size is large enough, the sample mean (\bar{X}) will be "close" to the population mean (μ) with a specified level of probability.
- The larger the sample size, the closer the sample will represent the entire population.
- In practical terms, the sample \mathbf{N} must be \geq about 30.
- Allow us to make an inference - based upon the sample variable - about the population parameter

Types of Data

- Various measurement scales
- Nominal or categorical
- e.g., gender, race, blood type
- Dichotomous or binary (+/- or yes/no)
- e.g., death, pregnancy, postoperative MI, PONV
- Continuous or interval
- e.g., mean BP, serum glucose, 100 mm VAS pain score
- Ordinal or rank-ordered
- e.g., 5 point sedation score, 11 point NRS pain score
- We often collapse continuous data into dichotomous data using a "cut-point value" (<x and >x).

Measures of Central Tendency and Normal

 Distribution

Mean, median, and mode are measures of central tendency.
Mean is most sensitive to outliers.
Examine the histograms to assess the data distribution for normality: Diastolic blood pressure are normally distributed whereas triglycerides are skewed (to the left)
Parametric data are normally distributed versus non-parametric data are not.
Ordinal data are always non-parametric and should be described with a median (IQR).

McCrum-Gardner, E. Which is the correct statistical test to use? Br J Oral Maxillofac Surg, 2008;46(1), 38-41.

What Test Statistic to Used?

	Two Groups	Two Groups	Two Groups	Three or More Groups
Data	Unpaired	Paired	> 2 Measurements per study subject	Unpaired
Continuous (interval)	Independent t-test	Paired t-test	ANOVA with repeated measures	ANOVA
Ordinal or non-normally distributed continuous	Mann-Whitney U-test	Wilcoxon signed rank test	Friedman's test	Kruskal-Wallis test
Nominal or categorical	Chi-squared ($\chi 2$) test with 2×2 contingency table (Fisher's exact if any cell size is < 5)	McNemar's test	Cochran's Q test	Chi-squared ($x 2$) test with 2 X N contingency table (Fisher's exact if any cell size is < 5)

Glantz SA: Primer of Biostatistics, $7^{\text {th }}$ Edition, 2011

Hypothesis Testing I

- H_{0} : the null hypothesis: $\mu_{1}=\mu_{2}$
- H_{a} : the alternative hypothesis: $\mu_{1} \neq \mu_{2}$
- μ is population mean but could be ρ (proportion)
- Is the difference observed between study sample 1 and study sample 2 significant enough to reject the H_{0} and accept the H_{a} ?
- "We hypothesized that \qquad was more effective than \qquad in treating \qquad in \qquad ."
- "This study was undertaken to assess the efficacy of
\qquad in reducing the incidence of \qquad in \qquad ."
- Both statements are the alternative hypothesis.

Hypothesis Testing II

- Type I error
- Rejecting H_{0} when it is in fact true
- False positive study
- Probability of Type I error = $\boldsymbol{\alpha}$, usually set at 0.05
- Increased risk with repeated measurements
- Type II error
- Accepting H_{a} when it is in fact false
- False negative study
- Probability of Type II error = $\boldsymbol{\beta}$, usually set at 0.20
- \mathbf{P}-value = chance of a committing a Type I error or that the observed sample difference is due simply to chance and not the intervention/factor being studied
- Really no such thing as "very significant" ($p<0.01$) or "highly significant" ($p<0.001$): instead it's all-or-none

So You Reject the Null Hypothesis

- But is the observed difference clinically significant?
- Effect size for continuous data:
- Cohen's d = [mean group 1] - [mean group 2]

Pooled standard deviation

- 0 to $0.3 \rightarrow$ "small" effect
- 0.3 to $0.6 \rightarrow$ "medium" effect
- >0.6 to theoretically $\infty \rightarrow$ "large" effect
- Number needed to treat (NNT) for dichotomous data:
- NNT = $100 \div$ ARR (absolute risk reduction)
- Many online calculators for both Cohen's d and NNT
- http://www.uccs.edu/~faculty/lbecker/
- http://graphpad.com/quickcalcs/NNT1.cfm

http://www.uccs.edu/~faculty/lbecker/

Simple interface to determine effect size (Cohen's d)

http://graphpad.com/quickcalcs/NNT1.cfm

Simple interface to determine number needed to treat (NNT)

Sample Size and Power Analysis I

- As $N \rightarrow \infty$, any Δ becomes "statistically significant"
- Ethically must expose the least number of patients to the risks of the study or not being optimally treated
- Power analysis done to determine sample size (N)
- Power = 1 - $\boldsymbol{\beta}$: e.g., $1-0.20=0.8$ or 80%
- Need two things to determine needed sample size:

Minimal clinically significant difference in most important (primary) clinical outcome variable

- Expected sample variance (standard deviation) - can be derived from previous studies - but is often unknown
- Also need to know what test statistic is indicated!
- Student's t-test, Chi-square, etc.

Sample Size and Power Analysis II

- Slew of online options, including:
- http://www.epibiostat.ucsf.edu/biostat/sampsize.htm|\#proportions
- http://hedwig.mgh.harvard.edu/sample size/size.html
- http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize
- http://statpages.org/\#Power
- http://www.stat.ubc.ca/~rollin/stats/ssize/
- http://department.obg.cuhk.edu.hk/researchsupport/statstesthome.asp
- "An a priori sample size determination indicated that patients per group would be needed to have 90% power of detecting a pain score difference of 20 ± 20 (SD) at rest at 24 hours postoperatively with an $\alpha=0.05$."
- $\bar{X}_{1}=60$ on 100 mm VAS and $\bar{X}_{2}=80$ on 100 mm VAS
- The standard deviation (SD) for both groups = 20

Sample Size and Power Analysis III

PS 3.0 (Vanderbilt software)

University of Hong Kong

But despite power analysis of $\mathrm{N}=22$, remember Law of Large Numbers $(\mathrm{N} \geq 30)$.

Sample Size and Power Analysis IV

PS 3.0 (Vanderbilt software)

Description

 expermental and control subbects are equal with probability (power) 0.9 . The Type 1
error probability associate witt this test of this null hypothesis is 0.05 . We will
unce an
PS version 3.043
ooging is enabled

Copy to Log Exit
Copy to Log Exit

University of Hong Kong

But with a Chi-square with expected 60% versus 40% incidence: N must be 130 (!)

Confidence Intervals

- Sample value is only a single, variable estimate of the true value or parameter in the population.
- Confidence interval is the range of values within which we can be \qquad \% confident that this true value lies.
- Can be determined for a mean, proportion, or risk ratio
- $95 \% \mathrm{Cl}=\bar{X} \pm 1.96[\mathrm{SD} / \mathrm{Vn}]$: where \bar{X} is the mean and n is the sample size, 1.96 is $95 \% z$-score
- 90% z-score $=1.65$ and $99 \% ~ z$-score $=2.58$ so the $90 \% \mathrm{Cl}$ is narrower and the $99 \% \mathrm{Cl}$ is wider than the 95\% CI for the same random sample
- Larger the sample $\mathbf{N} \rightarrow$ narrower the $\mathbf{C l}$

RRR, ARR, CIs and P-Values All-In-One

Control Group	Treatment Group	Relative Risk Reduction (RRR) or Efficacy	$\mathbf{9 5 \% ~ C I ~ f o r ~ t h e ~ R R R ~}$	P-Value
$2 / 4$	$1 / 4$	50%	-174 to 92	0.53
$10 / 20$	$5 / 20$	50%	-14 to 79.5	0.19
$20 / 40$	$10 / 40$	50%	9.5 to 73.4	0.04
$50 / 100$	$25 / 100$	50%	26.8 to 66.4	0.0004
$500 / 1000$	$250 / 1000$	50%	43.5 to 55.9	<0.0001

- In all five examples, the ARR = 25\% and the NNT = 100/25 = $\mathbf{4}$
- Note that as N increases, the P -value becomes smaller.
- Note that as N increases, the $95 \% \mathrm{Cl}$ becomes narrower.
- But what are we to make of the lower and upper limits of $95 \% \mathrm{Cl}$?
- If positive study, look at lower limit and see if still clinically significant.
- If negative study, look at upper limit and see if still clinically significant.

Barratt, A., et al. Tips for learners of evidence-based medicine: 1. Relative risk reduction, absolute risk reduction and number needed to treat. CMAJ, 2004;171(4):353-358.

Sometimes it seems like...

Exposure to general anesthetics early in life can cause learning disabilities later in childhood...MAYBE.

Jim Borgman The Cincinnati Enquirer

```
Thoughts on Clinical Trials to Address the
Effects of Anesthesia on the Developing Brain
- editorial views
Ancothecidoggy 2008, 109755-61
                                    Capyizhte e 200k, the American Socicty of Ancothesidlogits, lmec Lippincout willimms & Willime, loc
Anesthesia and Neurodevelopment in Children
Time for an Answer?
Lena S. Sun, M.D., Guohua Li, M.D., Dr.P.H., Charles DiMaggio, Ph.D., M.P.H., Mary Byrne, Ph.D., M.P.H.,
Virginia Rauh, Sc.D.,M.S.W., Jeanne Brooks-Gunn, Ph.D., Ed.M.,Athina Kakavouli, M.D., Alastair Wood, M.D.,
Coinvestigators of the Pediatric Anesthesia Neurodevelopment Assessment (PANDA) Research Network
- EdITORIAL VIEWS
Amatheridggs 2008, 10991-4
```



```
Anesthesia and Outcome after Neonatal Surgery
The Role for Randomized Trials
Andrew J. Davidson, M.B., B.S., M.D., Mary Ellen McCann, M.D., M.P.H., Neil S. Morton, M.B., Ch.B., Paul S. Myles, M.D., M.P.H.
- EDITORIAL VIEWS
Ancothrecing% 2009, 10:1-3
```



```
Anesthetic Effects on the Developing Brain
Insights from Epidemiology
Tom G. Hansen, M.D., Ph.D., for the Danish Registry Study Group, Randall Flick, M.D., M.P.H.
```


Three Current Clinical Trials to Address the Effect of Anesthesia on the Developing Brain

- Retrospective cohort study of children who had anesthetic exposure before age 3 yrs , the period of synaptogenesis in humans, with prospective follow-up and direct assessment
- Sun LS, Li G, DiMaggio C, Byrne M, Rauh V, Brooks-Gun J, Kakavouli A, Wood A, Coinvestigators of the Pediatric Anesthesia Neurodevelopment Assessment (PANDA) Research Network: Anesthesia and neurodevelopment in children: Time for an answer. Anesthesiology 2008; 109:757-61
- Prospective randomized controlled trial of healthy infants undergoing inguinal herniorraphy receiving either spinal or general anesthesia, with an \mathbf{N} of 598 and IQ at age 5 yrs
- Davidson AJ, McCann ME, Morton NS, Myles PS: Anesthesia and outcome after neonatal surgery: The role for randomized trials. Anesthesiology 2008; 109:941-4
- Case-control study using very large Denmark national and Rochester (Olmstead County), MN population databases, with identification and control for a number of confounders
- Hansen TG, for the Danish Registry Study Group, Flick R: Anesthetic effects on the developing brain: Insights from epidemiology. Anesthesiology 2009; 110:1-3

Public Health Epidemiology

- The study of the distribution of diseases in populations and the factors that influence the occurrence of disease
- Epidemiology attempts to determine who is most prone to a particular disease or outcome; where the risk of the disease or outcome is highest; when the disease or outcome is most likely to occur; how much the risk is increased through exposure; and how many cases of the disease could be avoided by eliminating the exposure
- Target Population \rightarrow Study Population \rightarrow Study Sample
- A "web of causation" is almost always present.

BMJ: "Epidemiology for the Uninitiated" http://www.bmj.com/epidem/epid.html

Bradford Hill's Attributes of Causation

- Strength: stronger the association, less likely due to bias
- Consistency: persons, places, circumstances and times
- Specificity: one disease and one exposure relationship
- Temporality: which is the cart and which is the horse?
- Biological gradient: presence of a dose-response curve
- Biological plausibility: makes sense given what we know
- Coherence: congruent with the natural history of disease
- Experimentation: evidence derived from clinical trials
- Analogy: similar relationships shown with other $E \rightarrow D$

Clinical Epidemiology

- Application of epidemiological principles and methods to questions regarding diagnosis, prognosis, and therapy
- Randomized clinical trial is the prime example
- Pharmacoepidemiology
- Drug benefits versus adverse effects \rightarrow innately very applicable to anesthesiology \& pain medicine
- Often conducted after the drug has been marketed
- Clinical Outcomes and Comparative Effectiveness Research
- Epidemiologic methods plus clinical decision analysis and an economic evaluation \rightarrow to determine optimal treatment
- Patient-reported outcome of health-related quality of life
- Phase 2 Translational or Implementation Research (NIH/AHRQ)

Efficacy, Effectiveness versus Efficiency

- The evaluation of a new or existing healthcare intervention or treatment involves one or more of three steps:

- Efficacy

- Achieving its stated clinical goal
- Demonstrated under optimal circumstances in a prospective randomized controlled trial (RCT) - but the results are limited to the study subjects
(2) Effectiveness
- Producing greater benefit than harm
- Assessed under ordinary circumstances in the more general population often by way of an observational yet analytic longitudinal cohort study
© Efficiency
- Health status improvement for a given amount of resources (\$) expended
- Determined via a cost-effectiveness analysis or cost-utility analysis

Robinson \& Vetter (2009): Healthcare Economic Evaluation of Chronic Pain

Prevalence versus Incidence

- Incidence = \# of new outcomes or cases of the disease
- Prevalence = \# of existing outcomes or cases of the disease
- Proportion - ranges from 0\% to 100\%
- Point prevalence - at a specific point in time
- Period prevalence - over a more sustained time period
- The longer the duration of a condition or disease, intuitively, the greater the prevalence of the disease
- Prevalence \cong Incidence X Average Duration of Disease
- Common cold has a high incidence but a short duration \rightarrow low point prevalence
- Type II DM has a lower incidence but a long duration \rightarrow higher point prevalence

Cumulative Incidence

- Cumulative incidence is the most common way to estimate risk in the source population of interest
- Cumulative incidence (CI) = quotient of \# of new cases observed during the follow-up period \# of disease-free subjects at start of follow-up period
- A few examples:
- Postoperative emergence delirium with sevoflurane
- Persistent incisional pain 3 months after thoracotomy
- 3-year IQ deficit after receiving a neonatal anesthestic
- 5-year mortality after aprotinin versus tranexamic acid use
- 10-year myocardial infarction with $\mathrm{HDL}<40 \mathrm{mg} / \mathrm{dL}$

Basic Study Design Schematic

Hierarchy of Risk Estimation Studies

Modified from Kraemer, Lowe \& Kupfer, To Your Health:
How to Understand What Research Tells Us About Risk (2005), pg. 107

What's Wrong with an RCT?

Table 1 Comparison of cohort studies and randomised controlled trials

Item	Cohort studies	Randomised controlled trials
Populations studied	Diverse populations of patients who are observed in a range of settings	Highly selected populations recruited on the basis of detailed criteria and treated at selected sites
Allocation to the intervention	Based on decisions made by providers or patients	Based on chance and controlled by investigators
Outcomes	Can be defined after the intervention and can include rare or unexpected events	Primary outcomes are determined before patients are entered into study and are focused on predicted benefits and risks
Follow-up	Many cohort studies rely on existing experience (retrospective studies) and can provide an opportunity for long follow-up	Prospective studies; often have short follow-up because of costs and pressure to produce timely evidence
Analysis	Sophisticated multivariate techniques may be required to deal with confounding	Analysis is straightforward

- Highly restricted study subject eligibility based upon well-defined inclusion and exclusion criteria - can make study enrollment protracted
- Ethical and logistical constraints preclude using an RCT design to answer certain questions - often more complex, "real-world" challenges.
- Minorities and both age extremes - pediatric and geriatric patients - are conventionally excluded despite equal or greater clinical need.
- The results of an RCT often lack external validity and cannot be generalized to the more diverse population - with co-existing diseases.
- Simple randomization may not sufficiently control for confounding variables.

1. Cross-Sectional Study

- Examines the relationship between potential risk factors and outcomes during a short period of time ("snapshot")
- Potential risk factors or outcomes are not likely to change during the duration or time frame of the study.
- Cross-sectional study estimates the point prevalence.
- Valuable as pilot study to establish tentative association
- Generate hypotheses for more rigorous studies
- Examples: Co-existing depression among patients presenting to a chronic pain medicine clinic; positive pregnancy test among pediatric surgical outpatients

2. Cohort Study

- Longitudinal study of $\mathrm{E} \rightarrow \mathrm{D}$ risk relationship (forward)
- Single exposure with multiple subsequent outcomes
- At the outset of study all participants are outcome-free
- Natural or self-selection into risk categories
- During follow-up period participants are reassessed as to whether the outcome has occurred.
- Time-consuming and costly to perform if prospective
- Loss to follow-up and differential attrition can lead to bias (systematic error) and thus validity issues.
- An RCT represents an experimental form of cohort study.

What is Risk?

- Risk: The probability of an outcome within a population
- Likelihood a person in a population will have the outcome
- Risk is a number between 0% and 100% or 0 and 1.0
- The specified health outcome is binary (+/- or yes/no).
- The study population must be clearly defined.
- While well-defined, this population cannot be known: thus a representative study sample is selected and an estimated risk in this study sample is determined.
- Risk estimate is for a specific and logical risk time period, e.g., 24 hours postoperatively, 5 year follow-up.
- Efficacy $=\left(\right.$ risk $_{\text {control }}-$ risk $\left._{\text {intervention }}\right) /\left(\right.$ risk $\left._{\text {control }}\right)=$ RRR

What is a Risk Ratio?

- A ratio is the quotient of two numbers
- Risk ratio $=$ Risk in group $\mathrm{A} \div$ Risk in Group B
- Risk ratio ranges from 0 to infinity (∞) with $1=$ null value
- In most epidemiological studies Group A and Group B differ by way of a self-selected or natural series of events
- Whereas in a randomized controlled trial (RCT) Group A and Group B differ in a randomized yet very controlled manner with each group receiving a specific treatment
- Risk ratio allows for a comparison of the risk of the disease or outcome in Group A versus Group B.
- More appropriate for high incidence conditions

2×2 Table

	Drug X	Drug Y	Total
Outcome (+)	A	B	A+B
Outcome (-)	C	D	C+D
Total	A + C	B + D	A + B + C+ D

Frequency or Proportion for Drug $X=A /(A+C)$ and Frequency or Proportion for Drug $Y=B /(B+D)$
Risk for Drug $\mathbf{X}=A /(A+C)$ and Risk for Drug $Y=B /(B+D)$
Risk Ratio $=[\mathrm{A} /(\mathrm{A}+\mathrm{C})] \div[\mathrm{B} /(\mathrm{B}+\mathrm{D})]$

OpenEpi 2.3.1: www.openepi.com

Menu \rightarrow Counts Folder \rightarrow Two by Two Table: 2X2 Contingency Table

Nurse-Controlled Analgesia

	Neonate	Older 1 Month	Total
Serious Adverse Event (+)	13	26	39
Serious Adverse Event (-)	497	9543	10049
Total	510	9569	10079

Risk for Neonate $=13 / 510=0.025$ or 2.5%
Risk for Older 1 Month $=26 / 9569=0.0027$ or 0.27%
Risk Ratio or Relative Risk $=0.025 / 0.0027=9.4(4.8,18.2)$
Howard et al., Nurse-Controlled Analgesia (NCA) Following Major Surgery in 10000 Patients in a Children's Hospital, Pediatric Anesthesia 2010;20:126-134

Risk and Risk Reduction: Definitions

- Event rate
- Number of people experiencing an event as a proportion of the number of people in the sample or population
- Relative risk reduction
- Difference in event rates between 2 groups, expressed as a proportion of the event rate in the untreated group; usually constant across populations with different risks
- Absolute risk reduction
- Arithmetic difference between 2 event rates; varies with the underlying risk of an event in the individual patient

Barratt, A., et al. Tips for learners of evidence-based medicine: 1. Relative risk reduction, absolute risk reduction and number needed to treat. CMAJ, 2004;171(4):353-358

Risk Difference and the Number Needed to Treat

- Risk Difference or Cumulative Incidence Difference (CID) = $\mathrm{Cl}_{1}-\mathrm{Cl}_{0} \rightarrow$ with $1=$ those exposed and $0=$ unexposed
- Absolute Risk Reduction (ARR) in clinical epidemiology
- Number Needed to Treat (NNT) $=1 /\left(\mathrm{Cl}_{1}-\mathrm{Cl}_{0}\right)=1 /$ ARR
- Number Needed to Harm (NNH) in the case of an untoward event (stroke, MI, death) or an adverse side effect (respiratory depression, persistent paresthesia)
- Far more germane than a simple p-value

Basic Example of RRR, ARR, NNT

Barratt, A., et al. Tips for learners of evidencebased medicine: 1. Relative risk reduction, absolute risk reduction and number needed to treat. CMAJ, 2004;171(4):353-358.

- High risk group

RRR $=[40 \%-30 \%] / 40 \%=25 \%$
ARR $=40 \%-30 \%=10 \%$
NNT = 100/10 = $\mathbf{1 0}$

- Low risk group
RRR = [10\% - 7.5\%] /10\% = 25\%

$$
\text { ARR }=10 \%-7.5 \%=2.5 \%
$$

$$
\text { NNT }=100 / 2.5=40
$$

- Lower the event rate control group, larger the difference between RRR and ARR
- RRR \rightarrow efficacy

Hypothesis Testing

- In an RCT versus in a prospective cohort study
- RCT Ho: $P_{1}-P_{0}=0$ or $P_{1}=P_{0}$ and $H a: P_{1}-P_{0} \neq 0$ or $P_{1} \neq P_{0}$
- $\mathbf{P}=$ proportion of the study group with the outcome
- Cohort Study Ho: $\mathrm{RR}=\mathrm{Cl}_{1} / \mathrm{Cl}_{0}=1$ and $\mathrm{Ha}: \mathrm{RR}=\mathrm{Cl}_{1} / \mathrm{Cl}_{0} \neq 1$
- $\mathbf{R R}=$ risk ratio
- $\mathbf{C I}=$ cumulative incidence of the disease or outcome in cohort
- A cohort study and an RCT are essentially asking the same questions: what is the effect of the exposure (treatment) on the disease (outcome) and is it significant?

Postoperative Nausea \& Vomiting

	Clonidine Caudal $(2 \mathrm{mcg} / \mathrm{kg})$	Hydromorphone Caudal $(10 \mathrm{mcg} / \mathrm{kg})$
$(+)$ PONV	$10(50 \%$ incidence $)$	$18(90 \%$ incidence $)$
$(-)$ PONV	10	2
Total	20	20
PONV Risk	$10 \div 20=0.5$	$18 \div 20=0.9$

Fisher's exact test $\mathbf{P}=0.014$ (because a cell size ≤ 5)
Risk ratio $(\mathbf{R R})=0.9 \div 0.5=1.8 \rightarrow$ PONV 1.8 times as likely
Absolute risk reduction (ARR) $=0.9-0.5=0.4$ or 40\%
Number needed to treat (NNT) $=1 \div 0.4=2.5$ patients

Ketamine and Hallucinations

- Incidence and risk of hallucinations in awake or sedated patients not receiving a benzodiazepine was high:
- Risk of 10.43% versus risk of $5.70 \% \rightarrow 4.73 \%$ risk difference
- Risk ratio of 2.32 ($95 \% \mathrm{Cl}, 1.09$ - 4.92)
- Number needed to harm $=1 \div(0.1043-0.057)=21$
- In anesthetized patients the incidence of hallucinations was low and independent of benzodiazepine administration:
- Risk of 0.76% versus risk of $0.41 \% \rightarrow 0.35 \%$ risk difference
- Risk ratio of 1.49 but not significant ($95 \% \mathrm{Cl}, 0.18$ - 12.6)
- Number needed to harm $=1 \div(0.0035)=286$

Elia \& Tramer, Pain 2005;113:61-70

3. Case-Control Study

- Is the observed outcome related to the exposure?
- Outcome or disease is observed first: $\mathrm{E} \leftarrow \mathrm{D}$ (backward)
- Single outcome with multiple previous exposures
- Cases are subjects with the outcome of interest
- Controls are subjects without the outcome of interest
- Controls sampled from the same source population but must be sampled independently of their exposure status
- Less costly and less time-consuming than cohort study
- Efficient for rare outcomes
- Cannot generate an overall risk or rate estimate but instead an odds ratio is determined and not a risk ratio

Probability versus Odds

- Probability (P)

- Number of times an outcome occurs out of the total \# of attempts
- Ranges from 0 to 1
- "Epi Beauty" won 30 of 50 races
- P of winning is $30 / 50=0.60$
- Odds
- $P \div(1-P)=$ probability of winning \div probability of losing
- Ranges from 0 to infinity (∞)
- Horse race: Odds of winning $=0.6 /(1-0.6)=0.6 / 0.4=1.5$ to 1
- Odds Ratio
- Ratio of the odds of the disease or clinical outcome with the exposure versus without the exposure

2 X 2 Table Revisited

	Outcome（＋） Cases with Disease	Outcome（－） （⿳⺈⿴囗十一日｜ w／o Disease
Exposure（＋）	A	B
Exposure（－）	C	D

－A and C are selected based on disease（outcome）status
－We cannot calculate the rate or risk of getting the disease（outcome） because we do not know the denominator（size of study population）
－Odds＝number of cases with disease \div number of non－cases of disease
－Odds with exposure $=(A / B)$ and odds without exposure $=(C / D)$
－Odds ratio with versus without exposure $=(A / B) \div(C / D)=A D / B C$

Perioperative Questions That Could Be Addressed by a Case－Control Study

－Rare outcomes with several possible exposure risk factors
－What are the risk factors for malignant hyperthermia？
－Is epidural catheter placement under general anesthesia a risk factor for postoperative paraplegia？
－Does pulse oximetry and／or end－tidal capnography decrease the risk of perioperative brain anoxia？
－Does neonatal anesthesia cause later cognitive deficits？
－Is nurse or parent proxy－patient controlled analgesia （PCA）a risk factor for respiratory depression or arrest？
－Examples of fertile ground for case－control studies：
－ASA Closed Claims Project
－Pediatric Perioperative Cardiac Arrest（POCA）Registry
－Multicenter Perioperative Outcomes Group（MPOG）

Patient-Controlled Analgesia by Proxy

Threshold Event (TE) $=\downarrow \mathrm{O} 2$ saturation, bradypnea, \& oversedation

	TE (+)	TE (-)	Total
PCA-Proxy	21	124	145
PCA w/o Proxy	37	120	157

X^{2} test $\mathrm{P} \leq 0.015$ versus X^{2} test $P=0.045$ actual
Rescue Event (RE) = naloxone, airway intervention, \& escalation of care (to ICU)

	RE (+)	RE (-)	Total
PCA-Proxy	11	134	145
PCA w/o Proxy	1	156	157

Exposure odds ratio = $(11 \times 156) \div(134 \times 1)=$ 12.8 (1.6-100.0)
X^{2} test $P \leq 0.015$
X^{2} test $P=0.005$ actual

Two Other Types of Study Design

- Nested case-control study

- A case-control study that is set or nested within an existing cohort study or even an intervention study like an RCT
- Greatest advantage of nested study is that cases and controls come from the same population, which avoids selection bias.

- Cluster randomized trial

- Study subjects in an intervention study naturally occur in separate groups or clusters (e.g., geographic location)
- Rather than randomize individuals to treatment, randomize based upon the clusters (e.g., hospital, surgical service)
- Often applied for convenience or out of necessity
- Deceptively simple to construct and data analysis is complex

Sources of Error in Study Design

- Random Error: simple variability in the sample data
- Systematic Error or Bias: 3 basic types
© Selection Bias
- Individuals have different probabilities of being in the study sample based upon relevant characteristics (E and D)
- Differential loss to follow-up - including in an RCT
(2) Information Bias
- Misclassification of exposure and/or disease (outcome) status, validity of diagnosis as measured by sensitivity and specificity
- Observer bias is mitigated via blinding (masking) in an RCT

3 Confounding

- Effect of the exposure of interest is mixed together with and confused by the effect of one or more other variables

Random Error versus Systematic Error

Estimate (variable) $=$ parameter + random error + systematic error

Study Size
\longrightarrow
Figure 5-1. Relation of systematic error and random error to study size.
As N increases, the SEM decreases and thus $95 \% \mathrm{Cl}$ becomes narrower

Example of Confounding

	CAD Present	CAD Absent
Vitamin E Supplement (+)	50	500
Vitamin E Supplement (-)	66	384

1000 subjects, age $50-55$ years, followed for 15 years:
Risk with vitamin E supplement use $=50 / 550=0.09$ (9\%)
Risk w/o vitamin E supplement use $=66 / 450=0.15$ (15\%)
Risk ratio $=0.09 / 0.15=0.62 ; \mathbf{P}=0.008$
Risk odds ratio (crude) $=(50 \times 384) \div(500 \times 66)=0.58$
Vitamin E appears cardio-protective...but is it really?

Example of Confounding (Cont'd)

Smokers

	CAD Present	CAD Absent
Vitamin E Supplement (+)	10	40
Vitamin E Supplement (-)	50	200

Non-Smokers

	CAD Present	CAD Absent
Vitamin E Supplement (+)	40	460
Vitamin E Supplement (-)	16	184

\rightarrow Stratum risk odds ratio $=$
$(10 \times 200) \div(40 \times 50)=1.0$
$P=0.85$
There is no association
between vitamin E supplement
and CAD after controlling for
the effects of smoking.
\rightarrow Stratum risk odds ratio
$(40 \times 184) \div(460 \times 16)=1.0$
$P=0.88$

Fitzmaurice, Confused by Confounding? Nutrition 2003;19:189-191
Stratum-specific odds ratios are similar in magnitude

Interaction versus Confounding

- Confounding (from the Latin confundere meaning "to mix together"): an undesirable distortion of the association between an exposure (E) and disease (D) brought about by extraneous factors (C1, C2, etc).
- Interaction: "effect modification" whereby the effect on the response (y) of one explanatory variable (x) depends on the level of one or more other explanatory variables
- Two-way or two factor model: $\mathrm{y}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}_{1}+\mathrm{b}_{2} \mathrm{x}_{2}+\mathrm{b}_{3} \mathrm{x}_{1} \mathrm{x}_{2}$ - The joint effect of two or more explanatory variables is larger or smaller than the sum of the parts.
- $b_{3} x_{1} x_{2}=$ interaction term tested with $H_{0}: b_{3}=0$
- Synergism (from the Greek sunergos meaning "working together") is a type of biological interaction.

Interaction versus Confounding

Interaction

- Smoking (C) amplifies the risk of thromboembolic disease (D) with oral contraceptive use (E).
- Interaction exists between the interdependent risk factors of smoking (C) and oral contraceptive use (E).
- This effect modification is biological synergism.

Confounding

- Smoking (C) confuses the relationship between alcohol consumption (E) and lung cancer (D).
- Since alcohol and smoking are related, and smoking (C) is an independent risk factor for lung cancer (D).
- This extraneous factor results in confounding.

Potential Confounder

- For a variable to be considered a confounder of an association, it must satisfy three basic conditions:

1. The potential confounder must be associated with the disease or outcome of interest.
2. The potential confounder must be associated with the exposure of interest.
3. The potential confounder must not be an "intermediate" variable in the casual relation between the exposure and disease or outcome (i.e., it is not part of the "web of causation").

Basic Ways to Reduce Confounding

- Randomization
- Restriction
- Matching
- Weighting
- Stratification
- Regression
- Propensity scores
- Instrumental variables
- Analysis of covariance (ANCOVA)

Techniques to Adjust for Confounding in Observational Studies

Table 1	Techniques to adjust for confounding in observational studies	
Technique	Strengths	Weaknesses
Matching	Simple Balances confounding factors	Difficulty finding matches Possibility of overmatching Requires strong understanding of confounders involved Inability to examine effect of confounders used for matching
Stratification	Simple Ability to see effect modification	Difficult to interpret with many subgroups Requires strong understanding of confounders involved
Multivariable adjustment	Can include many confounders Can examine effects of individual confounders Ability to examine multilevel effects	More complicated analysis Potentially poor fit of model Possibility of missing effect modification
Propensity scores	Single number generated for simpler matching	Potentially matching very different patients with similar scores
Instrumental variables	Ability to assess for bias between groups	Only single variable needed
	Ability to look at questions where other types of adjustment can not be easily accomplished to ensure variable is not at all associated	with the outcome

Wunsch, Linde-Zwirble \& Angus, Journal of Critical Care 2006;21:1-7

Randomization

- Randomization is only applicable in an experimental study in which exposure is assigned or controlled.
- With a large enough sample size (N), randomization produces two or more study groups with nearly the same distribution of the study subject (patient) characteristics that are plausible confounding variables.
- Randomization also reduces confounding by any other unidentified factors or variables.
- But randomization is not always feasible or ethical, especially in retrospective studies or longitudinal observational studies.

Restriction

- Often applied in addition to randomization
- Study inclusion and even more so study exclusion criteria control for the identified confounders.
- Trade-off is that study findings are assuredly valid only for the restricted study population from which the study sample is drawn.
- This external validity issue must be considered in generalizing findings to a more diverse population.
- One of the challenges of applying evidence-based medicine in one's daily practice: Are these study findings applicable to my given patient?

Matching

- Individuals from the two study groups are paired based upon the presumed confounding variables.
- Allows for even distribution of potential confounders
- Most often applied in case-control studies
- Age, sex, race are common matching variables.
- Expensive and time consuming
- Reduces the power of the study because not all study subjects can be matched
- Does not assuredly control for other confounders and in fact can introduce hidden confounding
- Restriction in an RCT is a "loose" form of matching.

Assessing for Confounding in RCT I

- In almost all clinical trials, the study groups are compared using parametric or non-parametric statistics for any differences in baseline characteristics:
- Demographics
- Anthropometrics
- Other pertinent clinical variables
- Absence of "statistically significant" difference is often taken to indicate study group comparability and a lack of confounding by these covariates.
- More conservative \mathbf{p}-value of $\mathbf{0 . 2 0}$ may be better
- Residual cofounding may be present despite p>0.05
- The results of a statistical test for significant difference "the almighty p-value" - depend on the sample size (N):
- As $N \rightarrow \infty$, any observed difference achieves a $p<0.05$
- With a larger N , there is a greater likelihood of baseline difference

Assessing for Confounding in RCT II

- Ho: $\rho_{1}=\rho_{2}$ with $\rho=$ population proportion (parameter) or $\mu_{1}=\mu_{2}$ with $\mu=$ population mean (parameter) Ho rejected if $p<0.05$
- But in assessing for confounding in an RCT our required assumption or the Ho: Any imbalance between the study groups in a baseline clinical feature or risk factor is simply due to chance and not randomization
- But successful randomized allocation requires that any observed imbalance must be due to chance
- The Ho thus cannot be rejected (!) even with a $p<0.05$
- A statistically significant imbalance in a baseline risk factor in and of itself does not reflect the amount of confounding \rightarrow instead we need to determine how much of an effect does the risk factor have on the outcome?

Stratification

- One of the most effective techniques for adjusting for the effects of confounding in an analysis
- Association is evaluated within distinct groups, or strata, comprised of individuals who are relatively homogenous in terms of the confounding variable.
- A crude overall estimate of association is adjusted for the confounding variables.
- Generated by taking a weighted average of the stratumspecific estimates of association.
- Requires stratum-specific estimates of association to be uniform across the levels of the potential confounder. Otherwise stratum-specific estimates should be reported.

Assessing for Confounding in RCT III

- Better approach for dichotomous (binary) outcomes:

1. Control for the confounder using conventional study design with study subject randomization and restriction
2. Determine the potentially confounded crude results
3. Stratify the results on the potential confounding variables (e.g., age and gender) and then determine pooled Mantel-Haenszel adjusted results
4. Compare the crude results with the adjusted results
5. If the two estimates are comparable \rightarrow conclude that confounding is not present
6. If two estimates are "meaningfully different" (> 10\%) \rightarrow conclude that confounding is present

Cochran-Mantel-Haenszel Method

- One of the most widely used methods for combining or pooling stratum-specific estimates of association
- Generates an adjusted estimate of association (odds ratio)
- Can also generate an adjusted estimate of risk ratio

	Disease or Outcome $(+)$	Disease or Outcome $(-)$
Exposure (+)	$\mathbf{a}_{\mathbf{j}}$	$\mathbf{b}_{\mathbf{j}}$
Exposure (-)	$\mathbf{c}_{\mathbf{j}}$	$\mathbf{d}_{\mathbf{j}}$

$\hat{O} R_{M H}=\sum_{j=1}^{K} \frac{a_{j} d_{j}}{n_{j}} / \sum_{j=1}^{K} \frac{b_{j} c_{j}}{n_{j}}$
$\mathrm{n}_{\mathrm{j}}=$ total number of observations in the $j^{\text {th }}$ table $=\left(a_{j}+b_{j}+c_{j}+d_{j}\right)$
j levels of the stratification variable (e.g., two strata for male and female) Create a series of stratum-specific 2X2 contingency tables j total number of 2×2 contingency tables

Example of Mantel-Haenszel Method I

Entire Cohort

	CAD (+)	CAD (-)
Vitamin E Supplement (+)	50	501
Vitamin E Supplement (-)	65	384

Smokers

	CAD (+)	CAD (-)
Vitamin E Supplement (+)	11	40
Vitamin E Supplement (-)	49	200

Non-Smokers

	CAD (+)	CAD (-)
Vitamin E Supplement (+)	39	461
Vitamin E Supplement (-)	16	184

MH adjusted odds ratio $=1.03$
($95 \% \mathrm{Cl}, 0.64$ - 1.65)
\rightarrow Stratum odds ratio $=1.12$ ($95 \% \mathrm{Cl}, 0.54$ - 2.34)
INTERACTION is not present between vitamin E supplement and smoking because the stratum-specific odds ratios are not significantly different.
\rightarrow Stratum odds ratio $=0.97$
($95 \% \mathrm{Cl}, 0.53$ - 1.78)

Example of Mantel-Haenszel Method II

Smoking and Pregnancy Outcome among African-American and White Women: The Risk for a Small for Gestational Age (SGA) Newborn

African-Americans

	SGA (+)	SGA (-)
Smoked during pregnancy (+)	21	180
Smoked during pregnancy (-)	64	702

Whites

	SGA (+)	SGA (-)
Smoked during pregnancy (+)	84	337
Smoked during pregnancy (-)	41	615

Modified from Savitz et al., Epidemiology 2001;12:636-642
 (95\% CI, 1.89 - 3.45)
\rightarrow Stratum odds ratio $=1.28$ ($95 \% \mathrm{Cl}, 0.76$ - 2.15)

INTERACTION may be present between race and smoking b/c the stratum-specific odds ratios are significantly different
\rightarrow Stratum odds ratio $=3.74$ (95\% CI, 2.52 - 5.56)

Regression

- When there are many potential confounding variables, (k), the resulting strata $\left(\mathbf{2}^{\mathrm{k}}\right)$ have too few individuals to generate a precise estimate of association.
- Alternatively, estimate the exposure effect of interest using a regression model for the dependence of the disease (outcome) on the primary exposure and any potential confounding variables.
- Assess the effect of the use of vitamin E supplements on CAD, while controlling for or adjusting for not only smoking history but also other potential confounders (e.g., age, BMI, physical activity, LDL, HgbA1C)
- Requires assumptions be met and a larger sample size and does not ensure confounder distributions are comparable
Fitzmaurice, Confounding: Regression adjustment, Nutrition 2006;22:581-583

Methods of Regression I

- Simple linear regression: single continuous outcome variable (y) and a single predictor variable (x)
- $y=b_{1} x_{1}+b_{0}+\varepsilon$
- $b_{1}=$ slope and $b_{0}=$ intercept and $\varepsilon=\operatorname{error}(\Delta y)$
- Multiple linear regression: single continuous outcome (y) but instead multiple predictor variables ($\mathrm{x}_{1,2,3, \ldots \mathrm{k}}$)
- $y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+\ldots+b_{k} x_{k}+\varepsilon$
- The predictor variables ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots$) can be continuous (age), ordinal (ASA status), and/or dichotomous (sex) in a linear regression model.
- But you need at least 10 observations (study subjects) for each x variable placed in the model plus other assumptions must be met

Three Studies Addressing the Effect of Maternal Fish Intake and Smoking on the Child Neurodevelopment

- After adjusting for 28 potential confounders, maternal seafood intake during pregnancy of < 340 gm per week was associated with increased risk of their children being in the lowest quartile for verbal intelligence quotient (IQ): No seafood consumption, odds ratio [OR] 1•48, 95\% Cl 1-16-1•90 ($\mathrm{N}=11,875$).
- Hibblen JR et al: Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): An observational cohort study. Lancet 2007; 369:578-85.
- Using multivariate linear regression, in 4 year old children breast-fed for <6 months, maternal fish intakes of > 2-3 times/week were associated with significantly higher scores on several McCarthy Scales of Children's Abilities (MSCA) subscales compared with intakes < 1 time/week ($\mathrm{N}=392$).
- Mendez MA et al: Maternal fish and other seafood intakes during pregnancy and child neurodevelopment at age 4 years. Public Health Nutrition 2008; 12(10):1702-1710.
- Using multivariate linear regression, maternal smoking during pregnancy (in cigs/day) was associated with a decrease in child's MSCA global cognitive score [$\beta=0.60$, ($95 \% \mathrm{Cl}: 1.10 ; 0.09$)] in offspring at age 4 years ($\mathrm{N}=420$).
- Julvez Jet al: Maternal smoking habits and cognitive development of children at age 4 years in a populationbased birth cohort. International Journal of Epidemiology 2007;36(4):825-32.

Linear regression may not always work

- Simple and multiple linear regression is applied when the outcome variable (y) is continuous.
- But what happens if:

1. The outcome variable (y) is not linearly related to the predictor variables (x)?
2. The outcome variable (y) is risk that ranges from 0 to 1 ?
3. The outcome variable (y) is not continuous but instead dichotomous/binary ($0=$ no, $1=$ yes) like risk of death?

- Then you apply a logistic regression model...

Logistic Function

Methods of Regression II

- Simple logistic regression: single binary ($1=$ yes $/ 0=n o$) outcome variable (y) and a single predictor variable (x)
- $p=$ probability of outcome of interest; odds $=p \div(1-p)$
- $\operatorname{logit}(\mathrm{p})=\log _{e}(\mathrm{odds})=\log _{e}[\mathrm{p} /(1-\mathrm{p})]=\log _{e}(\mathrm{p})-\log _{e}(1-\mathrm{p})$
- $\operatorname{logit}(p)=\log _{e}[p /(1-p)]=\mathbf{b}_{\mathbf{0}}+\mathbf{b}_{\mathbf{1}} \mathbf{x}_{\mathbf{1}}$
- odds ratio $=\log _{e}\left(\right.$ odds $_{1} /$ odds $\left._{2}\right)=\log _{e}\left(\right.$ odds $\left._{1}\right)-\log _{e}\left(\right.$ odds $\left._{2}\right)$
- odds ratio (with $X_{1}=1$ compared to $X_{1}=0$) $=\mathbf{e}^{\mathbf{b 0 + b} \times 1}$
- Multiple logistic regression: binary outcome ($1=y e s / 0=n o$) but instead multiple predictor variables ($\mathrm{x}_{1,2}, 3 . \ldots \mathrm{k}$)
$-\operatorname{logit}(p)=\log _{e}[p /(1-p)]=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+\ldots+b_{k} x_{k}$
- odds ratio $=\mathbf{e}^{\mathrm{b} 0+\mathrm{b} 1 \times 1+\mathrm{b} 2 \times 2+\mathrm{b} \times 3 \times 3+\ldots+\text { bkxk }}$
- Ordinal regression: rank-ordered outcome (1, 2, 3, 4, 5)
- Cox proportional hazards: time to an event of interest

Example of Regression Adjustment

Maternal Diet and the Risk of Hypospadias and Cryptorchidism in the Offspring
Controlling for maternal age, parity, education, \& GYN disease; paternal GU disease \& use of pesticides

Factor	CRYPT Crude	CRYPT Adjust	HYPOSPAD Crude	HYPOSPAD Adjust
Liver \& other offal (>1/week)	$3.2(0.9,10.7)$	$5.2(1.3,14.2)$		
Fish (>1/week)			$1.6(0.8,3.2)$	$\mathbf{2 . 3}(1.0,5.3)$
Mostly market fruit			$3.5(1.0,11.9)$	$5.1(1.3,19.8)$
Fried foods	$\mathbf{2 . 0 (1 . 0 , 3 . 8)}$	$1.5(0.7,3.2)$		
Smoked foods	$\mathbf{2 . 0 (1 . 1 , 3 . 9)}$	$\mathbf{2 . 5 (1 . 2 , 5 . 3)}$		
Plastic food boxes/containers			$\mathbf{0 . 4 (0 . 2 , 0 . 9)}$	$0.5(0.2,1.2)$
Mineral supplement			$\mathbf{0 . 5 (0 . 3 , 1 . 0)}$	$0.5(0.2,1.1)$

"This study suggests that some maternal dietary factors may play a role in the development of congenital defects of the male reproductive tract. In particular, our data indicate that further research may be warranted on the endocrine-disrupting effects resulting from the bioaccumulation of contaminants (fish, liver), pesticides (marketed fruit, wine) and/or potentially toxic food components (smoked products, wine, liver)."

Giordano et al., Paediatric and Perinatal Epidemiology 2008;22:249-260

Cohort Covariate Imbalances

Modified from Perkins et al., Pharmacoepidemiology and Drug Safety 2000;9:94
Cavuto, Bravi, Grassi \& Apolone, Drug Development Research 2006;67:208-216

Propensity Scores

- Propensity score $=$ the probability (0 to 1) that a subject would have been treated given the individual's covariates
- Intended to reduce selection bias and increase precision in non-randomized large-scale observational studies
- Collapse all of the background characteristics ($\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots ., \mathrm{Xp}$) or confounding covariates into a single composite value
- Propensity score (PS) is generated using logistic regression
- $P S=P\left(Z=1 \mid\left(X_{1}, X_{2}, \ldots ., X p\right)\right\} Z=1$ if exposed, $Z=0$ if not exposed
- PS $=\frac{\exp \left(b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+\ldots+b_{k} x_{k}\right)}{1+\exp \left(b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+\ldots+b_{k} x_{k}\right)}$
- Predictive strength: C-statistic from ROC curve $=0.5$ to 1.0

Rubin, Annals of Internal Medicine 1997;127:757-763
D'Agostino, Statistics in Medicine 1998;17:2265-2281
Fitzmaurice, Confounding: Propensity score adjustment Nutrition 2006;22:1214-1216

Propensity Scores

- Balancing scores ("apples to oranges" \rightarrow "apples to apples")
- Can only adjust for observed confounding covariates
- Applicable for large-scale patient registry-based clinical cohort studies of longitudinal outcomes
- Creates a "quasi-randomized study" \rightarrow equal propensity score \rightarrow equal likelihood to be treated or to be a control
- Requires large sample sizes to assure balance
- Requires adequate overlap of propensity distributions
- Randomization tends to balance the unmeasured covariates
- Propensity score modeling is thus not intended for RCTs, but propensity scores can possibly be used for ANCOVA

Non-Overlap of Propensity Scores

The non-overlap of the exposure propensity score distribution among treated and untreated study subjects makes the use of propensity scores questionable.

In this example subjects with very low propensity score are never treated while subjects with very high propensity score are all treated.

[^0]
Example of Use Propensity Scores

Ramachandran SK, Nafiu OO, Ghaferi A, Tremper KK, Shanks A, Kheterpal S. Independent predictors and outcomes of unanticipated early postoperative tracheal intubation after nonemergent, noncardiac surgery. Anesthesiology. 2011 Jul;115(1):44-53.

Retrospective observational case-control study undertaken to identify the independent predictors of unanticipated early postoperative respiratory failure requiring tracheal intubation after nonemergent, noncardiac surgery.
Hypothesized that unanticipated early postoperative respiratory failure is associated with a risk-adjusted increase in mortality.
Univariate crude odds ratios were all significant but confounding very likely present and interaction possibly present.

Baseline characteristics of patients with no unanticipated early postoperative intubation (No UEPI) vs. patients with unanticipated early postoperative intubation (UEPI)

Example of Use Propensity Scores

Ramachandran SK, Nafiu OO, Ghaferi A, Tremper KK, Shanks A, Kheterpal S. Independent predictors and outcomes of unanticipated early postoperative tracheal intubation after nonemergent, noncardiac surgery. Anesthesiology. 2011 Jul;115(1):44-53.

Patients from the derivation cohort were risk-matched based on the propensity score of a logistic regression model.

Matching was performed on a one-to-one basis for the outcome variable UEPI, and all predictor univariates were reassessed after matching to assure sufficient matching (a $p>0.05$).

This controlled for confounding.

	No UEPI (N - 979)	UEPI ($\mathrm{N}=979$)	P Value
Male sex	462 (47\%)	474 (48\%)	0.587
White race	757 (83\%)	${ }^{752}$ (82\%)	0.609
Alcohol use	17(1.7\%)	17(17\%)	1.000
Current smoker	252 (26\%)	252 (26\%)	1.000
Oyspoea	- $181(19 \%)$	181((19\%)	1.000
COPD	$97(9.9 \%)$	97(9.9\%)	${ }^{1.000}$
Preumonia	2(0.2\%)	5(0.5\%)	0.288
Diabetes, no	786 (80\%)	786 (80\%)	Reference
Diabetes, orally treated	- $128(13 \%)$	${ }^{128(13 \%)}$	1.000
Diabetes, insulin treated History of CAD	-65(6.6\%)	65 (8.6\%)	1.000 1 1.000
Concurrent $C A D$ event	21(2.1\%)	$\left.{ }^{175(18)} 15 \%\right)$	${ }_{0}$
Congestive heart tailure	3(0.3\%)	3(0.3\%)	1.000
Hypertension	703 (72\%)	703 (72\%)	1.000
Liver function	14(1.4\%)	14(1.4\%)	1.000
Renal falure	$\left.{ }^{14} 71.4 \%\right)$	14(1.4\%)	1.000
	$128(136)$	10(1.0\%)	0.465 0.107
Cancer	34 (3.5\%)	34(3.5\%)	${ }_{1.000}$
Prolonged hospitalization	271(28\%)	$271(28 \%)$	1.000
Steroid use	- $24.4 .6 \%)$	${ }^{49} \mathbf{2 9}(2.0 \%)$	0.672 1000 1
Transtusion	240.0.0.0)	24,	${ }_{1} 1.000$
Sepsis	44(4.5\%)	$44(4.5 \%)$	1.000
Prior operation <30 days	16(1.8\%)	18(2.1\%)	0.668
Very-Iow-risk procedures	$149(15 \%)$ 520 50	144 (15\%)	Reference
Medium-isk procedures	$520(12 \%)$ 119	- 119 (12\%)	1.000
High-risk procedures	191 (20\%)	191 (20\%)	
${ }_{\text {AMe }}^{\text {BMI (kg/m) }}$	${ }_{66.7}^{29.3} \pm 8.2 .2$	29.3 ± 8.7 66.7 ± 13.9	0.848 1.000
Mortalit, 30-day all-cause	$66.7 \pm \pm 13.9$ 19	$66.7 \pm$ (13.9 149 $15 \%)$	1.000 <0.001
			9.1 (5.6-14.8)

Characteristics of the matched cohort (subset) of patients with No UEPI vs. patients with UEPI

Example of Use Propensity Scores

Ramachandran SK, Nafiu OO, Ghaferi A, Tremper KK, Shanks A, Kheterpal S. Independent predictors and outcomes of unanticipated early postoperative tracheal intubation after nonemergent, noncardiac surgery. Anesthesiology. 2011 Jul;115(1):44-53

Table 2. Independent Risk Factors for Unanticipated Early Postoperative Intubation-Derivation Cohort

Risk Factor	P Value	Adjusted Odds Ratio (95\% CI)
BMI $<18.5 \mathrm{~kg} / \mathrm{m}^{2}$	<0.001	1.5 (1.3-1.9)
BMI $\geq 40.0 \mathrm{~kg} / \mathrm{m}^{2}$	0.011	1.3 (1.1-1.6)
Alcohol use	0.004	1.4 (1.1-1.8)
Current smoker	<0.001	1.5 (1.3-1.7)
Dyspnea	<0.001	1.6 (1.4-1.8)
Chronic obstructive pulmonary disease	<0.001	1.6 (1.4-1.8)
Diabetes, insulin treated	0.003	1.3 (1.1-1.5)
Congestive heart failure	0.001	1.6 (1.2-2.0)
Hypertension	<0.001	1.4 (1.2-1.5)
Liver function	<0.001	1.4 (1.2-1.8)
Cancer	<0.001	1.5 (1.3-1.8)
Prolonged hospitalization	<0.001	1.3 (1.2-1.5)
Weight loss	<0.001	1.5 (1.2-1.8)
Sepsis	<0.001	1.5 (1.3-1.8)
Medium-risk surgery	<0.001	2.2 (1.9-2.6)
High-risk surgery	<0.001	2.6 (2.1-3.1)
Very-high-risk surgery	<0.001	5.3 (4.4-6.4)

Detailed definitions of all American College of Surgeons-National Surgical Quality Improvement Program data elements are available in appendix 1. Any variable with a $P<0.05$ and an adjusted odds ratio <0.8 or >1.2 was established as an independent predictor of unanticipated early postoperative intubation.
BMI = body mass index.

After controlling for the other risk factors, based upon the adjusted odds ratios, all of these co-morbidities were significant risk factors for unanticipated early postoperative intubation.

Example of Use Propensity Scores

Ramachandran SK, Nafiu OO, Ghaferi A, Tremper KK, Shanks A, Kheterpal S. Independent predictors and outcomes of unanticipated early postoperative tracheal intubation after nonemergent, noncardiac surgery. Anesthesiology. 2011 Jul;115(1):44-53.

Like the Lee Revised Cardiac Risk Index, an UEPI risk index was created.

Significant increases in death rate in patients with unanticipated early postoperative intubation (UEPI) across increasing risk classes.

Instrumental Variables Analysis (IVA)

- Covariate analysis cannot adjust for potential confounding variables that are unknown or not easily quantifiable.
- IVA exploits quasi-experimental variation in treatment assignment that is incidental to the studied health outcome.
- Three assumptions for IVA:

1. The IV must predict treatment but that prediction does not have to be perfect. An IV that does a poor job of prediction is said to be weak.
2. A valid IV will not be directly related to outcome, except through the effect of the treatment.
3. A valid IV will also not be related to outcome through either measured or unmeasured paths.

Causal Relations in IVA

General instrumental variable analysis (IVA) model

Example of IVA with physicianspecific prescribing preference

Bennett, Methods in Neuroepidemiology 2010;35(3):237-240
Brookhart, Wang, Solomon \& Scheeweiss, Epidemiology 2006;17(3):268-275

Instrumental Variables Model

- Two-stage least-squares regression

1. $\left.Y=\alpha_{0}+\alpha_{1} X+\varepsilon_{1}\right\} Y=$ outcome, $X=$ exposure
2. $\left.X=\beta_{0}+\beta_{1} Z+\varepsilon_{2}\right\} X=$ exposure, $Z=$ instrument variable

- Substituting equation 2 into equation 1:
- $Y=\alpha_{0}+\alpha_{1}\left(\beta_{0}+\beta_{1} Z+\varepsilon_{2}\right)+\varepsilon_{1} \rightarrow Y_{i}=Y_{0}+Y_{1} Z_{i}+\varepsilon_{i}$
- Estimate direct treatment effect (β_{1}) of treatment (T_{i}) on outcome (Y_{i}): $\beta_{1}=\gamma_{1} / \alpha_{1}$
- Examples of instrumental variables
- Physician prescribing preference for NSAID
- Smoking cessation program in pregnant mothers
- Distance to hospital with cardiac catherization laboratory

Bennett, Methods in Neuroepidemiology 2010;35(3):237-240
Schneeweiss et al., Arthritis \& Rhematism 2006;54(11):3390-3398
Brookhart, Rassen \& Schneeweiss, Pharmacoepidemiology and Drug Safety 2010;19:537-554

Analysis of Covariance (ANCOVA)

- Compares several means (like an ANOVA) but adjusts for the effect of one or more other variables (covariates)
- These covariates can be the presumed confounders.
- May use the propensity score as a single covariate (?)
- Two key but often violated assumptions for an ANCOVA:
- Independence of the covariate and experimental effect (x)
- Homogeneity of regression slopes: the relationship between the covariate and dependent outcome (y) is true for all of the subgroups of study subjects
- Use of ANCOVA is quite controversial - it is not a quick fix.

Johns Hopkins Bloomberg School of Public Health's OPENCOURSEWARE (OCW) Project

- "...provides access to content of the School's most popular courses. As challenges to the world's health escalate daily, the School feels a moral imperative to provide equal and open access to information and knowledge about the obstacles to the public's health and their potential solutions."
- Funded by the William and Flora Hewlett Foundation
- Introduction to Biostatistics: http://ocw.jhsph.edu/courses/introbiostats/
- Methods in Biostatistics I: http://ocw.jhsph.edu/courses/MethodsInBiostatisticsI/
- Methods in Biostatistics II: http://ocw.jhsph.edu/courses/methodsinbiostatisticsii/
- Fundamentals of Epidemiology I: http://ocw.jhsph.edu/courses/FundEpi/
- Fundamentals of Epidemiology II:
http://ocw.jhsph.edu/courses/fundepiii/

ActivEpi: www.activepi.com

- "ActivEpi is a collection of innovative tools for learning epidemiology."
- Multimedia approach to learning basic and some intermediate epidemiology
- Extensive series of online, downloadable PowerPoint presentations (free)
- "Epi for Clinicians" section provides a population-based perspective on clinical medicine.

Epi Info 3.5.3: www.cdc.gov/epiinfo

"Physicians, nurses, epidemiologists, and other public health workers lacking a background in information technology often have a need for simple tools that allow the rapid creation of data collection instruments and data analysis, visualization, and reporting using epidemiologic methods.

Epi Info ${ }^{\text {TM }}$, a suite of lightweight software tools, delivers core ad-hoc epidemiologic functionality without the complexity or expense of large, enterprise applications."

Journal References I

- McCrum-Gardner, E. (2008). Which is the correct statistical test to use? Br J Oral Maxillofac Surg, 46(1), 38-41.
- Overholser, B. R., \& Sowinski, K. M. (2007). Biostatistics primer: Part I. Nutr Clin Pract, 22(6), 629-635.
- Overholser, B. R., \& Sowinski, K. M. (2008). Biostatistics primer: Part 2. Nutr Clin Pract, 23(1), 76-84.
- Whitley, E., \& Ball, J. (2002a). Statistics review 1: Presenting and summarising data. Crit Care, 6(1), 66-71.
- Whitley, E., \& Ball, J. (2002b). Statistics review 2: Samples and populations. Crit Care, 6(2), 143-148.
- Whitley, E., \& Ball, J. (2002c). Statistics review 3: Hypothesis testing and P values. Crit Care, 6(3), 222-225.
- Whitley, E., \& Ball, J. (2002d). Statistics review 4: Sample size calculations. Crit Care, 6(4), 335-341.
- Whitley, E., \& Ball, J. (2002e). Statistics review 5: Comparison of means. Crit Care, 6(5), 424-428.
- Whitley, E., \& Ball, J. (2002f). Statistics review 6: Nonparametric methods. Crit Care, 6(6), 509-513.
- Bewick, V., Cheek, L., \& Ball, J. (2003). Statistics review 7: Correlation and regression. Crit Care, 7(6), 451-459.
- Bewick, V., Cheek, L., \& Ball, J. (2004a). Statistics review 8: Qualitative data - tests of association. Crit Care, 8(1),
- Bewick, V., Cheek, L., \& Ball, J. (2004b). Statistics review 9: One-way analysis of variance. Crit Care, 8(2), 130-136.
- Bewick, V., Cheek, L., \& Ball, J. (2004c). Statistics review 10: Further nonparametric methods. Crit Care, 8(3), 196-199.
- Bewick, V., Cheek, L., \& Ball, J. (2004d). Statistics review 11: Assessing risk. Crit Care, 8(4), 287-291.
- Bewick, V., Cheek, L., \& Ball, J. (2004e). Statistics review 12: Survival analysis. Crit Care, 8(5), 389-394.
- Bewick, V., Cheek, L., \& Ball, J. (2004f). Statistics review 13: Receiver operating characteristic curves. Crit Care, 8(6), 508-512.
- Bewick, V., Cheek, L., \& Ball, J. (2005). Statistics review 14: Logistic regression. Crit Care, 9(1), 112-118.

Journal References II

- De Muth, J. E. (2008). Preparing for the first meeting with a statistician. Am J Health Syst Pharm, 65(24), 2358-2366.
- Chan, Y. H. (2003a). Biostatistics 101: Data presentation. Singapore Med J, 44(6), 280-285
- Chan, Y. H. (2003b). Biostatistics 102: Quantitative data--parametric \& non-parametric tests. Singapore Med J, 44(8), 391-396.
- Chan, Y. H. (2003c). Biostatistics 103: Qualitative data - tests of independence. Singapore Med J, 44(10), 498-503.
- Chan, Y. H. (2003d). Biostatistics 104: Correlational analysis. Singapore Med J, 44(12), 614-619.
- Chan, Y. H. (2004a). Biostatistics 201: Linear regression analysis. Singapore Med J, 45(2), 55-61.
- Chan, Y. H. (2004b). Biostatistics 202: Logistic regression analysis. Singapore Med J, 45(4), 149-153.
- Chan, Y. H. (2004c). Biostatistics 203. Survival analysis. Singapore Med J, 45(6), 249-256.
- Chan, Y. H. (2004d). Biostatistics 301. Repeated measurement analysis. Singapore Med J, 45(8), 354-368; quiz 369.
- Chan, Y. H. (2004e). Biostatistics 301A. Repeated measurement analysis (mixed models). Singapore Med J, 45(10), 456-461.
- Chan, Y. H. (2004f). Biostatistics 302. Principal component and factor analysis. Singapore Med J, 45(12), 558-565, quiz 566.
- Chan, Y. H. (2005a). Biostatistics 303. Discriminant analysis. Singapore Med J, 46(2), 54-61; quiz 62.
- Chan, Y. H. (2005b). Biostatistics 304. Cluster analysis. Singapore Med J, 46(4), 153-159; quiz 160.
- Chan, Y. H. (2005c). Biostatistics 305. Multinomial logistic regression. Singapore Med J, 46(6), 259-268; quiz 269.
- Chan, Y. H. (2005d). Biostatistics 306. Log-linear models: poisson regression. Singapore Med J, 46(8), 377-385; quiz 386.
- Chan, Y. H. (2005e). Biostatistics 307. Conjoint analysis and canonical correlation. Singapore Med J, 46(10), 514-517; quiz 518.
- Chan, Y. H. (2005f). Biostatistics 308. Structural equation modeling. Singapore Med J, 46(12), 675-679; quiz 680.

Journal References III

- Barratt, A., Wyer, P. C., Hatala, R., et al. (2004). Tips for learners of evidence-based medicine: 1. Relative risk reduction, absolute risk reduction and number needed to treat. CMAJ, 171(4), 353-358.
- Montori, V. M., Kleinbart, J., Newman, T. B., et al. (2004). Tips for learners of evidence-based medicine: 2. Measures of precision (confidence intervals). CMAJ, 171(6), 611-615.
- Hatala, R., Keitz, S., Wyer, P., \& Guyatt, G. (2005). Tips for learners of evidence-based medicine: 4. Assessing heterogeneity of primary studies in systematic reviews and whether to combine their results. CMAJ, 172(5), 661-665.
- Fitzmaurice, G. (1999a). Confidence intervals. Nutrition, 15(6), 515-516.
- Fitzmaurice, G. (1999b). Meta-analysis. Nutrition, 15(2), 174-176.
- Fitzmaurice, G. (2000a). The meaning and interpretation of interaction. Nutrition, 16(4), 313-314.
- Fitzmaurice, G. (2000b). The odds ratio: Impact of study design. Nutrition, 16(11-12), 1114-1115.
- Fitzmaurice, G. (2000c). Regression to the mean. Nutrition, 16(1), 80-81.
- Fitzmaurice, G. (2000d). Some aspects of interpretation of the odds ratio. Nutrition, 16(6), 462-463.
- Fitzmaurice, G. (2001a). Clustered data. Nutrition, 17(6), 487-488.
- Fitzmaurice, G. (2001b). A conundrum in the analysis of change. Nutrition, 17(4), 360-361.
- Fitzmaurice, G. (2001c). How to explain an interaction. Nutrition, 17(2), 170-171.
- Fitzmaurice, G. (2002a). Measurement error and reliability. Nutrition, 18(1), 112-114.
- Fitzmaurice, G. (2002b). Sample size and power: How big is big enough? Nutrition, 18(3), 289-290.
- Fitzmaurice, G. (2002c). Statistical methods for assessing agreement. Nutrition, 18(7-8), 694-696.
- Fitzmaurice, G. (2003). Confused by confounding? Nutrition, 19(2), 189-191.
- Fitzmaurice, G. (2004). Adjusting for confounding. Nutrition, 20(6), 594-596.
- Fitzmaurice, G. (2006a). Confounding: Propensity score adjustment. Nutrition, 22(11-12), 1214-1216.
- Fitzmaurice, G. (2006b). Confounding: Regression adjustment. Nutrition, 22(5), 581-583.
- Fitzmaurice, G. (2008). Missing data: Implications for analysis. Nutrition, 24(2), 200-202.

[^0]: Glynn, Schneeweiss \& Stürmer, Basic \& Clinical Pharmacology \&Toxicology 2006;98(3):253-259

